
Citation: Guato Burgos, M.F.; Morato,

J.; Vizcaino Imacaña, F.P. A Review of

Smart Grid Anomaly Detection

Approaches Pertaining to Artificial

Intelligence. Appl. Sci. 2024, 14, 1194.

https://doi.org/10.3390/

app14031194

Academic Editors: Cristian-Dragos,

Dumitru, Gheorghe Grigoras and

Subhas Mukhopadhyay

Received: 20 December 2023

Revised: 25 January 2024

Accepted: 30 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

A Review of Smart Grid Anomaly Detection Approaches
Pertaining to Artificial Intelligence
Marcelo Fabian Guato Burgos 1,* , Jorge Morato 1 and Fernanda Paulina Vizcaino Imacaña 2

1 Department of Computer Science, Campus Leganés, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
jmorato@inf.uc3m.es

2 School of Computer Science, Faculty of Technical Sciences, Main Campus, Universidad Internacional del
Ecuador, Quito 170411, Ecuador; pvizcaino@uide.edu.ec

* Correspondence: 100390410@alumnos.uc3m.es; Tel.: +593-987270208

Featured Application: This review can be used as a guiding reference to how studies of distinct
types of smart grid abnormalities are approached.

Abstract: The size of power grids and a complex technological infrastructure with higher levels of
automation, connectivity, and remote access make it necessary to be able to detect anomalies of various
kinds using optimal and intelligent methods. This paper is a review of studies related to the detection
of anomalies in smart grids using AI. Digital repositories were explored considering publications
between the years 2011 and 2023. Iterative searches were carried out to consider studies with different
approaches, propose experiments, and help identify the most applied methods. Seven objects of study
related to anomalies in SG were identified: attacks on data integrity, unusual measurements and
consumptions, intrusions, network infrastructure, electrical data, identification of cyber-attacks, and
use of detection devices. The issues relating to cybersecurity prove to be widely studied, especially to
prevent intrusions, fraud, data falsification, and uncontrolled changes in the network model. There
is a clear trend towards the conformation of anomaly detection frameworks or hybrid solutions.
Machine learning, regression, decision trees, deep learning, support vector machines, and neural
networks are widely used. Other proposals are presented in novel forms, such as federated learning,
hyperdimensional computing, and graph-based methods. More solutions are needed that do not
depend on a lot of data or knowledge of the network model. The use of AI to solve SG problems is
generating an evolution towards what could be called next-generation smart grids. At the end of this
document is a list of acronyms and terminology.

Keywords: smart grid; cyber physical systems; anomaly detection; artificial intelligence

1. Introduction

This study aims to examine the many solutions developed for detecting anomalies
in Smart Grids (SGs). Specifically, it focuses on those solutions that employ artificial
intelligence techniques or approaches. The objective is to gain insight into their practicality
and highlight the prevailing trends in this area.

Digital technologies are being integrated into the foundational framework of the
electrical grid. The driving forces behind this include the integration of renewable energy
sources, ensuring the security of energy supply, and enhancing infrastructure operation
and maintenance efficiency [1].

Smart grids face the following research challenges: (1) how to get a more accurate
prediction method; (2) how to find optimal programming when an online learning task
is performed; and (3) how to learn multiple tasks in a more automatic way [2]. As the
complexity of the systems that support the operation of the power grids increases, there is
also a growing need for a shift in the paradigm of network management from reactive to
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proactive, and this can be achieved using advanced monitoring tools, data analysis, and
predictive methods [3].

Future smart grids will require systems that can monitor, predict, schedule, learn, and
make consumption decisions in real time that are highly associated with external weather
conditions and energy output [2,4].

The relevance of detecting, localizing, and predicting abnormal energy network events
or behaviors extends to customers, network operators, service providers, and regulatory
bodies. The anomaly detection solutions are applied to the four components of an SG:
generation, transportation, distribution, and consumption of electric energy. Therefore, the
detection of anomalies is an important part of the challenges facing new smart grids.

An anomaly is a modification of the expected behavior of the system, and three
types are considered: specific, context, and collective anomalies. In specific anomalies,
an individual event instance may be considered anomalous compared to the rest of the
dataset [5].

Context anomalies start with the notion that behavior and context are separate: the
same conduct may not be regarded as an anomaly if it occurs in a different context. For
example, anomalous occurrences scheduled at specific times and days of the year may not
activate an anomaly detection mechanism because they are already expected [6,7].

Collective anomalies refer to instances where abnormal behavior cannot be identified
by examining each event in isolation but rather by considering them as part of a collection
of events [6,7].

The SG progressively plays a significant role in critical and industrial infrastruc-
tures, especially with the industry 4.0 revolution. They have become more dependent on
connectivity by supporting novel communication and remote-control functionalities that
expand the risks of cyber-attacks [8]. This has promoted a growing interest in studies on
anomaly detection.

The physical and cybernetic infrastructures that make up an SG may present unex-
pected behaviors in the face of cyber-attacks, natural disasters, meteorological phenomena,
events coming from the network operation itself, physical damage to network components,
deviation from normal operating parameters, and overloads [9].

In this context, SGs must be able to resist anomalous events, detect them, mitigate
them, and provide support for the development of a capacity to restore service or behavior
quickly and safely.

2. Materials and Methods

A review of papers related to the detection of anomalies in smart grids was carried
out, and bibliographic management tools and digital repositories were used to search
for documents. The following stages were considered: definition of research questions,
planning and definition of a search strategy, establishment of study selection criteria,
identification of results, and analysis.

2.1. Definition of Research Questions

The aim of the review is to identify research studies pertaining to anomaly detection
in smart electrical grids as well as analyze the trends and methodologies employed. As a
result, the answers to the following questions are sought:

• What is currently known about anomaly detection?
• What are the most common AI methods?
• What is the trend in this field?

The Mendeley library management tool and electronic resources, whose search tools
allow the localization of documents relevant to the review, were used: ACM Digital Library,
Compendex, ScienceDirect—Elsevier, IEEE Xplore, ISI Web of Science, SpringerLink, and
Wiley Inter Science Journal Finder.

In the exploration and search for manuscripts the following keywords were combined:
smart grid, cyber physical systems, anomaly detection, and artificial intelligence.
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2.2. Planning and Definition of the Search Strategy

The search was planned in four stages, as shown in Figure 1, beginning with auto-
mated test searches to obtain the greatest number of works that match the combination of
keywords, after which they manually discarded those works that were not related to the
review’s objective or that were duplicates in a second stage.
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In a third phase, the selection criteria set out in Section 2.3 are applied with the aim of
reducing results and obtaining specialized manuscripts in the study area. Finally, quality
criteria were applied to the results obtained in the selection phase to identify the most
relevant papers.

The search approach involves utilizing automated search tools in digital repositories
and bibliographic management systems to identify and organize the retrieved results and
documents (Figure 2).
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Test searches enable the refinement of filters to locate works pertaining to the detection
methods of anomalies in SGs. Subsequently, the criteria specified during the planning
stages are applied, and the resulting documents are stored for review. The search also
considers the publishing date, starting from 2011 as the initial year, aligning the search with
recent studies of global energy perspectives [12].

2.3. Selection and Quality Criteria

Three overarching principles are considered to determine the significance of each
research project on smart grids in detecting anomalies: the work demonstrates rigor through
its thorough approach and utilization of research techniques; the findings are presented in
a well-structured and relevant manner, enhancing their credibility; and furthermore, the
results hold relevance and practical value within the context of SGs.

The selection criteria showed in Table 1 are designed based on those three principles
to discover papers that are pertinent to addressing research questions, considering their
focus, aims, conclusions, findings, and study depth.

Table 1. List of selection criteria.

N. Criteria

1 Study addresses anomaly detection in relation to smart grids
2 The study presents empirical results
3 The study presents methods and their applications
4 The study presents future lines of research

Table 2 was created to define quality criteria for selecting documents that rigorously
handle the issue, are relevant, and serve as reference sources. The chosen publications were
those that had consensus among two out of the three academics involved in conducting
this review.
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Table 2. List of quality criteria.

N. Criteria

1 Knowledge of existing related literature is evident
2 Provides answers to research questions
3 The work enables practical applications or explores new design options
4 The solution to a real problem is being addressed
5 The work presents evidence of the validity of the findings
6 The work contrasts alternative solutions
7 The experiments are explained and reproducible

3. Results and Analysis

Table 3 lists the papers that were reviewed. The dates range from 2011 to 2023, and
they provide solutions for the following: distortions in data in measurements of energy
consumption, distortions in measurements of electrical signal values, network intrusions,
false events in the network, anomalies that can go unnoticed, deviations in state estimates
in the network, distortions in consumer prices, injection of false data, distortions in event
timestamps, and device configuration changes.

The investigations rely on real or artificially created data obtained through the utiliza-
tion of information and communications technology. This data is derived from network
events and time series, which are saved and processed via various methods with the goal of
uncovering unforeseen patterns or behaviors in the SG. In this review, seven study objects
related to the detection of anomalies in SGs were identified (Table 4).

Table 3. Summary of selected documents by year. Anomaly detection.

Year Paper

2011 [13–15]
2012 [16,17]
2013 [18]
2014 [19]
2015 [20–22]
2016 [23–27]
2017 [7,28,29]
2018 [30–35]
2019 [5,6,36–45]
2020 [8,46–56]
2021 [57–65]
2022 [66–72]
2023 [73–76]

Table 4. Grouping of issues studied for the detection of anomalies in SGs.

Study Object Paper

Data integrity attacks [13,21,25,29,40,41,48,49,53,55,59–62,70,75,76]

Unusual consumption behaviors and
measurements [6,24,27,32,34,35,38,46,52,67,68,71–73]

Network intrusions [16,18,19,56,63,69]

Network infrastructure anomalies [14,15,17,20,22,33,39,47,58,64]

Electrical data anomalies [7,23,26,36,43–45,50,54,65,66,74]

Cyberattack detection [8,30,37,57]

Devices for detecting anomalies [5,28,31,42,51]
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3.1. Data Integrity Attacks

These are situations in which false data injection (FDI) commonly occurs. This form of
attack aims to alter the values of electrical measurements or the outcomes of a network’s
state estimation. The objective is to manipulate the energy price or modify the data
transmitted between components of the network.

FDI can use sensors in supervisory control and data acquisition (SCADA) systems,
sensors for weather monitoring, smart electricity meters, and physical communication
components of neighborhood area networks (NAN) or wide area networks (WAN). At-
tackers usually know the network topology [40]. Technical, confidential information is
in the control centers of electric utilities, and physical access is protected and regulated;
therefore, it is not trivial for attackers to obtain the information, but it can happen [13]. In
an FDI attack, electrical measurements such as voltage and current can be changed and
even simulate a valid fault that causes switches or network protection elements to act [62].

Table 5 summarizes what will be described below. These are a series of situations
on which studies have focused that aim to show applicable solutions in scenarios where
an FDI occurs, such as affecting load frequency, altering the energy management system
database, affecting consumption prices, phasor measurement unit data, and load forecasts.
Each situation presents a different solution.

To detect an FDI relative to load frequency control, artificial neural networks (ANN)
are employed because attacks of this type do not have a fixed pattern and can be nonlinear
and unpredictable. A Luenberger observer is combined to estimate values and send the
observed data to the ANN unit to reduce the computational load [48]. One advantage of
this method is its speed and accuracy; the disadvantage compared to other methods such
as machine learning or network model-based detection algorithms is that it requires at least
a simple mathematical model of the system under analysis.

Table 5. Detection of data integrity attacks in SGs.

Scenario Method/Technique Objective

Affecting the load frequency ANN
Luenberger Observer Identify anomalies

Attacks on EMS systems Graphical comparisons

FDI attacks in general

Semi-supervised learning
GAN, CUSUM, CNN-LSTM,
GAIN-LSTM, STDGL,
Multi-tier detection schema

Detect anomalies/Mitigate
attacks

Attacks on load forecasting
Supervised learning
Unsupervised learning
SVM, k-NN

Anomalies involving data compromised in phasor measurement units (PMUs) can
be related to load frequency control; however, from a more holistic viewpoint, the use of
generative adversarial imputation networks (GAIN) combined with long short-term memory
(LSTM) are also used to identify FDI with acceptable performance and computational
cost [75]. This is a novel deep-learning-based data-manipulation attack resilient framework.

The combination of convolutional neural network (CNN) and LSTM proves to be use-
ful in constructing forecast-assisted methods to identify anomalies related to FDI [70]. This
model proves to be able to identify anomalies with high accuracy and low false positives,
is applicable towards PMU data integrity, and shows the effectiveness of designing layered
structured detection systems.

An intruder can launch an unstructured attack when they do not know the connectivity,
topology, and configuration of the network, or a structured attack when they know the
assets and their interconnections. In both cases, deleting or altering all or part of the
database will be unusual, and the attacker will want to go unnoticed. In the face of a
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stealthy attack, a graph-based approach to graph matching will help identify anomalies
in the power grid database [25]. This method demonstrates a low computational load
and better anomaly detection rates over principal component analysis-based and other
ANN-based intrusion detection systems; the speed also stands out in this method. One
limitation that can be highlighted is that the tests performed are not extensive enough to be
considered the better solution; however, it is an interesting experimental alternative.

Another FDI attack is the sending of false prices to consumers. Here, the cumulative
sum (CUSUM) technique is used [29], considering the control actions of the system under
attack and how to design a controller that mitigates these attacks. But if there is a large
variation in CUSUM samples caused by deviations in average consumption trends, more
stealthy attacks could be omitted, and multi-tier detection schemes may be more effec-
tive [61]. Also, the two-tier real-time attack detection scheme compared to exponential
weighted moving shows a better detection rate and fewer false alarms.

A principal issue in SG is load forecasting. There are five types of attacks: pulse, scale,
ramp up or ramp down, random, and smooth curve. Here, k-means clustering is applied
as an unsupervised machine learning algorithm to reconstruct the reference load data and
naive Bayes classifier as the supervised machine learning algorithm for the classification
of attack templates, and dynamic programming is used to calculate both the occurrence
and parameter of a cyberattack on load forecast data [41]. This method is robust and has a
high detection rate; however, its weakness is that it fails to find new variants of identified
cyber-attacks, so improvements can be considered by incorporating multiple layers.

The possibility of affecting a wide area damping control (WADC) system by pulse
attack, ramp attack, relay trigger attack, false data injection attack, or a coordinated attack
combining several attacks is a real risk related to SGs. In this case, an anomaly detec-
tion algorithm with supervised machine learning and model-based logic for mitigation,
support vector machine (SVM), decision trees, K-nearest neighbor (k-NN), Naive Bayes,
discriminant analysis, logistic regression, and neural networks is raised as an effective
option [53]. Solutions of this class that combine several methods to deal with a defined
battery of specific attacks on the power grid have no clear benchmark against which to
compare them; however, they can be evaluated on the accuracy of anomaly detection and
in this case, the experimental result is 96.5%.

Semi-supervised learning in combination with other methods such as autoencoders
and generative adversarial network (GAN), forming data-driven methods that are not
dependent on specific estimation methods or system knowledge, can be effective in FDI
detection and mitigation [55]. This method was evaluated against others such as semi-
supervised support vector machines (S3VM), K-NN, and autoencoders, and showed a
superior detection rate. This method may be ineffective against systems with variable
topology; an improvement is to dynamically adapt to network changes.

Recent studies show that deep learning (DL) is valid in cybersecurity preservation
applications but requires large data samples. Knowing if an FDI attack is occurring without
prior samples is novel, and spatiotemporal graph deep learning (STDGL) is used for this
purpose [76]. Compared to other methods, such as multi-layer perceptron (MLP), CNN,
and GRU, it shows better accuracy and precision in identifying FDI attacks.

3.2. Unusual Consumption Behaviors and Measurements

Advanced metering infrastructure (AMI) is a key component because it is related to
pricing, billing management, and consumption. It is targeted by cyber-attacks specializing
in fraud and energy consumption patterns [24].

Non-technical losses (NTL) are economic impacts, damage to infrastructure, and
decreased reliability due to fraudulent activities. In this category, there are three types of
cyber-attacks known as “power overloading”:

(a) Indirect load control (ILC) cyber-attacks performed by manipulating the price curve;
(b) Direct load control mechanism (DLC) cyber-attacks, where the attacker compromises

the energy management System (EMS) to send a false on or off signal;



Appl. Sci. 2024, 14, 1194 8 of 18

(c) Open charge point protocol (OCPP) cyber-attacks: an attacker can damage energy secu-
rity if communication channels are intercepted, and security credentials
are known.

Table 6 shows a summary of the methods applied in the scenario of anomalies origi-
nating in consumption behavior or measurements.

Table 6. Methods used to identify unusual consumption behavior.

Scenario Method/Technique Objective

Unusual consumption
behavior

DWT, VFD, ANN, DNN, DRL Identify anomalies in HAN
environment

LP, REPTree, M5P, Random Forest,
ANN, SVM

Identify anomalies in NAN +
HAN environment

Semi-supervised learning
GAN Distinguish unusual

non-fraudulent consumption
behavior from anomalies with

fraudulent intent

Machine Learning, K-means, LSTM,
ConvLSTM, regression tree model,

CNN+GRU, FL

The smart grid can incorporate WAN, NAN, and home area networks (HAN); at the
HAN level, distortion attacks can occur on energy consumption based on a threshold,
knowing what the expected behavior of a consumer is. In HAN network environments, it
is important to analyze energy consumption patterns. The use of DWT as well as variance
fractal dimension (VFD) and ANN prove to be useful [24]. One interesting thing here is that
the solution is immune to noise and considers attacks of varying duration, a few minutes
or an hour, for example; the detection rate is 96% at best. An improvement is to go towards
dynamic learning automation of new attack characteristics, and this could be achieved by
incorporating CNN.

The IoT is increasingly present and is a key factor to consider in HAN environments.
Distributed machine learning in IoT devices using a distributed neural network (DNN) is
focused on smart buildings and allows for analyzing occupants’ consumption behaviors
as well as providing short-term energy forecasts [34]. Here, the solution aims to identify
consumption behaviors for optimization and cost reduction. This is especially useful when
focused on neighborhoods composed of smart buildings, where this method proves to have
better results compared to SVM.

In NAN areas, there are scenarios where the fraudulent consumer reports a fraction
of their energy consumed consistently; here, the use of linear programming (LP) manages
to detect metering defects [32]. Other methods usually employed are SVM, decision tree,
fuzzy clustering, and classification rough set theory; however, linear regression models and
LP show better detection results.

Some methods cover NAN and HAN environments. These are anomaly detection
frameworks based on consumption patterns, employing supervised machine learning
(REPTree, M5P, Random Forest, ANN, and SVM) to detect and prevent cyber-attacks due to
network overload [52]. In particular, the combination of methods called the consumption
pattern-based anomaly detection framework (CPADF) shows at least experimentally a
good detection rate and fewer false positives compared to other home and neighborhood
network-focused solutions based on regression, neural network, and decision tree models.

Unsupervised learning is useful in scenarios where methods for detecting anoma-
lous consumption behaviors must reduce the influence of subjective factors [35]. This
method can be particularly useful in exploratory or experimental studies where little data
is available, and it is suspected that there may be unusual energy consumption.

The clustering of historical time series allows for the identification of the consumption
profile by K-means, and then the LSTM model, which is a particular type of RNN, serves
to forecast future individual consumptions with respect to the most common profile [6].
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Such solutions must consider the ability to distinguish fraudulent consumption from real
changes in a customer’s consumption behavior. Experiments show that models based on
recurrent neural networks can be a viable alternative.

Detection of energy theft or fraudulent consumption is addressed with methods imple-
menting a convolutional LSTM (ConvLSTM) approach that, compared to CNN-LSTM and
MLP methods, can help optimize temporal data redundancy [67]. The experimental results
demonstrate that ConvLSTM has strong predictive robustness, and its model structure can
effectively avoid overfitting.

A recent area of study is cyber-attacks aimed at energy theft at the distributed genera-
tion level, for example, in photovoltaic panels. In this case, machine learning and regression
trees are used to detect suspicious data [68]. Compared with other detectors based on SVM,
autoregressive integrated moving average, and least-square error, the simulation results
revealed a superior detection performance.

With respect to anomalous data that are related to the meter, the use of deep reinforce-
ment learning (DRL) demonstrates accuracy in identification, especially in environments
where thousands of metering devices are integrated into the network [71]. Compared to
other methods using SVM, CNN, and LSTM, experimental results indicate that it takes less
time to detect unknown attacks.

Regarding smart meters, there is a growing concern about information privacy because
communications between the meter and the energy service provider’s servers could be
breached. Here, the federated learning (FL) anomaly detection methods were compared
with centralized models. It can be noted that when the distribution of data changes between
clients, FL-based methods perform worse training data than centralized models. On the
other hand, FL can replace centralized models in solutions that seek to safeguard data
security and privacy [73].

Hybrid models are a trend in electricity theft detection, for example, combining a
gated recurrent unit (GRU) and a CNN, where the GRU extracts temporal features while
the CNN retrieves abstract patterns from electrical consumption data [72]. This hybrid
model has the disadvantage of a high computational cost. On the other hand, it provides
better accuracy in detection compared to other hybrid models such as CNN-LSTM and
MLP-LSTM.

Big Data technologies, such as Apache (Flink, Storm, Spark), Hadoop (HDFS), and
KairosDB are also useful to study unusual customer consumption behaviors and discover
unexpected patterns [38]. Due to the speed at which data is generated in SGs, similar
solutions will be required as part of energy management systems.

3.3. Network Intrusions

Table 7 displays an overview of the findings. Sensing via sensors and supported
by AI was already being studied more than a decade ago. An example being utilizing
machine learning algorithms to identify and categorize abnormalities based on sensory
data, which is valuable for promptly detecting unauthorized access in real time. The
Decision Tree Classifier (J48) and C4.5 algorithm are used to generate a decision tree based
on the provided training data [16].

The development of an intrusion detection model is subject to unknown engineering
problems. It is a complex challenge and requires multiple approaches. The combination of
whale optimization algorithm (WOA) as an optimization technique and ANN for classifica-
tion modeling is useful in this regard [56]. The WOA can train the ANN to find the optimal
weights. The model comparison results show superiority over SVM and neural networks
without WOA.
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Table 7. Methods related to intrusion detection in SGs.

Scenario Method/Technique Objective

Smart Grid
Intrusions

Machine learning, Decision Tree
Classifier (J48), Algorithm C4.5,

Decisions Tree
Intrusion detection

Behavioral rules specification system Detect affected or malicious devices

ADS host-based,
ADS network-based

Detect anomalies in IED substation
devices and circuit breakers

WOA, ANN, Multi-agent architecture Identify multiple intrusion scenarios

PDAM Prevent anomalies from data mining
attacks

Systems based on behavioral rules seek to detect malicious devices that exploit network
vulnerabilities through known or unknown attacks. These methods allow us to recognize,
for example, situations in which an attacker waits for the opportunity to affect some device
by taking advantage of weather conditions in which adverse operating conditions would be
expected [18]. The accuracy of discriminating or recognizing intrusions and false positives
means that only rule-based IDS systems today may be unsuitable for complex networks,
and their combination with ML methods should be explored.

Electrical substations are susceptible to intrusions; here, host-based and network-
based anomaly detection are applicable. A host-based anomaly detection system (ADS)
uses logs generated by substation devices from which malicious footprints of intrusion-
based steps in the substation facilities are extracted. A network-based ADS can detect
malicious behaviors related to multicast messages in the substation network [19]. This kind
of solution is practical but lacks mechanisms to detect unknown or undefined attacks in the
algorithm, and improvement could be achieved by generating more robust hybrid methods
that involve dynamic and automatic learning mechanisms.

Enhanced network user monitoring can effectively reduce the risk of data leakage,
phishing, and spam attacks through the implementation of statistically based detection
models and an adaptive multi-agent architecture [69]. An architecture, as such, will not
indicate what a system can do, but how it should work. This is an interesting perspective,
as the architecture could be implemented with different AI methods that would determine
the capabilities to profile and detect intrusions.

Malicious data mining attacks can compromise sensitive user data if data packets
can be intercepted through IoT network channels in SGs. The privacy-preserving data
aggregation (PDAM) scheme based on the Paillier cryptosystem, and the knowledge
signature mechanism shows a six-phase solution for this scenario [63]. This could be
seen as a complementary proposal to detection systems, since if user data is at imminent
risk, at least mechanisms would be in place to keep the data unreadable to external or
internal attackers.

3.4. Network Infrastructure Anomalies

Table 8 displays an overview of the findings. Smart grid infrastructure (SGI) comprises
all the tele-controlled elements, communications, sensors, hardware, and software that
enable network communication and operation. Seven attack models are identified:

(a) Implants of consumption devices;
(b) Energy meter implants;
(c) Black hole attacks;
(d) Installation of malicious software;
(e) Topology attacks;
(f) Tampering with the resources of electronic devices: CPU, memory, operating systems,

data, files, and configurations;
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(g) Exploitation of intrinsic weaknesses in communications protocols.

Table 8. Anomaly detection in the SGI.

Scenario Method/Technique Objective

Network
infrastructure

anomalies

Construction of temporal events,
Machine learning, GTP Avoid device compromise

Machine learning, AENN, RF Detect time synchronization attack

GN Detect meter implant and network
topology attacks

SPN Detect network topology attacks

Pattern-based correlation
capabilities, GAN

Identify anomalies in the
communication protocols

Spatiotemporal correlation, LWS,
ReTAD

Detection of anomalies that are not
cyber-attacks

Regarding attack models (a), (b), (c), and (d), the pattern matching scheme to detect
anomalous behaviors employing graph neuron (GN) as a decentralized pattern recognition
algorithm that can form an associative memory structure by interconnecting the readings
from SGI devices in a graph-like structure was one of the first proposals related to this
field that could be identified in this area [15]. This is currently an interesting theoretical
basis that can be strengthened by considering scenarios with attackers incorporating smart
stealthy mechanisms in malicious devices implanted in the SG.

In electrical substations, avoiding the compromise of intelligent electronic devices
(IED) and control circuit breakers is possible through early cyber intrusion detection algo-
rithms based on the analysis of temporal events from which four malicious characteristics
can be identified: intrusion attempts; change of the file system; change of the target system
configuration; and change of the target system state [14]. This is an interesting knowledge
base; it provides a baseline perspective of what is being targeted in the SG infrastructure,
and it is now the basis on which more automatic and intelligent methods can be structured.

Monitoring CPU usage when it exceeds a predetermined threshold that could cause
services to slow down, detecting RAM overload by setting a threshold on the maximum
amount of usable memory, and keeping track of the number of concurrently active tasks on
a machine can all support alerting of potentially compromised devices [64]. This type of
monitoring has as input a large amount of log records generated by different heterogeneous
devices connected in the network and could be improved by incorporating correlation and
learning mechanisms.

Temporal event analysis can be useful and has been enhanced through automation sup-
ported by agent-based supervised learning. The learning process creates signatures based
on the devices considered valid or true, ground-truth profile (GTP), allowing comparison
and identification of potentially compromised devices [39].

Communication protocols are subject to cyber-attacks that can cause anomalies in
the SG. The use of simple network management protocol (SNMP) configured in selected
devices and correlation capabilities based on detection patterns allow for the recognition
of anomalies in the network [17]. We are facing the advent of new-generation smart grids
as the industry must assume solutions for increasingly heterogeneous and interconnected
systems. New methods adopt DNN and GAN architectures to detect operational anomalies
and classify Modbus/TCP and DNP3 cyber-attacks [58]. The combination of methods in
this case shows better performance than the individual models of regression, SVM, random
forest, MLP, and decision tree.

Global positioning system (GPS) is an indispensable device in SGs, but it can be
compromised if an attacker is able to manipulate the timestamps by spoofing a GPS signal
or manipulating the precision time protocol (PTP). This is a time synchronization attack
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(TSA) for which correlation analysis from historical data, unsupervised machine learning
based on auto-encoder neural networks (AENN), and random forest (RF) as a supervised
machine learning detector are useful [47]. The key to such solutions is the right combination
of techniques in the context of attacks.

Topology attacks can be detected by using the stochastic petri net (SPN); this is a
transition model that can describe system behaviors in the presence of topology attacks [33].

Not all anomalies in the SGI come from a cyber-attack; they can simply be disturbances
whose origin is in the operating conditions. The spatiotemporal correlation to capture the
characteristics of the anomaly inspired by the Ledoit–Wolf Shrinkage (LWS) method and
real-time anomaly detection (ReTAD) algorithms allows the problem of the big volume of
measurement data in anomaly detection to be overcome [20].

3.5. Electrical Data Anomalies

The treatment of problems in data collection about voltage, current, power quality,
frequency, and phase angle are considered. A summary can be found in Table 9.

Table 9. Electrical data anomalies.

Scenario Method/Technique Objective

Voltage drops in the electrical network SVM, Decision Tree (C4.5)

Detect anomalies

Voltage/power anomalies Comparison of values with
established ranges, Fed-SCR

Anomalies from PMU
Unsupervised learning, HTM,
MapReduce, Random matrix,

isolation forest, K-Means, LoOP

Electrical load anomalies Hyperdimensional Computing

Short-duration voltage sags and momentary current surges are studied using pattern
recognition techniques to investigate the power signal and diagnose the voltage sag in the
power grid using SVM and decision tree (DT). According to these analyses, the decision
tree algorithm produces the best solution [23].

There are multiple approaches on the analysis of data coming from PMUs to detect
anomalies in some of the measurements, for example: score-based detector arrays [43],
hierarchical temporary memory (HTM) capable of unsupervised learning [54], application
of big data tools (MapReduce) [45], random matrix theory, and new statistical models using
massive data sets in the power grid [44]. In the case of HTM, a limitation is observed in not
being able to classify anomalies based on the cause of the anomaly.

Machine learning is useful for the detection and classification of anomalous syn-
chrophasor data by analyzing a selected window of data points using a combination
of three unsupervised methods: isolation forest, K-means, and local outlier probability
(LoOP) [65]. One interesting thing about this framework is that it does not require any
training data, and experimentally, it has been observed that it can work with high accuracy
in real time.

For power distribution systems, new AI techniques like hyperdimensional computing
(HDC) are being used to find electrical load anomalies so that they do not have to rely on
preprocessing and can focus on finding problems in real time [66]. Here, the experimental
results showed better results than SVM, KNN, and LSTM, and the HDC approach works
on raw data without preprocessing.

When there is not a lot of labeled data to work with, deep learning models that use
federated learning and fog computing (Fed-SCR) get satisfactory results for finding power
data that does not seem right [74].
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3.6. Cyber-Attack Detection

There are behaviors of devices or data on the network that, compared to expected
situations, can be classified as unusual, so it is important to know whether such behavior is
a cyber-attack. The summary is in Table 10.

Table 10. Cyber-attack detection.

Scenario Method/Technique Objective

The SG is the target of diverse
types of cyber-attacks.

Real-time anomaly detection framework,
unsupervised machine learning, Boltzmann

machine, Dynamic Bayesian Networks,
PRISM, Markov chains, and decision tree.

Identify and
detect anomalies

Being able to differentiate a real failure from a disturbance and a smart cyber-attack
is critical. Unsupervised anomaly detection employs the Boltzmann machine to detect
unobservable attacks based on free energy as the anomaly index and resorts to dynamic
Bayesian networks as probabilistic graphical models that can represent the system state
as a set of variables [37]. This solution was evaluated considering that occasionally an
interaction between sub-systems may occur that is not necessarily an attack, that random
attacks exist, or that individual or simultaneous FDI attacks may occur.

Real-time monitoring and control in SGs are critical to improving reliability and
operational efficiency; therefore, in real-time anomaly detection, it is important to take
advantage of AMI technology and smart meter (SM) data. This information allows real-
time anomaly detection by addressing three challenges: (1) large-scale multivariate count
measurements; (2) missing points; and (3) variable selection. This is intended to diagnose,
classify based on control limit policies, and evaluate consumer customer facilities [30].

If an attacker uses reinforcement learning, multi-criteria analysis comes into play
for all types of attacks, from network engineering to physical, software, and even social
engineering. This is what not only SG managers have to worry about but, in general,
all ICPS. The severity of smart attacks in industrial cyber physical systems (SSA-ICPS)
framework is an example of what can be applied in this scenario considering four com-
ponents: (1) the user interface to interact within the tool kernel; (2) the model builder to
create and compose the model of the system and the attacker; (3) the verification engine to
verify and enforce the system in case of successful attacks; and (4) the library containing
templates, attack models, and countermeasures, all supported by a probabilistic symbolic
model checker (PRISM), discrete-time Markov chains, continuous-time Markov chains, and
Markov decision trees [8].

3.7. Devices for Detecting Anomalies

Compact and affordable devices, such as the Raspberry Pi, have proven to be useful in
identifying abnormalities in an SG by analyzing data collected from PMUs. These devices
can detect two types of anomalies: (1) constraint anomalies, which refer to measured values
that fall outside a predetermined acceptable range determined through heuristic methods,
such as voltage or current; and (2) temporal anomalies, which refer to rapid oscillations or
changes in measured values within a specific time frame [28].

The use of a single board computer (SBC) in a decentralized, heterogeneous architec-
ture to keep the computational load at acceptable levels for lower-power chipsets demon-
strates that anomalies can be detected at real-time speeds [31].

Big Data technologies and techniques are present in the detection of anomalies in
electricity consumption based on Big Data analytical techniques and machine learning in
industrial wireless sensors (IWSN) installed in the power grid. K-NN is employed in data
mining and training [51].

The anomalies can range from harmless impedance changes at some network ter-
mination to pronounced electrical faults, also considering the degradation of physical
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components over time. Information about such anomalies in distribution networks can be
collected using power line modems as network sensors to distinguish between localized
faults, load impedance changes, and distributed faults [5].

The frequency of data collection in smart meters for early anomaly detection makes
these devices increasingly relevant as specialized elements in detection [42].

4. Discussion

Research indicates that the operational components of a power management system
are susceptible to many forms of abnormalities resulting from cyber-attacks, such as those
affecting the topological database or device configuration, whether caused by unintentional
or intentional alterations. When discussing anomalies, it is crucial to consider the harm or
decay of materials and devices incorporated into the network, as well as weather conditions,
and the network infrastructure.

This paper provides an initial classification of seven study objects related to SG
anomalies that are amenable to AI-based methods or tools, such as distributed computing-
capable devices that could give the network more intelligence. So, this classification is
intended to be a contribution, and of course, it can be improved.

Each object of study describes multiple scenarios, each with different proposed so-
lutions to detect anomalies of different natures; consequently, some solutions are not
comparable. However, for each method or framework identified, we have tried to show,
where possible, any weaknesses, opportunities for improvement, or alternatives against
which they were evaluated.

This classification can be also a limitation of this work since it could be incomplete. We
intend to improve and refine it in future works. Some papers are complex to place in one
category or another as they analyze intersecting scenarios, such as unusual consumption
behavior, data integrity attacks, and network intrusions.

The works reviewed address increasingly novel issues to propose optimal solu-
tions, independent of the grid model and endowed with greater involvement of artifi-
cial intelligence, which is an evolution towards what could be called new-generation
smart grids.

There are no definitive or unique anomaly detection solutions due to factors such as
geographic location, installed infrastructure, and regulations. For this reason, the collection
of reviewed works is a guiding reference on how to approach the study of diverse types of
anomalies and can be a starting point for working to prevent anomalous behavior in SGs.

5. Conclusions

Cyber-attacks on the SGI will surely come from previous intrusions, so it is important
to study how to detect a potential attack and the resulting anomalies proactively and
intelligently from an intrusion.

The models proposed in the different studies reviewed give great emphasis to the use
of machine learning, regression, decision trees, deep learning, support vector machines,
and neural networks. Other proposals are presented in novel ways, such as federated
learning, hyperdimensional computing, and graph-based methods. An increasingly visible
challenge for the new models is to be able to detect anomalies by optimizing computational
resources in less time, with less data, in real time, and independently of the network model.

In smart grids, experiments with synthetic data show that, compared to linear cases,
nonlinear cases perform better in reducing the probability of false alarms related to anomalies.

Usually, it is about discovering malicious activities or violations of security policies
through intrusion detection systems. The reviewed works show that we are evolving from
signature databases to AI techniques to achieve the ability to detect new attacks starting
from a referential network model, considering activities that are outside the normal model
as anomalies and discriminating false positives.
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There is a trend towards the formation of anomaly detection frameworks or hybrid
solutions that consist of sets of various AI methods and tools combined to analyze the
behavior of specific SG components.

In future work, we will go deeper into each object of study to refine it and show
the evolution and trend. A further review could improve the list of study objects cur-
rently identified. In addition, the digital twins applied to SG in anomaly detection will
be explored.
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Nomenclature

ADS Anomaly detection system IWSN Industrial wireless sensors
AENN Auto-encoder neural network k-NN K-nearest neighbor
AI Artificial intelligence LoOP Local outlier probability
AMI Advanced metering infrastructure LP Linear programming
ANN Artificial neural networks LSTM Long short-term memory
CNN Convolutional neural network LWS Ledoit–Wolf Shrinkage
CUSUM Cumulative sum NAN Neighborhood area networks
DL Deep learning NTL Non-technical losses
DLC Direct load control mechanism OCPP Open charge point protocol
DNN Distributed neural network PMU Phasor measurement units
DRL Deep reinforcement learning PTP Precision time protocol
DT Decision tree ReTAD Real-time anomaly detection
DWT Discrete wavelet transform RF Random forest
FDI False data injection RNN Recurrent neural networks

Fed-SCR
Federated semi-supervised class-
rebalanced

SBC Single board computer

FL Federated learning SG Smart grid

GAIN
Generative adversarial imputation
nets

SGI Smart grid infrastructure

GAN Generative adversarial network SM Smart meters

GN Graph neuron SNMP
Simple network management
protocol

GPS Global positioning system SPN Stochastic petri net

GRU Gated recurrent unit SSA-ICPS
Severity of smart attacks in industrial
cyber physical systems

GTP Ground-truth profile STDGL Spatiotemporal graph deep learning
HAN Home area networks SVM Support vector machine
HTM Hierarchical temporary memory TSA Time synchronization attack
ICPS Industrial cyber physical systems WADC Wide area damping control
IED Intelligent electronic device WAN Wide area networks
ILC Indirect load control WOA Whale optimization algorithm
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