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Abstract: The Quick Access Recorder (QAR), as an onboard device used for monitoring and recording
flight parameters, has been extensively installed on various types of aircraft. Recently, there has been
a significant focus on studying the typical flight safety event of runway excursions based on QAR
data. However, there is limited research that combines the analysis of runway excursion risks with
flight operations, and there is also a scarcity of studies that divide the investigation of the landing
phase into multiple key stages. In this paper, we propose a comparative analysis of operational
characteristics and risks associated with runway excursions from the perspective of operational
styles. A total of 2087 flights were classified on the basis of touchdown distance, taxiing distance, and
magnetic heading changes and were divided into three styles based on these indicators. Subsequently,
we analyze flight operations and attitudes at five key stages: runway threshold, flare, speed brake
deployment, touchdown, and reverse thrust activation. Furthermore, we employ the selection criteria
of pilot proficiency levels to filter out standard operational curves. The curve similarity is used to
compare the difference between the actual operating curves and the standard curves. Finally, we
employ typical correlation analysis to explore the relationship between touchdown distance and
operational variances. The findings indicate that Style 1 pilots exhibit the lowest probability of
runway excursions, yet their maneuvers potentially elevate the risk of hard landing events.

Keywords: QAR data; runway excursion; K-means ++; operating characteristics; flight safety

1. Introduction

Ensuring safety during the landing phase has always been a top priority for the civil
aviation industry. The International Air Transport Association (IATA) Safety Report for 2021
reveals that nearly 80% of all aviation accidents occur during the landing phase. Among the
latent conditions that contribute to runway excursions, flight operations account for 28% of
the impact, while the influence of the flight operations training system is estimated at 16%.
These findings highlight the critical nature of the landing phase in ensuring aviation safety,
with operational procedures and training programs playing crucial roles in safeguarding
against accidents.

Runway excursions have received significant attention in the civil aviation industry.
The IATA’s 2021 Safety Report [1] identified runway excursions as a high-risk category,
constituting 24% of all accidents prior to the COVID-19 pandemic. Over the past decade
(2012–2021), runway excursions have been the most common accident category, with
138 occurrences. This category ranks as the third leading cause of fatal accidents, resulting
in 93 fatalities across nine accidents. These accidents occurred during aircraft takeoff
or landing and were influenced by factors such as unstable approaches, high landing
speeds, and slippery runways. According to the IATA Annual Safety Report—2022, there
was one fatality attributed to runway excursions last year, with six occurrences of non-
fatal incidents involving runway excursions [2]. According to A Statistical Analysis of
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Commercial Aviation Accidents by Airbus, the analysis of data from 2002 to 2022 highlights
that runway excursions rank as the third leading cause of fatal accidents and represent
the primary factor in aircraft structural damage. Runway excursions account for 17% of
fatal accidents within various accident categories. Furthermore, within the distribution of
accidents based on aircraft damage, runway excursions constitute 36% of cases [3].

Research on runway excursions can generally be categorized into two main types:
accident report analysis and exploration of causal and influencing factors. Studies that
focus on identifying causes and analyzing factors typically rely on accident investigation
reports to determine the contributing factors and propose corresponding improvement
measures. Another approach involves analyzing past accidents using accident analysis
models to classify and analyze the risks associated with runway excursions, thus providing
risk management strategies. Alternatively, researchers may establish indicator systems
and weights based on event analysis and expert opinions to conduct risk analysis and
prediction for runway excursions [4–6].

Another category of research focuses on the analysis of exceedance events and the
study of distances and landing trajectories in runway excursions based on Quick Access
Recorder (QAR) data [7–9]. In the context of runway excursion research, there has been
limited utilization of QAR data for operational risk analysis. Current studies based on QAR
data predominantly concentrate on the characteristics and operational risks of operations,
but these studies are currently less focused on specific operational nodes. Research on
operational characteristics emphasizes feature identification with limited exploration of ac-
cident risks. Studies on operational risks mostly focus on analyzing the entire flight process
or specific parameters, with limited research combining and analyzing flight parameters.

The paper focuses on the risk of runway excursions during the landing phase, cate-
gorizing flight operations into styles and analyzing the risk of runway excursions from
the runway threshold to the end of the rollout phase. Emphasizing the runway threshold,
flare, deployment of speed brakes, touchdown, and reverse thrust activation, the study
conducts a detailed analysis of the operational characteristics and associated risks for
each style. Ultimately, employing curve similarity, typical correlation analysis is utilized
to examine the relationship between operational characteristics during touchdown and
landing distance, identifying effective operational strategies for each style in relation to
landing distance.

The remaining sections of the paper are structured as follows: Section 2 provides
a concise overview of the relevant literature; Section 3 introduces the methodologies
employed in data processing and operational style clustering; Section 4 elucidates the
characteristics of each node and the variations in operational patterns; in Section 5, we
employ curve similarity to quantify deviations between operations and the standard curve;
and finally, Section 6 concludes the paper.

2. Related Work
2.1. Runway Excursion

In summary, research on runway excursions covers multiple aspects and can generally
be divided into two categories: studies based on accident report data and those based on
flight data. In this section, we provide a brief introduction to research conducted in these
two areas. Okafor et al. [4] conducted a statistical analysis of summaries, accident reports,
and perspectives from stakeholders to identify the influencing factors of runway excursions.
They discovered that accidents occur when there is a combination of human and engi-
neering system failures. Analyzing accident reports has always been crucial for ensuring
safety and preventing such incidents. These reports are typically presented in textual form,
requiring the extraction and analysis of key information. Chang et al. [5] employed the
SHELLO model to classify human-induced risk factors and formulated four prioritized risk
management strategies for airline pilots. These strategies aim to reduce the occurrence of
runway excursions. Zhang et al. [6] established a predictive model for runway excursions,
enabling the anticipation of such incidents. They validated their model using data from
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aviation companies. Wang Lei, Ren Young, et al. [7] explored the impact of crucial flare op-
erations conducted by pilots on long-distance landings and hard landing events using QAR
data. Through variance analysis, they identified flight parameter characteristics during
the initiation of flaring and throughout the entire flaring process that are associated with
abnormal landing events. They found that flare operations have a significant impact on
landing distance and vertical landing acceleration. Li et al. [8] proposed a landing trajectory
correction method that integrates ground speed and runway position information. They
established a dynamic off-runway risk assessment model based on QAR data, uncovering
key factors related to off-runway risk during the landing phase. In the study of exceedance
issues, Lv et al. [9] introduced a novel approach that utilizes QAR data on a large scale.
They categorized flight cases using exceedance danger lines and ultimately employed three
machine learning models to examine the relationship between exceedance risk indices and
flight parameters. Distefano et al. [10] used multiple correspondence analysis to deter-
mine the correspondence between various aspects of offset runway excursions, identifying
variable combinations worthy of further study and providing a method for runway risk
assessment for civil aviation organizations. Wang et al. [11] constructed a safety control
structure diagram for offset runway excursions, identifying unsafe control behaviors and
analyzing their key causes. Odisho et al. [12] applied machine learning to establish a predic-
tive model for perceiving unstable approach risks, thereby reducing the occurrence of offset
runway excursions by predicting the risk of unstable approaches. Olive et al. [13] utilized
S-mode data to analyze the contributing factors of offset runway excursions, proposing
a risk assessment model for such occurrences. Mascio et al. [14] calculated risk values for
over 1300 points around runways using preliminary data provided by airport management
agencies, evaluating the current safety level and providing a risk map to identify the areas
with the highest risk of offset runway excursions. Distefano and others [15] employed
association rule methods and the Apriori algorithm to determine that the most important
variables for all types of offset runway excursions are aircraft type, with events of sever-
ity classified as major and hazardous being associated with small aircraft, while events
classified as catastrophic are associated with medium to large aircraft. Ketabdari et al. [16]
used simulators to model the impact of various meteorological variables on aircraft op-
erations, indicating that gusts, wind speed, and particularly crosswinds are the primary
weather factors influencing offset runway excursions. Vorobyeva et al. [17] integrated data
from various sources to enhance understanding of runway surface conditions in order to
reduce the risk of offset runway excursions, strengthening flight safety and environmental
protection. Mauro et al. [18] analyzed the functional complexity faults leading to offset
runway excursions and discussed detection and handling prior to events. Their research
indicates that enhancing system safety technology may only increase system complexity,
inevitably leading to more frequent faults. Therefore, in-depth analysis and management of
subsystems are crucial for addressing functional complexity faults. Wang and Holzafel [19]
established a model to investigate offset runway excursions and abnormal runway contact,
analyzing landing gear stress and validating the model using QAR data.

The existing research has the following limitations: Regarding studies based on
historical accident data, they can only analyze the trends of accidents and their influencing
factors, while the available information from accident data is limited. Studies based on
QAR data usually have a broader focus on stages of research without considering the
varying impacts of operations at each specific stage of flight.

2.2. Other Flight Safety Studies

In addition to research on mitigating runway excursions, other studies on aviation
safety primarily focus on flight risks, predictive warnings, and feature extraction. In
the realm of a quantitative assessment of hard landing risk, Wang Lei et al. [20] applied
statistical modeling to establish a quantitative assessment model for heavy landing risk,
evaluating the likelihood and severity of occurrences based on parameter distribution
functions and algorithms and calculating risk levels. They constructed a landing overrun



Appl. Sci. 2024, 14, 975 4 of 17

analysis model based on QAR data, utilizing Bayesian network [21] analysis and employing
GTT algorithms for parameter learning to establish a landing overrun risk Bayesian network
model. Wang Le et al. [22] divided 128 cases of QAR data into two groups based on the
identification thresholds for normal landings and long landings, conducted inter-group
comparisons of flight parameters, established logistic regression and linear regression
models, and analyzed the potential flight operations that lead to performance differences
in long landing events, ultimately identifying key operations that affect landing distance
during flare. Wang et al. [23] also conducted a study on the correlation between age and
flight safety performance, revealing a direct impact of age on the exceedance rate of pilots
aged 41–45 and 56–60. Zhang et al. [24] utilized the Apriori algorithm to mine association
rules within exceedance events and their correlation with environmental conditions, finding
that speed exceedances during the approach process at 500–50 feet are more likely to lead
to speed deviations at altitudes below 50 feet during the approach process. Li et al. [25]
developed an interpretable model called IMTCN, which can accurately pinpoint key flight
parameters and the corresponding moments with the greatest impact on safety incidents.
Chen et al. [26] proposed a risk assessment method for deep learning using LSTM-DNN
with variable fuzzy recognition of entropy weight, targeting high-altitude approach and
landing risks.

In the field of trend prediction and warning, Westphal et al. [27] developed an aircraft
cockpit risk sustained warning system based on fuzzy logic. Huang et al. [28,29] proposed
dynamic linked list QAR decoding technology, intelligently diagnosing and predicting
aircraft system faults. Zhao et al. [30] established a geometric determination method and
introduced a hidden Markov model backpropagation neural network to infer and predict
the status of aircraft flight. Utilizing ACARS, Lu et al. [31] established a high-precision
trajectory data prediction model. Fu et al. [32] utilized long short-term memory networks
to establish a flight trajectory prediction model for time series flight data. Qian et al. [33]
proposed a flight trajectory prediction method based on composite gated recurrent units,
achieving flight trajectory prediction. Through simulation analysis, it was discovered that
compared with gated recurrent units and long short-term memory network models, it has
the smallest error.

In the field of feature extraction and parameter estimation, Wang et al. [34] integrated
the extended Kalman filter and improved Bryson–Frazier smoother algorithm based on
QAR data. This, in turn, enhanced the precision of metric estimation. On the other hand,
Korsun et al. [35] used satellite navigation systems and wind speed identification methods
to estimate the measurement errors of the angle of attack and sideslip angle during flight
tests. Lastly, Sun et al. [36] proposed the use of a differential testing analysis method for
extracting pertinent information from exceedance events.

3. Classification of Operating Styles
3.1. Data Processing

Data processing and computation are carried out using a software programming
to perform phase truncation on QAR data. These data originate from a single aviation
company’s Boeing 737–800 and exclusively pertain to flight segments that involve landing
at an international airport. The diverse topographical environments of different airports
necessitate the use of QAR data collected from a single landing airport. The airport is a
Class 4E civil international airport with a runway length of 3600 m. Some metrics require
parameter-based calculation, such as landing distance and touchdown time.

The data excerpt spans from a radar altimeter height of 50 feet to the conclusion
of deceleration on the runway, corresponding to a ground speed of 30 knots. During
the calculation of landing distance, the Boeing 737 crew training manual indicates that
the projection of the flight path crosses the runway threshold at approximately 50 feet,
hence selecting the 50-foot position as being above the runway threshold. Referring to the
Flight Operations Quality Assurance for monitoring projects, it is proposed to calculate the



Appl. Sci. 2024, 14, 975 5 of 17

aircraft’s landing distance based on the ground speed at 50 feet and the ground speed at
the point of touchdown.

Therefore, when truncating the landing phase data, the landing phase is segmented
into touchdown and taxiing phases based on the radar altimeter height, air–ground pa-
rameter, and groundspeed parameters from the QAR data. The air–ground parameter
corresponds to the parameter found in the QAR data, which indicates whether the aircraft
has completed touchdown. This parameter switches from 1 to 0 when the aircraft is on
the ground. On the other hand, the groundspeed parameter records the speed of the
aircraft relative to the ground, and it is logged at a frequency of once per second. For
subsequent key stages analysis, the data for key stages is truncated based on parameters
such as radar altimeter height, control column position, air–ground parameter, and speed
brake deployment.

3.2. K-Means ++ Cluster Analysis

The K-means ++ clustering method represents an optimization of the standard K-
means clustering algorithm. The K-means ++ clustering method is an unsupervised cluster-
ing algorithm that is preferred due to the absence of labeled data. This method is considered
more reasonable compared to other unsupervised clustering algorithms for its initial cluster
center selection approach, which is designed to converge faster. Additionally, the K-means
++ algorithm selects initial cluster centers that are more uniformly distributed across the
data space, thereby better capturing the overall characteristics of the dataset. During the
selection of the (n + 1)th cluster center, points that are farther away from the current n
cluster centers are assigned a higher probability of being chosen as the (n + 1)th cluster
center. This approach has found application in the clustering of driving styles [37] within
the transportation domain.

Based on the results of operations related to runway excursions, the flight data are
clustered and labeled using landing distance, taxiing distance, and magnetic heading
change rate when dividing the operational styles into three categories, as shown in Figure 1
and Table 1. The clustering center of ground distance for Style 1 is 641.86 m, making it the
shortest among the styles. It is 155.35 m shorter than Style 2, indicating that Style 2 has a
moderate touchdown distance. Furthermore, it is 327.03 m shorter than Style 3. Style 3 has
the shortest taxiing distance, measuring 1023.89 m. Style 1 is 320.73 m longer than Style 3,
indicating that its distance is moderate. Lastly, Style 2 is 847.58 m longer than Style 1. Style
1 exhibits a short touchdown distance, moderate taxiing distance, and minimal change in
magnetic heading. Style 2 demonstrates a moderate landing distance, extensive rollout
distance, and stable heading change. Style 3 displays a long landing distance, moderate
taxiing distance, and unstable heading control. This categorization enables the classification
of flights into three risk levels: low risk of longitudinal runway excursion, high risk of
longitudinal runway excursion, and high risk of lateral runway excursion. Therefore, the
data are categorized into three classes for subsequent comparative analysis. The increased
touchdown distance and magnetic heading variation in Style 3 markedly elevate the risk
of runway excursions during the touchdown phase. Examining the operational outcomes
during the taxiing phase of Style 2, it is evident that the distance covered is significantly
greater than the other two styles, indicating operational issues during this phase and an
increased risk of runway excursions. To address the issue of excessive taxiing distance,
particular attention can be given to the timing of reverse thrust activation and speed brake
deployment. Regarding the problems of excessive touchdown distance and significant
changes in magnetic heading, emphasis can be placed on directional control during landing,
flare operations, and speed control.
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Table 1. Center of clustering.

Categorization Touchdown Distance Taxiing Distance Magnetic Heading Change Rate

Style 1 641.86 m 1344.62 m 0.36 deg
Style 2 797.21 m 1871.47 m 0.36 deg
Style 3 968.89 m 1023.89 m 1.05 deg

4. Operational Analysis of Crucial Stages
4.1. Runway Threshold

In the QAR data, different parameters exhibit varying frequencies of change. For
instance, the control column records at a rate of eight times per second, while the airspeed
records at a rate of four times per second. Therefore, in this section, we calculate the
maximum and minimum positions of the control and attitude parameters at each stage
based on the parameter changes. Based on the monitoring indicators, we conduct an
analysis of the average and standard deviation for each style of results. During the selection
of monitoring points, we integrated the guidelines outlined in the Flight Crew Operations
Manual. Consequently, we opted for the runway threshold, the flare phase, and touchdown
as key monitoring points. Additionally, we considered the actual deceleration operations
performed during landing, which led us to include “Speed brake on” and “reverse thrust
on” as additional monitoring points.

This paper presents a basic statistical analysis of the recorded data from the Quick
Access Recorder, including the position of the control column, aircraft attitude, speed, and
other related parameters. The distribution of these parameters is displayed in this paper.
Average is used to reflect the overall distribution of the data, while standard deviation is
used to indicate the degree of variation within the dataset. Standard error is utilized to
express the discrepancy between the sample average and the population average.

At the runway threshold, as shown in Table 2, the mean maximum position of the Style
3 control column is 14.12 deg, with a mean minimum position of−14.23 deg and a standard
deviation of 14.03 deg and 12.40 deg. This indicates that the range of operation for the Style
3 control column is greater than that of the other two styles, and Style 3 exhibits a higher
level of dispersion, necessitating a more in-depth analysis. Furthermore, above the aircraft
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at the runway threshold, the mean of the third-style wind speed is the highest at 9.28 knots,
indicating significant influence from the wind. This suggests that within the third style, the
variation in aircraft heading and the positional changes of the pilot operating the control
column are influenced by wind. Under strong wind conditions, improper operation may
pose a risk of lateral runway excursion.

Table 2. The moment of runway threshold.

Monitoring Indicators Averages Standard
Deviations Standard Errors

Style 1
Maximum position of the control wheel 13.23 deg 11.29 0.41
Minimum position of the control wheel −11.04 deg 11.86 0.43

Wind speed 6.89 kt 3.82 0.14

Style 2
Maximum position of the control wheel 12.23 deg 10.78 0.32
Minimum position of the control wheel −9.86 deg 11.39 0.34

Wind speed 5.92 kt 3.34 0.10

Style 3
Maximum position of the control wheel 14.12 deg 14.03 0.96
Minimum position of the control wheel −14.23 deg 12.40 0.86

Wind speed 9.28 kt 4.24 0.29

4.2. Moment of Flare and Speed Brake On

In the 737 Crew Procedures Operations Manual, it is stated that when the main wheels
are approximately 20 feet from the runway, the pilot should begin flare and increase the
pitch attitude by 2 degrees to 3 degrees. This will reduce the rate of descent of the aircraft.
The moment of flare refers to the moment when the pilot adjusts the aircraft’s attitude in
preparation for touchdown. At the flare stage, the overall magnitude of control column
and control wheel operations for Style 3 exceeds that of the other two styles, as indicated in
Table 3. This demonstrates that Style 3 operations are influenced by the wind, necessitating
significant adjustments to the aircraft’s attitude through extensive manipulation. Under
the influence of wind speed, the aircraft’s roll angle is significantly affected.

Table 3. The moment of flare.

Monitoring Indicators Averages Standard Deviations Standard Errors

Style 1

Maximum position of the control wheel 11.19 deg 10.85 0.39
Minimum position of the control wheel −8.15 deg 11.17 0.40

Maximum position of the control column 3.24 deg 1.10 0.04
Minimum position of the control column 1.35 deg 1.14 0.04

Pitch 2.78 deg 0.65 0.02
Roll 0.29 deg 0.86 0.03

Wind speed 6.25 deg 3.56 0.13

Style 2

Maximum position of the control wheel 10.26 deg 10.48 0.32
Minimum position of the control wheel −6.65 deg 10.96 0.33

Maximum position of the control column 3.01 deg 1.09 0.03
Minimum position of the control column 1.40 deg 1.12 0.03

Pitch 2.84 deg 0.60 0.02
Roll 0.18 deg 0.87 0.03

Wind speed 5.47 deg 3.02 0.09

Style 3

Maximum position of the control wheel 13.41 deg 12.57 0.87
Minimum position of the control wheel 11.35 deg 12.49 0.86

Maximum position of the control column 3.38 deg 1.36 0.09
Minimum position of the control column 1.06 deg 1.34 0.09

Pitch 2.78 deg 0.66 0.05
Roll 0.33 deg 1.00 0.07

Wind speed 8.81 deg 4.17 0.29
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When the speed brake is deployed, as shown in Table 4, the inertial vertical speed of
Style 1 is the highest among the three styles, with the ground speed also being the highest
and a relatively large pitch angle. This indicates that Style 1 maintains significant speed
and attitude at this stage.

Table 4. The moment of speed brake on.

Monitoring Indicators Averages Standard Deviations Standard Errors

Style 1

Inertial vertical speed −184.23 ft/min 58.39 2.10
Groundspeed 142.81 kt 6.78 0.24

Airspeed 141.60 kt 5.68 0.20
Pitch 3.68 deg 0.59 0.02

Style 2

Inertial vertical speed −162.60 ft/min 45.52 1.37
Groundspeed 141.58 kt 6.11 0.18

Airspeed 139.91 kt 5.45 0.16
Pitch 3.63 deg 0.57 0.02

Style 3

Inertial vertical speed −173.03 ft/min 52.07 3.59
Groundspeed 142.59 kt 6.90 0.48

Airspeed 142.18 kt 5.84 0.40
Pitch 3.611 deg 0.60 0.04

4.3. Touchdown Moment and Reverse Thrust On

At the moment of touchdown, Style 1 exhibits the highest pitch angle and the lowest
inertial vertical speed, as indicated in Table 5. However, during the preceding phase of
flight, the vertical speed of Style 1 was notably higher than the other two styles, indicating
that the deployment of the speed brake significantly reduced the vertical speed of Style 1.

Table 5. The moment of touchdown.

Monitoring Indicators Averages Standard Deviations Standard Errors

Style 1

Inertial vertical speed −110.14 ft/min 61.85 2.22
Pitch 3.02 deg 0.71 0.03
Roll 0.10 deg 0.56 0.02

Wind speed 5.18 kt 2.82 0.10

Style 2

Inertial vertical speed −123.20 ft/min 58.82 1.77
Pitch 2.92 deg 0.66 0.02
Roll 0.05 deg 0.53 0.02

Wind speed 4.69 kt 2.57 0.08

Style 3

Inertial vertical speed −124.11 ft/min 58.34 4.03
Pitch 2.91 deg 0.66 0.05
Roll 0.12 deg 0.69 0.05

Wind speed 7.48 kt 3.54 0.24

Style 1 initiates reverse thrust when the ground speed is relatively high, as shown in
Table 6, indicating that the pilots of Style 1 initiate reverse thrust at an early stage.

Table 6. The moment of reverse thrust on.

Monitoring Indicators Averages Standard Deviations Standard Errors

Style 1 Groundspeed 130.68 kt 8.04 0.29
Airspeed 128.85 kt 6.96 0.25

Style 2 Groundspeed 129.65 kt 7.60 0.23
Airspeed 127.26 kt 6.73 0.20
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Table 6. Cont.

Monitoring Indicators Averages Standard Deviations Standard Errors

Style 3 Groundspeed 129.78 kt 8.22 0.57
Airspeed 128.45 kt 6.80 0.47

4.4. Holistic Analysis

During the holistic analysis, we focused primarily on the variations in the control
column, pitch angle, angle of attack, and inertial vertical speed of the aircraft. The control
column is the main device that controls the aircraft to perform flare and ground operations.
Pitch angle is employed to analyze the aircraft’s attitude, and through controlling the
pitch angle, one can adjust both the aircraft’s angle of attack and the elevator’s deflection,
thereby modifying the lift and drag forces and maintaining control during landing. The
analysis of inertial vertical speed and vertical acceleration provides valuable insights into
the aircraft’s vertical performance and efficiency. The analysis of vertical acceleration is
closely associated with flight loads and passenger comfort.

Based on Figure 2, Style 1 operation exhibits high velocity and significant inertial
vertical speed, yet results in a short ground distance and an average touchdown duration
of 9.74 s. This indicates that the pilot, in order to achieve a relatively short ground contact,
maintains a substantial pitch angle post-flare, with the maximum pitch angle occurring
when the deceleration board is engaged. Analysis of the angle of attack at various points
reveals that Style 1 consistently sustains a heightened angle post-flare, whereby increasing
the angle of attack at the critical angle yields a greater lift coefficient. This serves to expedite
the reduction in inertial vertical speed, resulting in effective vertical speed control. Al-
though the vertical acceleration during landing is generally large, appropriate management
of touchdown load is achieved despite a relatively high ground speed during the landing
process. Therefore, Style 1 can be characterized as an aggressive deceleration type.
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Figure 2. Comparison of aircraft attitude and control.

Style 2 operations are relatively conservative, characterized by an extended touchdown
duration averaging 11.03 s. A significant pitch angle is maintained at the runway threshold
and during the flare, while the angle of attack remains relatively modest throughout,
possibly to mitigate the risk of hard landings. However, this approach may result in
insufficient reduction in inertial vertical speed. Additionally, the average speed during
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reverse thrust initiation is minimal, at 129.65 knots. Consequently, Style 2 can be classified
as a conservative landing type.

Style 3 represents a wind-affected type of landing. With a touchdown duration of
10.49 s, the landing process is notably influenced by wind speed, resulting in significant
roll angles and extensive control wheel input.

In light of the above, Style 1 can be considered a relatively radical operational ap-
proach. It clearly possesses advantages in mitigating the risk of runway excursion, as
such maneuvers effectively reduce the touchdown distance. On the other hand, Style 3,
characterized by larger control inputs and higher rates of heading change, increases the risk
of runway excursion. The clustering center of this style exhibits the highest risk of runway
excursion. Lastly, Style 2 is associated with a prolonged touchdown phase, inadequate
descent rate control, and, consequently, an increased risk of runway excursion.

Upon analysis of the vertical acceleration, as depicted in Figure 3, it is evident that
the average touchdown acceleration for Style 1 stands at 1.193 g. However, the maximum
acceleration during the landing process reaches 1.336 g. Moreover, 28 flights within Style
1 experienced a maximum acceleration upon landing exceeding 1.5 g, with the highest
recorded at 1.76 g, indicating a risk of excessive landing accelerations. This underscores
that while increasing the aircraft’s attitude can reduce touchdown distance, it may also
impact vertical loading and heighten the risk of excessive landing loads.
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5. Calculation and Analysis of Curve Similarity
5.1. Standard Curve Filtering

In aviation companies, the technical proficiency of pilots is categorized into first
officers, captains, and instructors. Among these, flight instructors hold the highest level
of technical expertise and are further classified into local instructors and type-specific
instructors. Type-specific instructors are primarily responsible for imparting operational
and flight technical knowledge pertaining to specific aircraft models to pilots. They possess
extensive flight experience and an in-depth understanding of particular aircraft types.
Hence, a study was conducted to select control column operation curves based on the
technical proficiency of pilots. This involved evaluating the touchdown distance and
directional control of 150 type-specific instructors from 10 different flying squadrons.
Subsequently, two standard operating curves were selected for analysis based on the
selection of metrics such as touchdown distance, taxiing distance, and magnetic heading
change, as shown in Figure 4. The first curve represents normal operational conditions,
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while the second curve reflects the impact of strong winds, with wind speeds of 18 knots.
The operational curves encompass the range from the runway threshold to touchdown.
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5.2. Curve Similarity Calculation

In order to conduct a comprehensive study of control column operational curves, this
paper adopts curve similarity as the basis, taking into account specific problems and data
characteristics. It utilizes statistical indicators and measurement methods that are relevant
to operational curves to effectively compare and evaluate the degree of similarity among the
curves. The similarity of curves involves comparing sample curves with standard curves
to analyze flight operations from multiple perspectives. This approach does not diminish
the individual characteristics of operations and allows for the measurement of landing
operations based on overall trends, translation changes, and scaling changes. As the lengths
of the operational curves vary, interpolation is utilized to align the curve lengths. Adjusting
the length of a curve using interpolation is a mathematical method used to change the
length of a curve by adding or subtracting data points to a given curve. When calculating
curve similarity, the code is written to set the standard curve under normal conditions as
the regular curve. When wind speed exceeds 17 knots, equivalent to Beaufort scale 5, the
wind-influenced curve is used as the standard curve.

Trend: Utilizing the polyfit function in MATLAB R2018a, a least squares linear fit
is applied to the standard curve and the operational curve, yielding a slope defined as
trend. A trend value closer to 1 indicates that the operational curve closely aligns with the
standard curve. The formula is expressed as follows:

Trend =
∑ XiYi − XSYS

ΣXi
2 − n−2

YS

, (1)

Vertical scaling: This formula represents the proportional relationship between the
operational curve’s magnitude and the standard curve. A value greater than 1 indicates
that the overall operational magnitude is less than that of the standard curve, while a
value closer to 1 suggests a similarity in operational magnitude. The formula is expressed
as follows:

Vertical scaling =
Ysmax−Ysmin
Ymax−Ymin

, (2)
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Horizon scaling: This metric reflects the proportional relationship between the duration
of the operational curve and the standard curve. The formula is expressed as follows:

Horizon scaling =
Xsmax−Xsmin
Xmax−Xmin

, (3)

R squared: This metric evaluates the degree of fit between the predicted curve and the
standard curve. SSR is the sum of squared residuals, and SST is the total sum of squares.
The formula is expressed as follows:

SSR = ∑n
i=1(YP −Ym)

2, (4)

SST = ∑n
i=1(Ys −Ym)

2, (5)

R squared =
SSQ
SST

, (6)

Mean squared error: It calculates the average of the squared errors between the
predicted curve and the actual standard curve, providing an indication of the disparity
between the predicted curve and the standard curve. The formula is expressed as follows:

MSE =
(YP −YS)

2

n
, (7)

Shift: Shift refers to the average absolute difference between the mean of the standard
curve and the mean of the operational curve. The formula is as follows:

Shi f t =
|Ys −Ym|

n
, (8)

Curve correlation: This metric calculates the degree of match between the operational
curve and the standard curve using the Pearson correlation coefficient. The formula is
as follows:

Curve correlation =
∑n

i=1
(
Xi − XS

)(
Yi −Ys

)√
∑n

i=1
(
Xi − XS

)2
√

∑n
i=1
(
Yi −YS

)2
, (9)

where X and Y represent the abscissa and ordinate of the operational curve, Xs and Ys
denote the abscissa and ordinate of the standard curve, Xm and Ym stand for the mean
ordinate of the standard curve, and Xp and Yp correspond to the abscissa and ordinate of
the predicted curve. Table 7 presents partial calculation results.

Table 7. Curve similarity calculation results.

No. Trend MSE R Squared Horizontal
Scaling

Vertical
Scaling Shift Curve

Correlation
Wind

Speed/Knots
Touchdown
Distance/m

1 0.75 2.67 0.34 1.49 1.88 1.71 0.58 19.00 577.74
2 0.65 2.28 0.43 1.21 1.19 1.95 0.66 18.00 492.93
3 1.00 1.52 0.52 0.93 1.18 1.65 0.72 9.00 934.45
4 0.64 1.38 0.57 0.78 0.75 1.67 0.75 2.00 704.31
5 0.95 1.44 0.55 1.24 1.14 2.00 0.74 8.00 952.96
6 0.92 1.75 0.45 1.07 1.10 1.86 0.67 7.00 952.19
7 1.03 1.05 0.67 0.86 0.98 1.62 0.82 10.00 584.93
8 0.40 3.26 0.19 1.10 1.02 1.87 0.44 18.00 609.60
9 1.04 1.12 0.65 0.90 1.10 1.60 0.81 2.00 1054.21
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5.3. Flare Stage Prediction Curves

Upon completion of the curve similarity calculation, the predicted curve can be com-
puted based on the trend to serve as a training reference for the control column operational
curve, providing guidance for pilots’ landing flare operation training. Figure 5 compares
the original control column QAR data with the predicted curve, with a time unit of 0.125 s.
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Figure 5 depicts the comparison between the original and predicted operational curves
for the two flights with the greatest touchdown distances in Style 3. It is evident that
the predicted curve exhibits greater control column manipulation than the operational
curve. Based on the control column positions indicated by the predicted curve, it is inferred
that these two pilots can appropriately initiate the flare operation earlier to reduce the
touchdown distance based on the actual circumstances.

5.4. Typical Correlation Analysis

Typical correlation analysis is a multivariate statistical analysis method that reflects
the overall correlation between two sets of variables by utilizing the interrelationships
among comprehensive variables. It is commonly employed in the fields of economics and
biology. In this study, the curve similarity calculation indicators are designated as one set,
while the other set comprises touchdown distances. The aim is to compute and analyze the
correlation between these sets, investigating the nature of the differences with the standard
curve and identifying the highest correlation with touchdown distance.

When conducting bivariate correlation analysis between the curve similarity indicators
and touchdown distances, it was observed that trend, horizontal scaling, vertical scaling,
and shift exhibited a significant but weak correlation with the touchdown distance, as
shown in Table 8. Table 9 shows the results of the calculation of the typical correlation for
Style 3, where it can be seen that the significance is obviously less than the set significance
level of 0.05, then the typical correlation can be considered significant. To comprehensively
investigate the collective impact of these indicators on touchdown distances, canonical
correlation analysis was employed, as depicted in Table 10.

Table 8. Correlation coefficient with touchdown distance.

Indicators Pearson Correlation Significance (Two-Tailed)

Trend 0.201 ** 0.003
MSE 0.026 0.711
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Table 8. Cont.

Indicators Pearson Correlation Significance (Two-Tailed)

R squared −0.063 0.363
Horizontal scaling 0.202 ** 0.003

Vertical scaling 0.223 ** 0.001
Shift 0.236 ** 0.001

Correlation −0.064 0.353
Wind speed −0.283 ** 0.000

** Indicates significant correlation.

Table 9. Typical correlations of Style 3.

Style Typical
Correlation Eigenvalue Wilks

Statistics F Molecular
Freedom

Denominator
Freedom Significance

3 0.560 0.458 0.686 11.506 8.000 201.000 0.000

Table 10. Standardized typical correlation coefficient.

Style Typical
Correlation Trend MSE R

Squared
Horizontal

Scaling
Vertical
Scaling Shift Curve

Correlation
Wind
Speed

1 0.497 0.806 −2.049 −2.457 0.260 −0.019 0.320 −0.349 −0.276
2 0.343 1.109 −0.654 0.354 −0.128 −0.005 0.492 −2.148 0.005
3 0.560 1.404 −0.181 −0.594 −0.357 −0.004 0.643 −0.775 −0.412

Following comprehensive computation and analysis, a notable correlation was ob-
served between touchdown distances and curve similarity indicators. Within Style 3, the
indicators demonstrated a moderate correlation with touchdown distances, as depicted in
Table 10. Notably, the trend exhibited a substantial impact on the correlation, followed by
curve similarity and shift. This highlights the operational trend of the pilot as a significant
factor influencing touchdown distances.

After conducting a correlation analysis between all the indicators of curve similarity
and touchdown distance, it was observed that the indicators of Style 3 exhibited the highest
coefficient of correlation with the touchdown distance. It is noteworthy that the influence
of wind speed on this correlation was found to be notable. This suggests that the operations
associated with Style 3 have an effective impact on the touchdown distance, particularly
in mitigating the risk of runway excursion under the influence of wind. Additionally, the
typical correlation coefficient of Style 1 was found to be moderately correlated, indicating
that the operations associated with Style 1 effectively affect the touchdown distance and
contribute to the control of runway excursion risks.

6. Conclusions

In this study, we investigated the operational risks associated with runway excur-
sions and conducted an analysis of pilots with different operational styles based on curve
similarity to explore the factors influencing touchdown distances. The research findings
indicate that Style 2 pilots exhibit conservative operational behaviors, resulting in greater
touchdown and landing distances, thereby elevating the risk of runway excursions. Style 1
pilots tend to maintain a higher pitch angle prior to touchdown to dissipate energy and
reduce vertical speed. However, under high attitude and vertical speed flight conditions,
susceptibility to wind shear may lead to tail strikes and hard landings. Ultimately, an
analysis of pilot operations based on curve similarity was conducted, comparing them
with a standard curve across seven dimensions using canonical correlation analysis to
explore their relationship with touchdown distances. The final discovery reveals that the
trend component in curve similarity has the greatest impact on the correlation between
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touchdown distance and operations. Utilizing the predictive curve obtained from the trend
provides valuable guidance to pilots in performing the flare operation.

These studies still have limitations, as some methods are in the exploratory stage
and require more in-depth analysis for better understanding and application, with limited
consideration of environmental factors. Firstly, while this paper addresses the impact of
wind, it only considers wind speed and does not provide a thorough analysis of wind
direction. In future research on the effects of wind on control wheel operations, we will
analyze wind direction, wind speed, and the angle between wind direction and heading.
Secondly, although this paper analyzes operations, operational risks have not yet been
quantified. We plan to establish a model for evaluating the risk of runway excursions based
on the operational process and outcomes. Thirdly, in the study of environmental impact,
due to the lack of weather data and runway surface data, the influence of runway friction
coefficient in rainy and snowy conditions has not been considered. The runway friction
coefficient is an important factor affecting the risk of runway excursions, and this will be
taken into account in future studies.

Our current research is focused on examining the risk of runway excursions for a
single landing airport and a single aircraft type. However, we recognize the need to
expand our study to include multiple airports and various aircraft types. In the future,
we plan to develop a comprehensive analysis of runway excursion operations and a risk
assessment model.

Author Contributions: Conceptualization, F.W. and J.Y.; methodology, J.Y.; software, J.Y.; validation,
J.Y. and F.W.; formal analysis, J.Y.; investigation, F.W. and X.L. (Xiaochen Liu); resources, X.L. (Xiaoyu
Li); data curation, J.Y.; writing—original draft preparation, F.W.; writing—review and editing, M.X.;
visualization, F.W.; supervision, M.X.; project administration, P.W. and H.L.; funding acquisition, H.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Scientific Research Program of the Tianjin Education
Commission (grant number 2023KJ230).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from an airline and are available from the authors with the permission of the airline.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
QAR Quick Access Recorder
IATA International Air Transport Association
SHELLO Software; Hardware; Environment; Liveware; Other Liveware; Organization
GTT Greedy Thick Thinning algorithm
IMTCN Interpretable Multi-scale Temporal Convolutional Networks
LSTM-DNN Long Short-Term Memory and Deep Neural Networks
ACARS Aircraft Addressing and Reporting System
VRTG Vertical Acceleration
SSR Sum of Squared Residuals
SST Total Sum of Squares

References
1. IATA. IATA Safety Report 2021; IATA: Montreal, QC, Canada, 2022.
2. IATA. IATA Annual Safety Report-2022; IATA: Montreal, QC, Canada, 2023.



Appl. Sci. 2024, 14, 975 16 of 17

3. Airbus, S.A.S. A Statistical Analysis of Commercial Aviation Accidents 1958–2022. 2023. Available online: https://accidentstats.
airbus.com (accessed on 19 November 2023).

4. Okafor, E.G.; Jemitola, P.O.; Soladoye, M.A. Assessment of runway excursion causal factors and mitigation strategies. Niger. J.
Technol. 2018, 37, 619–625. [CrossRef]

5. Chang, Y.; Yang, H.; Hsiao, Y. Human risk factors associated with pilots in runway excursions. Accid. Anal. Prev. 2016, 94, 227–237.
[CrossRef]

6. Zhang, Y.; Sun, Y.; Chen, Y. Aircraft runway excursion prediction model based on exponential weight. In Proceedings of the 2016
11th International Conference on Reliability, Maintainability and Safety (ICRMS), Hangzhou, China, 26–28 October 2016; pp. 1–5.

7. Wang, L.; Ren, Y.; Wu, C. Effects of flare operation on landing safety: A study based on ANOVA of real flight data. Saf. Sci. 2018,
102, 14–25. [CrossRef]

8. Li, X.; Zhang, L.; Shang, J.; Li, X.; Qian, Y.; Zheng, L. A Runway Overrun Risk Assessment Model for Civil Aircraft Based on
Quick Access Recorder Data. Appl. Sci. 2023, 13, 9828. [CrossRef]

9. Lv, H.; Yu, J.; Zhu, T. A novel method of overrun risk measurement and assessment using large scale QAR data. In Proceedings of
the 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), Bamberg,
Germany, 26–29 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 213–220.

10. Distefano, N.; Leonardi, S. Aircraft runway excursion features: A multiple correspondence analysis. Aircr. Eng. Aerosp. Tec. 2019,
91, 197–203. [CrossRef]

11. Wang, J.; Zhang, Y.; Zhang, C. Unsafe control action of runway excursion based on STPA. J. Civ. Aviat. Univ. China 2019, 37, 46–50.
12. Odisho, E.; Truong, D.; Joslin, R.E. Applying Machine Learning to Enhance Runway Safety Through Runway Excursion Risk

Mitigation. In Proceedings of the 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), Dulles, VA,
USA, 19–23 April 2021; pp. 1–10.

13. Olive, X.; Bieber, P. Quantitative Assessments of Runway Excursion Precursors using Mode S data. arXiv 2019, arXiv:1903.11964.
14. Di Mascio, P.; Cosciotti, M.; Fusco, R.; Moretti, L. Runway Veer-Off Risk Analysis: An International Airport Case Study.

Sustainability 2020, 12, 9360. [CrossRef]
15. Distefano, N.; Leonardi, S. Apriori Algorithm for Association Rules Mining in Aircraft Runway Excursions. Civ. Eng. Archit. 2020,

8, 206–217.
16. Ketabdari, M.; Toraldo, E.; Crispino, M. Numerical Risk Analyses of the Impact of Meteorological Conditions on Probability of

Airport Runway Excursion Accidents. In Computational Science and Its Applications–ICCSA 2020, Proceedings of the 20th International
Conference, Cagliari, Italy, 1–4 July 2020; Springer: New York, NY, USA, 2020; Volume 12249, pp. 177–190.

17. Vorobyeva, O.; Bartok, J.; Šišan, P.; Nechaj, P.; Gera, M.; Kelemen, M.; Polishchuk, V.; Gaál, L. Assessing the Contribution of Data
Mining Methods to Avoid Aircraft Run-Off from the Runway to Increase the Safety and Reduce the Negative Environmental
Impacts. Int. J. Environ. Res. Public Health 2020, 17, 796. [CrossRef]

18. Mauro, R.; Sherry, L. Confronting Functional Complexity Failures: The Case of a Runway Excursion in Munich. In Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, Washington, DC, USA, 28 October–1 November 2019; Volume 63,
pp. 116–120.

19. Wang, C.; Holzapfel, F. Modeling of the aircraft landing behavior for runway excursion and abnormal runway contact analysis.
In Proceedings of the 2018 AIAA Modeling and Simulation Technologies Conference, Atlanta, Georgia, 25–27 June 2018; p. 1166.

20. Wang, L.; Sun, R.; Wu, C.; Cui, Z.; Lu, Z. A flight QAR data based model for hard landing risk quantitative evaluation. China Saf.
Sci. J. 2014, 24, 88–92. [CrossRef]

21. Wang, L.; Sun, J.; Wang, W.; Qi, X.; Wang, F. Bayesian network analysis model on landing exceedance risk based on flight OAR
data. J. Saf. Environ. 2023, 23, 26–34. [CrossRef]

22. Wang, L.; Wu, C.; Sun, R. An analysis of flight Quick Access Recorder (QAR) data and its applications in preventing landing
incidents. Reliab. Eng. Syst. Saf. 2014, 127, 86–96. [CrossRef]

23. Wang, L.; Gao, S.; Hong, R.; Jiang, Y. Effects of age and flight exposure on flight safety performance: Evidence from a large
cross-sectional pilot sample. Saf. Sci. 2023, 165, 106199. [CrossRef]

24. Zhang, N.; Zhao, D.; An, J.; Wang, L. A Method of Analyzing Flight Exceedance Events Based on Association Rule and QAR
Data. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4–6
August 2023; pp. 2249–2252.

25. Li, X.; Shang, J.; Zheng, L.; Wang, Q.; Liu, D.; Liu, X.; Li, F.; Cao, W.; Sun, H. IMTCN: An Interpretable Flight Safety Analysis and
Prediction Model Based on Multi-Scale Temporal Convolutional Networks; IEEE Transactions on Intelligent Transportation Systems:
New York, NY, USA, 2023. [CrossRef]

26. Chen, N.; Man, Y.; Li, J. Risk Assessment Method of Civil Aircraft Approach and Landing at High Plateau Based on QAR Data. J.
Beijing Univ. Aeronaut. Astronaut. 2022. [CrossRef]

27. Westphal, P.; Wagner, O. Flight accident prevention with hazard priority based realtime risk reduction. In Proceedings of the 19th
AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001; p. 1319.

28. Nie, L.; Huang, S.; Shu, P.; Wang, X. Intelligent Diagnosis for Hard Landing of Aircraft Based on SVM. China Saf. Sci. J. 2009, 19, 5.
29. Gong, S.; Huang, S. Implementation of Flight Data Quick Decoding System. Sci. Technol. Eng. 2010, 10, 5076–5081.
30. Zhao, Y.; Sun, H. Research on hybrid model for aircraft flight state prediction. N. A. Dynam. 2016, 34, 81–85+89. [CrossRef]

https://accidentstats.airbus.com
https://accidentstats.airbus.com
https://doi.org/10.4314/njt.v37i3.9
https://doi.org/10.1016/j.aap.2016.06.007
https://doi.org/10.1016/j.ssci.2017.09.027
https://doi.org/10.3390/app13179828
https://doi.org/10.1108/AEAT-11-2017-0244
https://doi.org/10.3390/su12229360
https://doi.org/10.3390/ijerph17030796
https://doi.org/10.16265/j.cnki.issn1003-3033.2014.02.016
https://doi.org/10.13637/j.issn.1009-6094.2021.1102
https://doi.org/10.1016/j.ress.2014.03.013
https://doi.org/10.1016/j.ssci.2023.106199
https://doi.org/10.1109/TITS.2023.3308988
https://doi.org/10.13700/j.bh.1001-5965.2022.0186
https://doi.org/10.13645/j.cnki.f.d.20160422.013


Appl. Sci. 2024, 14, 975 17 of 17

31. Lu, H.; Deng, X. Real-time Flight Trajectory Security Monitoring Technology Based-on ACARS. Aircr. Des. 2009, 29, 52–56.
[CrossRef]

32. Fu, M.; Chen, J. LSTM Model-Based Flight Trajectory Prediction for Airport Flights. Mod. Comput. 2022, 28, 55–60.
33. Qian, L.; Wang, W. A C-GRU based flight trajectory prediction method. Electron. Meas. Technol. 2022, 45, 87–92. [CrossRef]
34. Wang, Q.; Wu, K.; Zhang, T.; Kong, Y.; Qian, W. Aerodynamic Modeling and Parameter Estimation from QAR Data of an Airplane

Approaching a High-altitude Airport. Chin. J. Aeronaut 2012, 25, 361–371. [CrossRef]
35. Korsun, O.; Poplavskii, B.K. Estimation of systematic errors of onboard measurement of angle of attack and sliding angle based

on integration of data of satellite navigation system and identification of wind velocity. J. Comput. Syst. Sci. Int. 2011, 50, 130–143.
[CrossRef]

36. Sun, R.; Han, W. Analysis on paremeters characteristics of flight exceedance events based on distinction test. J. Saf. Sci. Technol.
2011, 7, 22–27.

37. Wang, X.; Ma, F.; Liao, X.; Jiang, P.; Zhang, W.; Wang, F. Feature Selection for Recognition of Driving Styles Based on Multi-
Classification and Supervised Learning. J. Transp. Inf. Saf. 2022, 40, 162–168.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.19555/j.cnki.1673-4599.2009.06.013
https://doi.org/10.19651/j.cnki.emt.2208843
https://doi.org/10.1016/S1000-9361(11)60397-X
https://doi.org/10.1134/S1064230711010126

	Introduction 
	Related Work 
	Runway Excursion 
	Other Flight Safety Studies 

	Classification of Operating Styles 
	Data Processing 
	K-Means ++ Cluster Analysis 

	Operational Analysis of Crucial Stages 
	Runway Threshold 
	Moment of Flare and Speed Brake On 
	Touchdown Moment and Reverse Thrust On 
	Holistic Analysis 

	Calculation and Analysis of Curve Similarity 
	Standard Curve Filtering 
	Curve Similarity Calculation 
	Flare Stage Prediction Curves 
	Typical Correlation Analysis 

	Conclusions 
	References

