The Effects of Bee Additives on the Physico-Chemical and Antioxidant Properties of Rapeseed Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Determination of Water Content in Honey by the Refractometric Method [17]
2.3. Determination of Specific Electrical Conductivity of Honey [17]
2.4. Determination of pH and Free Acids in Honey [17]
2.5. Determination of Brown Pigments in Honey Using the Spectrophotometric Method [18]
2.6. Analyzing the Color of Honey Using the Spectrophotometric Method [19]
2.7. Determination of the Total Polyphenol Content Using the Folin–Ciocalteu Method—Microplate Method [20]
2.8. Determination of the Antioxidant Capacity of Honey Using the DPPH Free Radical—Microplate Method [21,22]
2.9. Determination of Sugar Content by HPLC Method [23]
2.10. Determination of Phenolic Compounds by HPLC Method [23]
2.11. Statistical Analysis
3. Results and Discussion
3.1. Water Content in Honeys
3.2. Determination of the Specific Electrical Conductivity of Honeys
3.3. Determination of pH and Free Acids in Honey
3.4. The Content of Brown Pigments in Honeys and the Color of Honeys
3.5. The Total Polyphenol Content (Microplate Spectrophotometric Method)
3.6. Antioxidant Capacity of Honeys
3.7. Sugar Content in Honeys
3.8. Phenolic Compounds Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anklam, E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998, 63, 549–562. [Google Scholar] [CrossRef]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef]
- Brar, D.S.; Pant, K.; Krishna, R.; Kaur, S.; Rasane, P.; Nanda, V.; Saxen, S.; Gautam, S. A comprehensive review on unethical honey: Validation by emerging techniques. Food Control 2022, 145, 109482. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability, and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.X. Chapter 3-Chemical Composition, Characterization, and Differentiation of Honey Botanical and Geographical Origins. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 62, pp. 89–137. [Google Scholar]
- Young, G.W.Z.; Blundell, R. A review on the phytochemical composition and health applications of honey. Heliyon 2023, 9, e12507. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M. Chemical Composition of Honey. In Bee Products—Chemical and Biological Properties; Alvarez-Suarez, J.M., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 43–82. [Google Scholar]
- Khalil, M.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.; Gan, S. Phenolic Acid Composition and Antioxidant Properties of Malaysian Honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef] [PubMed]
- Gašić, U.M.; Milojković-Opsenica, D.M.; Tešić, Ž.L. Polyphenols as possible markers of botanical origin of honey. J. AOAC Int. 2017, 100, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. Based Complement. Altern. Med. 2015, 2015, e297425. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Makarewicz, M. Functional properties of honey supplemented with bee bread and propolis. Nat. Prod. Res. 2017, 31, 2680–2683. [Google Scholar] [CrossRef] [PubMed]
- Osés, S.M.; Pascual-Maté, A.; Fernández-Muiño, M.A.; López-Díaz, T.M.; Sancho, M.T. Bioactive Properties of Honey with Propolis. Food Chem. 2016, 196, 1215–1223. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, e1259510. [Google Scholar] [CrossRef]
- Habryka, C.; Socha, R.; Juszczak, L. The Effect of Enriching Honey with Propolis on the Antioxidant Activity, Sensory Characteristics, and Quality Parameters. Molecules 2020, 25, 1176. [Google Scholar] [CrossRef]
- Miłek, M.; Mołoń, M.; Kielar, P.; Sidor, E.; Bocian, A.; Marciniak-Lukasiak, K.; Pasternakiewicz, A.; Dżugan, M. The Comparison of Honey Enriched with Laboratory Fermented Pollen vs. Natural Bee Bread in Terms of Nutritional and Antioxidant Properties, Protein In Vitro Bioaccessibility, and Its Genoprotective Effect in Yeast Cells. Molecules 2023, 28, 5851. [Google Scholar] [CrossRef]
- Bogdanov, S. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre, FAM, Liebefeld: Bern, Switzerland, 2002. [Google Scholar]
- Turkmen, N.; Sari, F.; Poyrazoglu, E.S.; Velioglu, Y.S. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 2006, 95, 653–657. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49. [Google Scholar] [CrossRef]
- Herald, T.J.; Gadgil, P.; Tilley, M. High-throughput microplate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012, 92, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Bobo-García, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenoloc content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Sauri-Duch, E.; Gutiérrez-Canul, C.; Cuevas-Glory, L.; Ramón-Canul, L.; Pérez-Pacheco, E.; Moo-Huchin, V. Determination of quality characteristics, phenolic compounds and antioxidant activity of propolis from southeastern Mexico. J. Apic. Sci. 2021, 65, 109–122. [Google Scholar] [CrossRef]
- Regulation of the Minister of Agriculture and Rural Development of October 3, 2003 on Detailed Requirements for the Commercial Quality of Honey. J. Laws 2003, 181, 1773.
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zheng, J.; Cao, W. Identification of Acacia Honey Adulteration with Rape Honey Using Liquid Chromatography–Electrochemical Detection and Chemometrics. Food Anal. Methods 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
- Majewska, E.; Kowalska, J. Badanie Korelacji Pomiędzy Przewodnością Elektryczną i Zawartością Popiołu w Wybranych Miodach Pszczelich. Acta Agrophysica 2011, 17, 189. [Google Scholar]
- Chomaniuk, N.; Przybyłowski, P.; Wilczyńska, A. Wstępna ocena jakości pszczelich miodów gatunkowych z terenu Warmii i Mazur. Bromatol. I Chem. Toksykol. 2016, 49, 256. [Google Scholar]
- Popek, S. Badanie kwasowości pszczelich miodów odmianowych. Zesz. Nauk./Akad. Ekon. W Krakowie 2003, 623, 29–33. [Google Scholar]
- Molenda, M.; Sowińska, K. Badanie zgodności z normą PN-88/A-77626 elektrochemicznych właściwości wybranych miodów. Analit 2020, 9, 67–74. [Google Scholar]
- Kaczmarek, A.; Muzolf-Panek, M.; Tomaszewska-Gras, J.; Konieczny, P. Predicting the botanical origin of honeys with chemometric analysis according to their antioxidant and physicochemical properties. Pol. J. Food Nutr. Sci. 2019, 69, 191–201. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Tian, J.; Zhang, Y.Z.; Li, S.S.; Zheng, H.Q.; Hu, F.L. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 2021, 10, 2882. [Google Scholar] [CrossRef]
- Costa, M.C.A.; Morgano, M.A.; Ferreira, M.M.C.; Milani, R.F. Analysis of bee pollen constituents from different Brazilian regions: Quantification by NIR spectroscopy and PLS regression. LWT 2017, 80, 76–83. [Google Scholar] [CrossRef]
- Majewska, E.; Kowalska, J.; Owerko, B. Fizyko-chemiczne parametry wybranych miodów gryczanych dostępnych na rynku polskim. Bromatol. I Chem. Toksykol. 2012, 4, 1233–1238. [Google Scholar]
- Council Directive 2001/110/EC relating to honey. Off. J. Eur. Communities 2001, L10, 47–52. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32001L0110 (accessed on 20 July 2023).
- Bath, P.K.; Singh, N. A comparison between Helianthus annuus and Eucalyptus lanceolatus honey. Food Chem. 1999, 67, 389–397. [Google Scholar] [CrossRef]
- Boonchiangma, S.; Chanthai, S.; Srijaranai, S. Chemical compositions and non-enzymatic browning compounds of Thai honey: A kinetic study. J. Food Process Eng. 2011, 34, 1584–1596. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Karpińska, E.; Moskwa, J.; Socha, K. Content of phenolic acids as a marker of polish honey varieties and relationship with selected honey-quality-influencing variables. Antioxidants 2022, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Bodor, Z.; Benede, C.; Urbin, Á.; Szabó, D.; Sipos, L. Colour of honey: Can we trust the Pfund scale?–An alternative graphical tool covering the whole visible spectra. Food Sci. Technol. 2021, 149, 111859. [Google Scholar] [CrossRef]
- Socha, R.; Habryka, C.; Juszczak, L. Wpływ dodatku pierzgi na zawartość wybranych związków polifenolowych oraz aktywność przeciwutleniającą miodu. Żywność Nauka Technol. Jakość 2018, 25, 34–47. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Wilczyńska, A. Próba zastosowania regresji liniowej do określenia związku pomiędzy barwą a właściwościami antyoksydacyjnymi miodów. Zesz. Nauk. Akad. Morskiej W Gdyni 2013, 80, 13–19. [Google Scholar]
- Socha, R.; Habryka, C.; Juszczak, L. Wpływ dodatku propolisu na zawartość wybranych związków polifenolowych oraz aktywność przeciwutleniającą miodu. Żywność Nauka Technol. Jakość 2016, 23, 108–119. [Google Scholar]
- Qian, W.L.; Khan, Z.; Watson, D.G.; Fearnley, J. Analysis of sugars in bee pollen and propolis by ligand exchange chromatography in combination with pulsed amperometric detection and mass spectrometry. J. Food Compos. Anal. 2008, 21, 78–83. [Google Scholar] [CrossRef]
- Kędzia, B. Chemical composition of Polish propolis. Part I Initial. Period Investig. Phytother. Prog. 2009, 1, 39–44. [Google Scholar]
- Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physicochemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Ojeda de Rodríguez, G.; Sulbarán de Ferrer, B.; Ferrer, A.; Rodríguez, B. Characterization of honey produced in Venezuela. Food Chem. 2004, 84, 499–502. [Google Scholar] [CrossRef]
- Tigistu, T.; Worku, Z.; Mohammed, A. Evaluation of the physicochemical properties of honey produced in Doyogena and Kachabira Districts of Kembata Tambaro zone, Southern Ethiopia. Heliyon 2021, 7, e06803. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Jiang, Y.; Singansusong, R.; Datta, N.; Raymont, K. Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honey and their potential for floral authentication. Food Res. Int. 2005, 38, 651–658. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Pękal, A.M. The Impact of Selecting an Analytical Procedure on Determining the Antioxidant Properties of Food Samples. Ph.D. Thesis, Warsaw University, Faculty of Chemistry, Warszawa, Poland, 2014. [Google Scholar]
Fructose [g/100 g] | Glucose [g/100 g] | Glucose + Fructose [g/100 g] | Sucrose [g/100 g] | Fructose/ Glucose Ratio | |
---|---|---|---|---|---|
Rapeseed honey | 33.8 ± 0.7 a | 36.4 ± 1.1 a | 70.1 ± 1.7 a | 2.1 ± 0.1 a | 0.93 ± 0.01 b |
Rapeseed honey + 1% propolis | 33.3 ± 0.2 a | 37.5 ± 0.5 a | 70.9 ± 0.6 a | 2.1 ± 0.1 a | 0.88 ± 0.01 a |
Rapeseed honey + 2% bee bread | 34.3 ± 0.9 a | 37.1± 0.3 a | 71.5 ± 1.0 a | 2.1 ± 0.1 a | 0.92 ± 0.03 b |
Rapeseed honey + 5% bee pollen | 31.7 ± 0.4 a | 36.6 ± 0.3 a | 68.3 ± 0.7 a | 2.1 ± 0.0 a | 0.87 ± 0.01 a |
Rapeseed Honey | Rapesedd Honey + 1% Propolis | Rapeseed Honey + 2% Bee Bread | Rapeseed Honey + 5% Bee Pollen | |
---|---|---|---|---|
Kaempferol | 1.519 ± 0.001 a | 2.488 ± 0.001 c | 3.192 ± 0.002 d | 4.021 ± 0.000 b |
Gallic acid | 0.001 ± 0.000 a | 0.002 ± 0.000 c | 0.004 ± 0.000 d | 0.006 ± 0.000 b |
Quercetin | 0.695 ± 0.002 a | 2.576 ± 0.000 c | 2.319 ± 0.000 d | 1.952 ± 0.001 b |
Catechin | nd. | nd. | 0.395 ± 0.002 b | 0.175 ± 0.000 a |
Epicatechin gallate | nd. | 1.059 ± 0.002 | nd. | nd. |
Sum of phenolic compounds | 2.216 ± 0.004 a | 6.126 ± 0.002 b | 5.910 ± 0.005 c | 6.155 ± 0.001 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derewiaka, D.; Majewska, E.; Pruszkowska, P. The Effects of Bee Additives on the Physico-Chemical and Antioxidant Properties of Rapeseed Honey. Appl. Sci. 2024, 14, 1292. https://doi.org/10.3390/app14031292
Derewiaka D, Majewska E, Pruszkowska P. The Effects of Bee Additives on the Physico-Chemical and Antioxidant Properties of Rapeseed Honey. Applied Sciences. 2024; 14(3):1292. https://doi.org/10.3390/app14031292
Chicago/Turabian StyleDerewiaka, Dorota, Ewa Majewska, and Paulina Pruszkowska. 2024. "The Effects of Bee Additives on the Physico-Chemical and Antioxidant Properties of Rapeseed Honey" Applied Sciences 14, no. 3: 1292. https://doi.org/10.3390/app14031292
APA StyleDerewiaka, D., Majewska, E., & Pruszkowska, P. (2024). The Effects of Bee Additives on the Physico-Chemical and Antioxidant Properties of Rapeseed Honey. Applied Sciences, 14(3), 1292. https://doi.org/10.3390/app14031292