Effects of Osseodensification Protocols on Insertion Torques and the Resonance Frequency Analysis of Conical-Shaped Implants: An In Vitro Study on Polyurethane Foam Blocks
Abstract
:1. Introduction
2. Methods
Statistical Analyses
- Group A (implants positioned in an osteotomic site prepared at 12 mm depth in densifying mode).
- Group B (implants positioned in an osteotomic site prepared at 12 mm depth in cutting mode).
- Group C (implants positioned in an osteotomic site prepared at 14 mm depth in densifying mode).
- Group D (implants positioned in an osteotomic site prepared at 14 mm depth in cutting mode).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albrektsson, T.; Branemark, P.I.; Hansson, H.A.; Lindstrom, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone to implant anchorage in man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Huwais, S.; Meyer, E.G. A Novel Osseous Densification Approach in Implant Osteotomy Preparation to Increase Biomechanical Primary Stability, Bone Mineral Density, and Bone-to-Implant Contact. Int. J. Oral Maxillofac. Implant. 2017, 32, 27–36. [Google Scholar] [CrossRef]
- Javed, F.; Romanos, G.E. The role of primary stability for successful immediate loading of dental implants. A literature review. J. Dent. 2010, 38, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Barberá-Millán, J.; Larrazábal-Morón, C.; Enciso-Ripoll, J.J.; Pérez-Pevida, E.; Chávarri-Prado, D.; Gómez-Adrián, M.D. Evaluation of the primary stability in dental implants placed in low density bone with a new drilling technique, Osseodensification: An in vitro study. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e361–e367. [Google Scholar] [CrossRef]
- Cáceres, F.; Troncoso, C.; Silva, R.; Pinto, N. Effects of osseodensification protocol on insertion, removal torques, and resonance frequency analysis of BioHorizons® conical implants. An ex vivo study. J. Oral Biol. Craniofac Res. 2020, 10, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Feher, B.; Frommlet, F.; Gruber, R.; Hirtler, L.; Ulm, C.; Kuchler, U. Resonance frequency analysis of implants placed in condensed bone. Clin. Oral Implant. Res. 2021, 32, 1200–1208. [Google Scholar] [CrossRef]
- Romeo, D.; Chochlidakis, K.; Barmak, A.B.; Agliardi, E.; Lo Russo, L.; Ercoli, C. Insertion and removal torque of dental implants placed using different drilling protocols: An experimental study on artificial bone substitutes. J. Prosthodont. 2023, 32, 633–638. [Google Scholar] [CrossRef]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Bone Quality and Quantity and Dental Implant Failure: A Systematic Review and Meta-analysis. Int. J. Prosthodont. 2017, 30, 219–237. [Google Scholar] [CrossRef]
- Atsumi, M.; Park, S.H.; Wang, H.L. Methods used to assess implant stability: Current status. Int. J. Oral Maxillofac. Implant. 2007, 22, 743–754. [Google Scholar]
- Yang, S.M.; Shin, S.Y.; Kye, S.B. Relationship between implant stability measured by resonance frequency analysis (RFA) and bone loss during early healing period. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 105, e12–e19. [Google Scholar] [CrossRef]
- Degidi, M.; Daprile, G.; Piattelli, A. Primary stability determination by means of insertion torque and RFA in a sample of 4.135 implants. Clin. Implant. Dent. Relat. Res. 2012, 14, 501–507. [Google Scholar] [CrossRef]
- Meredith, N.; Books, K.; Friberg, B.; Jemt, T.; Sennerby, L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin. Oral Implant. Res. 1997, 8, 226–233. [Google Scholar] [CrossRef]
- Cavallaro, J., Jr.; Greenstein, B.; Greenstein, G. Clinical methodologies for achieving primary dental implant stability: The effects of alveolar bone density. J. Am. Dent. Assoc. 2009, 140, 1366–1372. [Google Scholar] [CrossRef]
- Tabassum, A.; Meijer, G.J.; Walboomers, X.F.; Jansen, J.A. Evaluation of primary and secondary stability of titanium implants using different surgical techniques. Clin. Oral Implant. Res. 2014, 25, 487–492. [Google Scholar] [CrossRef]
- Alghamdi, H.; Anand, P.S.; Anil, S. Undersized implant site preparation to enhance primary implant stability in poor bone density: A prospective clinical study. J. Oral Maxillofac. Surg. 2011, 69, e506–e512. [Google Scholar] [CrossRef] [PubMed]
- Degidi, M.; Daprile, G.; Piattelli, A. Influence of underpreparation on primary stability of implants inserted in poor quality bone sites: An in vitro study. J. Oral Maxillofac. Surg. 2015, 73, 1084–1088. [Google Scholar] [CrossRef]
- Coelho, P.G.; Marin, C.; Teixeira, H.S.; Campos, F.E.; Gomes, J.B.; Guastaldi, F.; Anchieta, R.B.; Silveira, L.; Bonfante, E.A. Biomechanical evaluation of undersized drilling on implant biomechanical stability at early implantation times. J. Oral Maxillofac. Surg. 2013, 71, e69–e75. [Google Scholar] [CrossRef]
- Summers, R.B. A new concept in maxillary implant surgery: The osteotome technique. Compendium 1994, 15, 152, 154–156, 158 passim; quiz 162. [Google Scholar] [PubMed]
- Mullings, O.; Tovar, N.; Abreu de Bortoli, J.P.; Parra, M.; Torroni, A.; Coelho, P.G.; Witek, L. Osseodensification versus subtractive drilling techniques in bone healing and implant osseointegration: Ex vivo histomorphologic/histomorphometric analysis in a low-density bone ovine model. Int. J. Oral Maxillofac. Implant. 2021, 36, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa, J.C.M.; De Oliveira Rosa, A.C.P.; Huwais, S. Use of the Immediate Dentoalveolar Restoration Technique combined with osseodensification in periodontally compromised extraction sites. Int. J. Periodontics Restor. Dent. 2019, 39, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Mercier, F.; Bartala, M.; Ella, B. Evaluation of the osseodensification technique in implant primary stability: Study on cadavers. Int. J. Oral Maxillofac. Implant. 2022, 37, 593–600. [Google Scholar] [CrossRef]
- Trisi, P.; Berardini, M.; Falco, A.; Vulpiani, M.P. New osseodensification implant site preparation method to increase bone density in low-density bone: In vivo evaluation in sheep. Implant. Dent. 2016, 25, 24–31. [Google Scholar] [CrossRef]
- ASTM F1839; Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. American Society for Testing and Materials ASTM: West Conshohocken, PA, USA, 2008.
- Capparé, P.; Vinci, R.; Di Stefano, D.A.; Traini, T.; Pantaleo, G.; Gherlone, E.F.; Gastaldi, G. Correlation between initial BIC and the insertion torque/depth integral recorded with an instantaneous torque-measuring implant motor: An in vivo study. Clin. Implant. Dent. Relat. Res. 2015, 17 (Suppl. S2), e613–e620. [Google Scholar] [CrossRef]
- Molly, L. Bone density and primary stability in implant therapy. Clin. Oral Implant. Res. 2006, 17 (Suppl. S2), 124–135. [Google Scholar] [CrossRef]
- Ribeiro-Rotta, R.F.; De Oliveira, R.C.; Dias, D.R.; Lindh, C.; Leles, C.R. Bone tissue microarchitectural characteristics at dental implant sites part 2: Correlation with bone classification and primary stability. Clin. Oral Implant. Res. 2014, 25, e47–e53. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Xhajanka, E.; Romeo, D.M.; Romeo, M.; Zappone, C.M.F.; Malcangi, G.; Scarano, A.; Lorusso, F.; et al. The Effectiveness of Osseodensification Drilling Protocol for Implant Site Osteotomy: A Systematic Review of the Literature and Meta-Analysis. Materials 2021, 14, 1147. [Google Scholar] [CrossRef]
- Brizuela-Velasco, A.; Álvarez-Arenal, Á.; Gil-Mur, F.J.; Herrero-Climent, M.; Chávarri-Prado, D.; Chento-Valiente, Y.; Dieguez-Pereira, M. Relationship between Insertion Torque and Resonance Frequency Measurements, Performed by Resonance Frequency Analysis, in Micromobility of Dental Implants: An In Vitro Study. Implant. Dent. 2015, 24, 607–611. [Google Scholar] [CrossRef]
- Trisi, P.; Perfetti, G.; Baldoni, E.; Berardi, D.; Colagiovanni, M.; Scogna, G. Implant micromotion is related to peak insertion torque and bone density. Clin. Oral Implant. Res. 2009, 20, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Lahens, B.; Neiva, R.; Tovar, N.; Alifarag, A.M.; Jimbo, R.; Bonfante, E.A.; Bowers, M.M.; Cuppini, M.; Freitas, H.; Witek, L.; et al. Biomechanical and histologic basis of osseodensification drilling for endosteal implant placement in low density bone. An experimental study in sheep. J. Mech. Behav. Biomed. Mater. 2016, 63, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, E.T.P.; Zahoui, A.; Barrera, R.B.; Huwais, S.; Coelho, P.G.; Karateew, E.D.; Bonfante, E.A. Osseodensification effect on implants primary and secondary stability: Multicenter controlled clinical trial. Clin. Implant. Dent. Relat. Res. 2021, 23, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Cohen, O.; Ormianer, Z.; Tal, H.; Rothamel, D.; Weinreb, M.; Moses, O. Differences in crestal bone-to-implant contact following an under-drilling compared to an over-drilling protocol. A study in the rabbit tibia. Clin. Oral Investig. 2016, 20, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | |||
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
ISQ | A | 62.7667 | 1.54249 | 0.31486 | 62.1153 | 63.4180 | 58.50 | 64.25 |
B | 63.6250 | 0.99728 | 0.20357 | 63.2039 | 64.0461 | 61.50 | 65.00 | |
C | 64.6750 | 1.07023 | 0.23931 | 64.1741 | 65.1759 | 62.00 | 66.00 | |
D | 64.1000 | 2.45539 | 0.54904 | 62.9508 | 65.2492 | 57.00 | 65.50 | |
Cm | A | 18.5000 | 0.65938 | 0.13460 | 18.2216 | 18.7784 | 17.00 | 19.00 |
B | 19.3333 | 1.34056 | 0.27364 | 18.7673 | 19.8994 | 17.00 | 21.00 | |
C | 20.7000 | 0.65695 | 0.14690 | 20.3925 | 21.0075 | 20.00 | 22.00 | |
D | 19.9000 | 0.85224 | 0.19057 | 19.5011 | 20.2989 | 18.00 | 21.00 | |
Cp | A | 40.3333 | 1.63299 | 0.33333 | 39.6438 | 41.0229 | 39.00 | 44.00 |
B | 42.6667 | 2.37133 | 0.48404 | 41.6653 | 43.6680 | 39.00 | 47.00 | |
C | 43.3000 | 1.30182 | 0.29110 | 42.6907 | 43.9093 | 41.00 | 45.00 | |
D | 39.9000 | 1.33377 | 0.29824 | 39.2758 | 40.5242 | 39.00 | 43.00 | |
I | A | 171.4167 | 7.21663 | 1.47309 | 168.3694 | 174.4640 | 153.00 | 180.00 |
B | 179.4167 | 11.64294 | 2.37660 | 174.5003 | 184.3330 | 159.00 | 196.00 | |
C | 193.2000 | 4.78594 | 1.07017 | 190.9601 | 195.4399 | 187.00 | 201.00 | |
D | 184.5000 | 6.26183 | 1.40019 | 181.5694 | 187.4306 | 170.00 | 192.00 |
Dependent Variable | (I) Groups | (J) Groups | Mean Difference (I−J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
ISQ | A | B | −0.85833 | 0.46067 | 0.252 | −2.0658 | 0.3492 |
C | −1.90833 * | 0.48315 | 0.001 | −3.1748 | −0.6419 | ||
D | −1.33333 * | 0.48315 | 0.035 | −2.5998 | −0.0669 | ||
B | A | 0.85833 | 0.46067 | 0.252 | −0.3492 | 2.0658 | |
C | −1.05000 | 0.48315 | 0.139 | −2.3164 | 0.2164 | ||
D | −0.47500 | 0.48315 | 0.759 | −1.7414 | 0.7914 | ||
C | A | 1.90833 * | 0.48315 | 0.001 | 0.6419 | 3.1748 | |
B | 1.05000 | 0.48315 | 0.139 | −0.2164 | 2.3164 | ||
D | 0.57500 | 0.50463 | 0.666 | −0.7478 | 1.8978 | ||
D | A | 1.33333 * | 0.48315 | 0.035 | 0.0669 | 2.5998 | |
B | 0.47500 | 0.48315 | 0.759 | −0.7914 | 1.7414 | ||
C | −0.57500 | 0.50463 | 0.666 | −1.8978 | 0.7478 | ||
Cm | A | B | −0.83333 * | 0.26972 | 0.014 | −1.5403 | −0.1263 |
C | −2.20000 * | 0.28289 | 0.000 | −2.9415 | −1.4585 | ||
D | −1.40000 * | 0.28289 | 0.000 | −2.1415 | −0.6585 | ||
B | A | 0.83333 * | 0.26972 | 0.014 | 0.1263 | 1.5403 | |
C | −1.36667 * | 0.28289 | 0.000 | −2.1082 | −0.6252 | ||
D | −0.56667 | 0.28289 | 0.195 | −1.3082 | 0.1748 | ||
C | A | 2.20000 * | 0.28289 | 0.000 | 1.4585 | 2.9415 | |
B | 1.36667 * | 0.28289 | 0.000 | 0.6252 | 2.1082 | ||
D | 0.80000 * | 0.29547 | 0.040 | 0.0255 | 1.5745 | ||
D | A | 1.40000 * | 0.28289 | 0.000 | 0.6585 | 2.1415 | |
B | 0.56667 | 0.28289 | 0.195 | −0.1748 | 1.3082 | ||
C | −0.80000 * | 0.29547 | 0.040 | −1.5745 | −0.0255 | ||
Cp | A | B | −2.33333 * | 0.50461 | 0.000 | −3.6560 | −1.0106 |
C | −2.96667 * | 0.52924 | 0.000 | −4.3539 | −1.5794 | ||
D | 0.43333 | 0.52924 | 0.845 | −0.9539 | 1.8206 | ||
B | A | 2.33333 * | 0.50461 | 0.000 | 1.0106 | 3.6560 | |
C | −0.63333 | 0.52924 | 0.631 | −2.0206 | 0.7539 | ||
D | 2.76667 * | 0.52924 | 0.000 | 1.3794 | 4.1539 | ||
C | A | 2.96667 * | 0.52924 | 0.000 | 1.5794 | 4.3539 | |
B | 0.63333 | 0.52924 | 0.631 | −0.7539 | 2.0206 | ||
D | 3.40000 * | 0.55277 | 0.000 | 1.9511 | 4.8489 | ||
D | A | −0.43333 | 0.52924 | 0.845 | −1.8206 | 0.9539 | |
B | −2.76667 * | 0.52924 | 0.000 | −4.1539 | −1.3794 | ||
C | −3.40000 * | 0.55277 | 0.000 | −4.8489 | −1.9511 | ||
I | A | B | −8.00000 * | 2.33501 | 0.005 | −14.1205 | −1.8795 |
C | −21.78333 * | 2.44897 | 0.000 | −28.2026 | −15.3640 | ||
D | −13.08333 * | 2.44897 | 0.000 | −19.5026 | −6.6640 | ||
B | A | 8.00000 * | 2.33501 | 0.005 | 1.8795 | 14.1205 | |
C | −13.78333 * | 2.44897 | 0.000 | −20.2026 | −7.3640 | ||
D | −5.08333 | 2.44897 | 0.170 | −11.5026 | 1.3360 | ||
C | A | 21.78333 * | 2.44897 | 0.000 | 15.3640 | 28.2026 | |
B | 13.78333 * | 2.44897 | 0.000 | 7.3640 | 20.2026 | ||
D | 8.70000 * | 2.55787 | 0.006 | 1.9953 | 15.4047 | ||
D | A | 13.08333 * | 2.44897 | 0.000 | 6.6640 | 19.5026 | |
B | 5.08333 | 2.44897 | 0.170 | −1.3360 | 11.5026 | ||
C | −8.70000 * | 2.55787 | 0.006 | −15.4047 | −1.9953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranno, N.; De Angelis, F.; Fischetto, S.G.; Brauner, E.; Andreasi Bassi, M.; Marrapese, A.; La Monaca, G.; Vozza, I.; Di Carlo, S. Effects of Osseodensification Protocols on Insertion Torques and the Resonance Frequency Analysis of Conical-Shaped Implants: An In Vitro Study on Polyurethane Foam Blocks. Appl. Sci. 2024, 14, 1196. https://doi.org/10.3390/app14031196
Pranno N, De Angelis F, Fischetto SG, Brauner E, Andreasi Bassi M, Marrapese A, La Monaca G, Vozza I, Di Carlo S. Effects of Osseodensification Protocols on Insertion Torques and the Resonance Frequency Analysis of Conical-Shaped Implants: An In Vitro Study on Polyurethane Foam Blocks. Applied Sciences. 2024; 14(3):1196. https://doi.org/10.3390/app14031196
Chicago/Turabian StylePranno, Nicola, Francesca De Angelis, Sara Giulia Fischetto, Edoardo Brauner, Mirko Andreasi Bassi, Annalisa Marrapese, Gerardo La Monaca, Iole Vozza, and Stefano Di Carlo. 2024. "Effects of Osseodensification Protocols on Insertion Torques and the Resonance Frequency Analysis of Conical-Shaped Implants: An In Vitro Study on Polyurethane Foam Blocks" Applied Sciences 14, no. 3: 1196. https://doi.org/10.3390/app14031196
APA StylePranno, N., De Angelis, F., Fischetto, S. G., Brauner, E., Andreasi Bassi, M., Marrapese, A., La Monaca, G., Vozza, I., & Di Carlo, S. (2024). Effects of Osseodensification Protocols on Insertion Torques and the Resonance Frequency Analysis of Conical-Shaped Implants: An In Vitro Study on Polyurethane Foam Blocks. Applied Sciences, 14(3), 1196. https://doi.org/10.3390/app14031196