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Abstract: An accurate petrophysical model of the subsurface is essential for resource development
and CO2 sequestration. We present a new workflow that provides a high-resolution estimate of petro-
physical reservoir properties using seismic data with rock physics modeling and machine-learning
techniques (i.e., deep learning neural networks). First, we compare the sequential prediction of the
following petrophysical attributes: mineralogy, porosity, and fluid saturation, with the simultaneous
prediction of all of the properties using the Volve field in the Norwegian North Sea as an example. The
workflow shows that the sequential prediction produces a more efficient and accurate classification of
petrophysical properties (the RMS error between the predicted and the original seismic trace is 50%
smaller for the sequential compared to the simultaneous procedure). Next, the seismic amplitude
response of the reservoirs was studied using rock physics modeling and amplitude versus offset
(AVO) analysis to distinguish the different lithologies and fluid types. To ascertain the optimal hydro-
carbon production areas, we performed Bayesian seismic inversion and applied machine learning
to estimate the petrophysical properties. We examined how porosity, Vclay, and fluid variations
affect the elastic properties. In Poisson’s ratio versus the P-wave impedance domain, a 10% porosity
increase decreases the acoustic impedance (AI) by 30%, while a 20% Vclay decrease increases the AI
by 12%. The Utsira Formation in the Volve field (5 km north of the Sleipner Øst field) was evaluated
as a potential CO2 geological storage unit using Gassmann fluid substitution and seismic modeling.
We look to assess the elastic property variation caused by CO2 saturation changes for monitoring
purposes and simulate the effect. In the first 10% CO2 substitution, the P-wave velocity decrease is
12%, a subtle effect is observed for higher CO2 saturation values, and S-wave velocity (Vs) increases
with CO2 saturation. Our analysis aspires to assist future reservoir studies and CO2 sequestration in
similar fields.

Keywords: petrophysics; rock physics; interpretation; seismic; reservoir geophysics; parameter estimation

1. Introduction

Inferring petrophysical properties from seismic data is a key step in reservoir charac-
terization [1,2]. The 3D information, in conjunction with well-log data, provides crucial
information for enhanced field development and exploration programs, as well as potential
CO2 sequestration development. However, extracting petrophysical properties from seis-
mic data is a complex inverse problem that integrates mathematical methods with physical
relations like petrophysics, wave propagation, and rock physics [3]. Point-wise estimates of
density (ρ), P-wave velocities (Vp), S-wave velocities (Vs), and impedances can be obtained
through seismic inversion [4]. Nevertheless, uncertainty stems from the fact that many
combinations of shear and acoustic impedance can result in equivalent rock properties.
One approach to minimizing uncertainty or non-uniqueness is integrating rock physics and
petrophysics models with seismic inversion results to estimate a unique 3D petrophysical
property model [5].
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Several researchers have attempted to estimate or enhance petrophysical properties
through seismic inversion. In their works, [6–8] investigated the integrated approach
of combining seismic inversion and attribute analysis, emphasizing their significance in
reservoir characterization and the prediction of petrophysical properties. Ref. [9] is a
review that explores the recent advancements in seismic reservoir characterization, with
a focus on how refined seismic inversion techniques contribute to increased recovery
factors. Ref. [10] delved into the application of machine-learning techniques to predict
petrophysical properties from seismic data, providing valuable insights into the integration
of data-driven approaches. Nevertheless, it is essential to acknowledge that, over time,
there has been a continuous progression in research and analysis to enhance the prediction
of petrophysical parameters through seismic inversion.

Recent research has demonstrated the effectiveness of neural networks and other
machine-learning techniques in property estimation [11]. Ref. [12] is an evaluation of
machine-learning methods for supervised lithology classification using geophysical data
and shows that RandomForest and multilayer perception (MLP) yielded the highest ac-
curacy. Also, other ML methods with better accuracy were applied to the classification
of offshore wells. Furthermore, ML models have been applied to conventional well-log
data to identify the shale lithofacies [13], deep convolutional neural network for seismic
horizon tracking [14], and neural networks for the interpretation of 3D seismic structural
data that aim to identify potential well site [15] models. These methods offer valuable
support in mitigating risks by facilitating the development of precise subsurface models
through efficient workflows [16]. It is safe to conclude that the ML methods have been
applied to a wide range of geophysical data, and the level of accuracy has been proven to
be replicable to newly generated data.

The application of these techniques proves to be suitable for enhancing existing
petrophysical and rock physics workflows, thereby leading to improved result accuracy.
While machine learning (ML) has shown promise in predicting petrophysical parameters,
some of the major limitations and challenges associated with its application are the contexts
of data quality and quantity. ML algorithms heavily rely on the quality and quantity of the
training data. Limited or poor-quality data can lead to biased or inaccurate predictions. In
this study, our objective is to contribute to this evolving research landscape by improving
the accuracy and efficiency of predicting petrophysical parameters from seismic data by
performing detailed rock physics diagnostics of well-log data (training data set) and also
introduce a more efficient workflow to enhance our prediction.

The motivation for our study stems from the fact that petrophysical analyses from well
logs are carried out sequentially. In traditional well-log analysis, we typically determine
the volume of the rock types, porosity, and fluid saturation by using a sequential approach.
The process involves computing the lithology first, followed by the porosity, and finally, the
saturation using measured well-log data. Our research introduces an innovative workflow
that leverages machine learning to predict petrophysical parameters from seismic data
sequentially. From our seismic inversion, we obtain our impedance volume (acoustic
(primary wave) impedance (AI) and shear wave impedance (SI) volumes). Using the
AI and SI volumes, the algorithm predicts the lithology volume. Then, it is trained to
incorporate the predicted lithology to estimate the porosity. Finally, by incorporating the
predicted porosity, lithology, and measured logs, the algorithm predicts the saturation
volume. We compare our results with an approach that simultaneously predicts all of the
parameters at once from the seismic data. This new methodology aims to enhance the
efficiency and accuracy of petrophysical analysis from seismic data.

The initial phase of this investigation is dedicated to constructing a comprehensive
three-dimensional model encompassing key rock attributes, specifically porosity, lithol-
ogy, and water saturation. Subsequently, machine learning is employed to predict the
petrophysical parameters based on property measurements derived from analogous obser-
vations. In pursuit of this, we adopt the neural network approach, as implemented in [17],
which establishes a relationship between input data and target properties, as highlighted
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by [18,19]. To achieve this objective, we establish a rock property model that bridges the
gap between petrophysical properties and seismic rock properties, building upon the work
of [20].

To facilitate this process, we first conduct a visual evaluation to assess the feasibility of
differentiating lithologies, porosity levels, and fluid types by cross plotting various elastic
attributes. This assessment provides essential information regarding the optimal elastic
property combinations, the number of litho-classes for evaluation, and the adequacy of
well-log data representation. This preliminary analysis assists in defining the cut-off values
for reservoir parameters, including porosity, saturation, and clay volume, within various
lithofluid classes.

Moreover, this work introduces an innovative workflow that employs machine learn-
ing for the prediction of petrophysical parameters from seismic data. By utilizing rock
physics modeling, we identify the most effective combination of rock properties to distin-
guish the primary reservoir quality responses from background trends.

Given the increasing interest in carbon dioxide (CO2) sequestration, the study’s final
phase encompasses CO2 modeling to evaluate the Utsira Formation in the Volve area as a
viable CO2 geological storage location. This phase involves fluid substitution modeling
utilizing well-log data to quantify the effects of CO2 injection. Synthetic seismograms
are generated for various CO2 saturation levels, and Gassmann equations are applied to
calculate changes in the P-wave and S-wave velocity. Synthetic stack and gather sections
are created, covering a range from 0% to 100% CO2 saturation in 10% increments, with the
parameters adjusted at each step. This comprehensive model provides insights into the
seismic response to CO2 saturation and the evolution of the injection process.

2. Background—Study Areas

The study areas are the Volve and Sleipner fields, which are in the Norwegian North
Sea (Figure 1).
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Figure 1. Map showing the Volve and Sleipner fields, Norwegian North Sea [21].

2.1. Geology

The Volve oil field was discovered in the Norwegian North Sea in 1993 and was
approved for development in 2005. The field was productive from 2008 to 2016 and
achieved 63 million barrels of cumulative oil and minimum production rates of 56,000
bopd [22,23]. The main reservoir of interest is the Hugin Formation sandstone. In addition,
the Heimdal, Utsira, and Skagerrak Sands are considered to be secondary reservoirs
(Figure 2). The Hugin and Heimdal reservoirs are heavily faulted, particularly in the
western area, most possibly caused by regional extension and salt tectonics [24].

The Utsira Sand is a regional saline aquifer. It is a part of the late Cenozoic post-rift
succession in the North Sea Basin. The stratigraphical lap-out establishes its eastern and
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western boundaries. At the same time, it passes laterally into finer-grained terrain to the
southwest. It also occupies a narrow, deepening channel to the north.

The top Utsira Sand surface ranges in total depth from 550 to 1500 m near the Sleipner
and Volve fields. The Utsira Sand’s base is more structurally complex, with several mounds
interpreted as mud diapirs. The mud diapirism is linked to local faults at the reservoir’s
base, but it does not appear to affect the reservoir’s upper levels or caprock [25]. The
Utsira reservoir’s overburden is approximately 700 m thick. The primary reservoir caprock
is basin-restricted mudstone that extends more than 50 km west and 40 km east of the
Sleipner CO2 injection area [25].
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2.2. Reservoir Characteristics

The Hugin Formation is a sequence of sandstones that were deposited in an environ-
ment characterized by shallow water and tidal activity. This sequence has a significant
lateral extent. The reservoir is relatively clean and homogeneous. Quartz, clay, and mica
predominate as the primary mineralogy components of the sandstones [22]. Studies of the
fluid in the reservoirs have revealed that the oil found in the Volve field originated in the
Sleipner Graben region, located in the northwest part of the field, approximately 10 million
years ago. The oil then moved into the Volve reservoir structure. In the upper section
of the Draupne Formation, type II kerogen was found, confirmed by a high gamma-ray
response, which led to the hypothesis that this could be the source rock [22]. The Volve
field oil is under-saturated with 27–29◦ API oil, with a gas/oil ratio of 111–157 Sm3/Sm3. It
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contains between 2% and 6% asphaltenes, as well as sulfur and aromatic components in
high concentrations [26].

Regarding well logs, the Utsira Sand can be distinguished by its top and bottom
layers, and the percentage of clean sand that makes up the reservoir unit typically exceeds
70 percent. The quasi-proportion comprises thin mudstones, which have an average
thickness of approximately one meter and are expressed as peaks on the gamma-ray and
resistivity logs. The ‘five-meter mudstone’ is a thicker and more laterally persistent bed
than the others, and it differentiates the uppermost sand unit from the main reservoir below
it. It has been demonstrated that the mudstone layers present within the reservoir sand act
as substantial permeability barriers, which significantly influence the amount of CO2 that
migrates through the reservoir [27].

3. Methodology

Both pre-stack and post-stack seismic volumes provided by Equinor [28], along with
a suite of logs from 13 wells, core data, and well reports, are incorporated into this work.
The study began by performing quality control (QC) assessments on seismic data. This
involves essential checks such as assessing the following: fold coverage, stacking quality,
amplitude and phase spectra, geometry, signal-to-noise ratio, data consistency, migration
effectiveness, well-tie correlation, sample rate, and dominant frequency. These checks
are crucial for ensuring the seismic data’s reliability, accuracy, and suitability, facilitating
improved interpretation and inversion results by addressing issues related to subsurface
sampling, signal clarity, and frequency content. The seismic data have a sample rate of
4 ms and a Nyquist frequency of 125 Hz. The well-seismic tie correlation shows an average
correlation coefficient of about 0.82.

Next, we conduct a thorough quantitative examination of the well-log and core data.
After that, a set of physical relations is calibrated to ascertain the viability of obtaining
petrophysical parameters from the seismic inversion results. This calibration involves
porosity, saturation, and mineralogy estimations. The well logs are also analyzed to
determine the most significant reservoir zones of interest (ZoI). These zones are then
analyzed for lithology and fluid saturation with the help of petrophysical models.

To calibrate a reservoir-dependent rock physics model appropriate for the Volve field,
rock physics diagnostics (RPD) are then conducted. After that, using the rock models
created during the RPD stage, we perform perturbational modeling to create potential
reservoir scenarios. Finally, we evaluate the seismic responses and amplitude versus
offset (AVO) signatures of the different rock physics perturbations. Synthetic gathers are
generated for each well based on different model scenarios.

The second part of this work entails changes in the reflection angle by incorporating
rock physics modeling and the synthetic seismic analysis results. Lastly, we perform
seismic inversion and apply machine learning to predict clay volume, porosity, and water
saturation. These results indicate that the optimal hydrocarbon production areas correlate
reasonably well with the actual production values.

3.1. Rock Physics Workflow

The rock physics workflow entails geophysical well-log analyses, rock physics diag-
nostics, perturbation, and synthetic seismogram modeling.

3.1.1. Geophysical Well-Log Analyses

The first step is to edit the logs and remove erroneous data. In this instance, a trend
is established by plotting each log against depth. Data values that significantly deviate
from this trend are treated as outliers and are edited accordingly. Next, qualitative and
quantitative methods are used to identify hydrocarbon-bearing reservoirs (Figure 3). In the
qualitative analysis, the well logs are scanned for indications of hydrocarbon reservoirs,
such as low gamma-ray responses and high resistivity. The quantitative approach also
involves computing parameters like lithology volume, water saturation, and effective
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porosity. Using rock physics, reservoir zones were identified and analyzed. Volume
concentrations are determined from a statistical solution utilizing the neutron, density,
photoelectric factor, compressional, and shear velocities. The mass-balance equation is
used to compute the porosity from the density. Archie’s equations are used to compute
the water saturation (Sw). Sands are characterized as having Vquartz greater than 60%, oil
sands as having Vquartz greater than 60% and Sw less than 60%, and shale as having Vclay
greater than 60%. Overall, the quartz volume appears consistent in all of the wells, with an
average of 70%.

Figure 3. Petrophysical inversion workflow.

3.1.2. Rock Physics Diagnostics

Hertz-Mindlin’s contact theory and the modified Hashin-Strikman lower bound are
used to derive theoretical estimations of the effective elastic constants of unconsolidated
sand [29]. First, the aggregate’s shear and effective bulk moduli are calculated, assuming
that all grains are spherical and organized in a random pack with a porosity of 0.36. Next,
the modified Hashin-Strikman lower bound is used to find the effective elastic moduli at a
decreased porosity. Suspension-like rocks are best described with this bound. The Ref. [30]
equation is used to introduce the impact of pore fluid. The stiff sand model estimates
bulk modulus (K) and shear modulus (u) from the porosity and fluid characteristics using
the HMHS “contact cement” sand model of [5]. Using elasticity equations, Vp and Vs are
calculated from K and u [31]. The HM unconsolidated sphere pack model determines the
high porosity velocity limit. At the maximum porosity level, a higher coordination equals a
stiffer pack and, as a result, a higher velocity. In ref. [32], the authors devised a method for
predicting Vs in porous rocks that is now widely used.
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The rock physics models (RPM) that best fit the measured data were identified. These
models establish a deterministic relationship between reservoir parameters (such as miner-
als, fluids, porosity, and geometry) and elastic properties (i.e., P-wave velocity Vp, S-wave
velocity Vs, and density). We use these models to adjust the Vp, Vs, and density when they
are missing or have inaccurate measurements. More importantly, we modify the elastic
response for changes in porosity caused by compaction.

We have utilized granular models to predict the P-wave velocity and response due to
the clastic nature of the environment. Figures 4 and 5 illustrate that the stiff sand model
better predicts the response of sand-rich sediments, while the soft sediment model better
predicts the response of shales [33]. The modified [34] relationship is most suitable for Vs
prediction, with a correlation coefficient as high as 0.9.
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Figure 4. Well logs showing one of the identified reservoir zones. From the left: Caliper, GR, deep
resistivity, clay volume, porosity, saturation, depth tracks, density, Vp, Vs, AI, Vp/Vs, and Poisson’s
ratio (PR). The rock physics model curves are shown in blue, the original logs are shown in red, and
the final edited curves are shown in black.
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Figure 5. Vp versus density cross plot color-coded by Vclay (fraction). The model lines depict trends
in rock physics based on a single mineral solid frame. The brown line represents the stiff sediment
model, which is 100% quartz, while the red line represents the soft sediment model, which is 100%
clay. The soft sediment model best represents all high clay lithologies, while the stiff sediment model
covers the quartz lithologies. The highlighted data enclosed in yellow circle are the bad data that
have been corrected using the rock physics models.

3.1.3. Perturbational and Synthetic Modeling

Perturbation modeling is an important component of seismic attribute investigations
because it allows predictions of seismic responses for various fluid scenarios [35]. In this
study, the lithology, porosity, and fluid modeling on the Hugin Sands are performed using
the [36] equations. This was accomplished to see what combination of rock attributes might
be used to distinguish the reservoir responses from their background trend and to see if the
different lithofacies in the Volve field could be distinguished.

For the perturbational modeling scenarios, we assume the following five cases: the first
is the in situ scenario, in which we assume the in situ lithology and porosity and only change
the fluid scenarios; the second is a low porosity scenario, in which we reduce the porosity
by ten porosity units; the third is a shaly reservoir scenario, in which we increase the clay
content by 20%; in the fourth case we simultaneously reduce the porosity by ten porosity
units; and, finally, in the fifth case, we simultaneously increase the porosity by ten porosity
units while decreasing the clay content by 20%, followed by fluid substitution modeling.

Fluid Substitution and Synthetic Modeling

Gassmann equations are used to perform all fluid substitution cases in the sands dur-
ing fluid modeling [30]. The hydrocarbon scenario is assumed to be 80 percent hydrocarbon
and 20 percent brine, whereas the wet scenario is assumed to be 100 percent brine. To
investigate the signatures of the in situ and modeled cases, synthetic gathers are generated.
Using the wavelet extracted from the seismic data and upscaled elastic curves, full-offset
synthetic seismograms with zero offsets are created and smoothed using Backus windows
of varying window sizes based on velocities, and, for the wavelet, the elastic curves are
then upscaled to a higher resolution.

Vclay Modeling

The Vclay modeling process entails altering the clay volume for each scenario, estimat-
ing the elastic logs (velocities and densities), and taking into account the new lithology
using established rock physics models. First, we change the porosity scenarios for the
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porosity modeling and then compute the density using the new total porosity. Vp and Vs
are then estimated using the calibrated rock physics models. The first thing we perform
when modeling porosity is adding matrix porosity to the rock. After that, we change the
fluid in place (approximately 80% oil and 20% brine) to 100% brine. Each distinct alteration
in porosity is equivalent to a specific percentage of the total porosity of the in situ matrix.

3.1.4. Petrophysical Seismic Inversion

The linearized Bayesian AVO inversion, as described in [37], formulates the challenge
within a probabilistic and statistical framework. In this approach, prior knowledge sourced
from independent references, such as well-log data, is integrated with AVO equations or the
likelihood function. Reservoir coupling information, serving as prior data, plays a pivotal
role in constraining the AVO inverse problem while operating under the assumption of a
Gaussian probability density function.

“Equation (1) represents the forward linear model, where ‘dobs’ denotes the observed
seismic data, G stands for the kernel matrix, W is a block diagonal matrix containing
angle-dependent wavelets, C is a sparse matrix containing AVO coefficients, ‘m’ comprises
the model parameters, and D serves as a derivative operator. In this context, ‘m’ takes
the form of a column vector encompassing compressional wave velocity (Vp), shear wave
velocity (Vs), and density (ρ). The likelihood function employed is the linearized version of
the Aki and Richards equation [38].

dobs = Gm + Noise (ab) (1)

G = W C D (ab)

The utilization of linearized forward equations enhances computational efficiency
within the Bayesian model. The three-term AVO equation characterizes the relationship
between reflection amplitude and offset (angle). Equation (2) represents a continuous-time
formulation of Aki and Richards’ equation, as detailed in [39].

Rpp(t, θ) = C1(θ, t)
∂

∂t
InVp + C2(θ, t)

∂

∂t
InVs + C3(θ, t)

∂

∂t
Inρ (2)

In this context, Rpp refers to the offset-dependent compressional reflectivity and C1 to
C3 represent the AVO coefficients, with θ denoting the offset angle.

Bayes’ theorem provides a mathematical framework for incorporating prior informa-
tion related to the elastic parameters, including density, compressional, and shear wave
properties, which are to be derived from the seismic data using the forward model (AVO
equations). This approach allows for the generation of probabilistic estimates, facilitating
the assessment of the uncertainties associated with these parameters.

The theorem can be expressed as follows:

Q(m|d) = P(d|m)P(m)

P(d)
(3)

Here, Q(m|d) represents the posterior distribution, which provides a probabilistic
solution to the inverse problem; P(d|m) denotes the AVO equation; P(d) is the data distri-
bution, which is typically disregarded when focusing on the posterior shape; and P(m)
stands for the prior model employed to constrain the solution.

The petrophysical seismic inversion is executed in steps. The initial step entails us-
ing a Bayesian algorithm to invert angle-varying seismic amplitudes [37]. The closer
counterpart in the deterministic domain is the simultaneous inversion that employs lin-
ear intra-parameter relations as constraints to couple elastic properties [40]. The linear
constraint is motivated by the linear trend between the logarithm of acoustic impedance
and shear impedance [34] and acoustic impedance with density [41] for brine-saturated
sediments.



Appl. Sci. 2024, 14, 1345 10 of 26

The Bayesian framework is favored because it offers better constraints that curb the
non-uniqueness problem in the seismic inversion processes. Because of the bandwidth
restrictions of the seismic data, the generated elastic earth model is not unique and is
exacerbated further in the case history by insufficient well coverage to calculate the earth
model. In addition, the Bayesian formulation mitigates the effect of noisy traces. The
inverse process is automatically constrained by the a priori model, such that when the
signal-to-noise ratio (SNR) is low, the priors dominate the inversion model. However, when
the SNR is high, the seismic signals dominate.

Low-Frequency Earth Model

The low-frequency earth model is derived from the interpolation of the well-log
curves (density, compressional, and shear wave velocities) and constrained by seismic
interpretations or horizons influenced by the petrophysical interpretation of formation well-
tops and detailed synthetic seismic data to well-tie. This phase is crucial, as it assumes that
the properties of geological formations/facies are interpolated within an interval, as guided
by horizons. Finally, a moving-average filter is applied to produce the low-frequency
component at 10 Hz and below.

Seismic Inversion

The forward model for the simultaneous seismic inversion discussed above and the
Bayesian inversion uses Fatti’s three-term equation. In contrast, simultaneous inversion
utilizes regression parameters (gradient m and intercept b) estimated from the regional rock.
Bayesian inversion constrains statistical properties such as variance and the correlation
between the elastic logs. Finally, due to the limited range of angles, the workflow is
restricted to applying only the acoustic and shear impedance for prediction. The seismically
derived density volume from AVO inversion is unreliable and excluded from the training
data. Using the inverted attributes obtained from the elastic inversion and using the well
logs as training dataset, the second phase entails predicting the petrophysical properties
using a supervised machine-learning (SML) approach. SML involves the process of finding
relationships between provided inputs and outputs and using the relationship to predict
an event or outcome.

Machine Learning: Neural Network

This two-step process operates within a probabilistic framework, due to the inherent
complexity of the relationship between seismic attributes and petrophysical parameters. In
the first stage, it employs the Bayesian time-lapse algorithm shown in [37] to invert changes
in elastic properties and their associated uncertainties. Unlike deterministic regularization
methods like damped least-squares or maximum likelihood, Bayesian treatment mitigates
the impact of noisy data. The a priori model guides the inversion, making priors more
influential in low signal-to-noise ratio (SNR) scenarios, while seismic signals dominate in
high SNR situations.

Complex patterns in datasets can be modeled with neural networks, which are widely
used in machine-learning algorithms [19,42]. A neural network takes inputs, processes
them through multiple layers of hidden neurons, and establishes complex relationships
with outputs (predictions based on the combined input of all of the neurons). In preparation
for the neural network training, input data (acoustic and shear impedance) and output data
(petrophysical properties: volume of clay, porosity, and water-saturation) were initially
normalized (within the range of 0 to 1). The neural network architecture includes 20 hidden
layers, the sigmoid function (suitable for predicting continuous parameters), which serves
as the kernel, and an Adams optimizer for finding the optimal weights [43]. Due to multiple
tests, the optimal number of iterations of 5000 is used to train the model. To limit bias
in the training process, 70% of the data picked at random is used for training and the
remaining 30% for validation purposes. See Appendix A for further information on our
machine-learning algorithm.
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For the prediction, we apply the neural network to simultaneously predict the shale
volume, porosity, and water saturation (simultaneous workflow). After this, we adopt
a sequential workflow, where the shale volume is predicted initially, and subsequently
include the shale volume in the training input and predict porosity. Finally, both shale
volume and porosity are used to predict water saturation.

The workflow adopted for this research is summarized in Figure 3. Through the
seismic inversion process, we derive impedance volumes, specifically the primary wave
impedance (AI) and shear wave impedance (SI) volumes. Utilizing these AI and SI volumes,
our algorithm sequentially predicts the lithology volume. Subsequently, the algorithm
undergoes training to integrate the predicted lithology for estimating porosity. Finally,
by incorporating the predicted porosity, lithology information, and measured logs, the
algorithm proceeds to predict the saturation volume. We compare our results with an
approach that simultaneously predicts all parameters at once from seismic data.

3.1.5. CO2 Fluid Substitution

CO2 fluid substitution is performed in the Utsira Formation in well 15/9-F1A, and
different stages of CO2 injection (0–100% CO2 saturation at every 10%) are modeled. This
section’s missing elastic logs have been predicted using the established rock physics model
and calibrated using nearby wells and wells from Sleipner fields. Full-offset synthetic
seismograms are then generated for all fluid models using a ray-tracing method.

The fluid substitution models employed in this study were built using the calibrated
rock physics model and Biot—Gassmann theories [30,44,45]. For the partial saturation in
brine and supercritical CO2, an effective fluid phase with different average techniques,
used as “one fluid phase” as an input into the Biot theory for saturated porous media, is
used [46,47]. In this instance, the microscopic description of the porous medium consists of
a set of properties for each solid and fluid phase.

The equation of state is used to determine the fluid phase characteristics of brine and
CO2 in the Utsira Sands [48]. The reservoir pressure and temperature conditions, which
range from 8 to 11 MPa and 27 ◦C and 37 ◦C, respectively, have a significant effect on the
supercritical CO2 phase properties [49].

4. Results and Discussion

In this study, Volve field data (well-logs and seismic) have been investigated for
petrophysical properties, and qualitative and quantitative methods were used to identify
the hydrocarbon-bearing reservoirs. In all of the wells, the reservoir sands have an average
thickness of about 40 ft. They are characterized by low bulk densities, low relative P-wave
velocities, high resistivities, and high porosities, compared to the overlying shale. Figure 4
shows that the Hugin Formation has good quality reservoir properties, with an average
porosity of 0.23 porosity units, a thickness of about 100 m, a net-to-gross ratio of 0.9, and
hydrocarbon saturation of about 80%.

4.1. Impact of Rock Physics Diagnostics

The sand sediment models exhibited distinct characteristics in our study, with the stiff
sand sediment model proving to be the most suitable for representing our sands, while the
soft sediment model emerged as the optimal choice for characterizing the sediments within
the shales lithologies. In Figure 5, we have color-coded the measured data in black, and the
final edited data are represented by clay volume.

The model lines presented in the figure delineate the trends in rock physics predicated
on a single mineral solid framework. Specifically, the brown line corresponds to the stiff
sediment model, consisting of 100% quartz, while the red line signifies the soft sediment
model, comprising 100% clay. It is noteworthy that the data points enclosed in amber-
colored ellipse denote bad data points, which have undergone correction through the
application of our calibrated rock physics models.
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4.2. Rock Physics Modeling

The various modeling scenarios were perturbed using Gassmann’s fluid substitution
method. Utilizing rock physics analyses from the well data, we successfully identified
the reservoirs and distinguished between various fluid and lithology effects within the
study area. This information is succinctly presented in Figure 6a, which showcases a log
display summarizing the outcomes of the fluid and synthetic modeling at in situ reservoir
conditions. Notably, the AVA Pick domain, highlighted in magenta, represents the location
of the AVA (amplitude versus angle) analysis.

The observations from Figure 6a reveal that the hydrocarbon-bearing sands exhibit
lower Vp/Vs (compressional wave velocity to shear wave velocity ratio) and P-wave
impedance (AI) values compared to the water-saturated sands. Additionally, the synthetic
modeling results indicate that, at around 2.42 s, the in situ and hydrocarbon scenarios
exhibit brighter amplitude responses than the wet scenario; moreover, there is a significant
difference in the amplitude between the wet Vs hydrocarbon synthetic seismograms, with
the difference reaching as high as 10%. The AVA analyses conducted at approximately
2.42 s further substantiate these findings, as follows: the hydrocarbon and in situ scenarios
display a class III AVA response, characterized by an AVA gradient of approximately −0.025
and a reflectivity of around −0.04, while the wet scenario demonstrates a class IV AVA
response, with an AVA gradient of about 0.01.

In Figure 6b, which depicts the cross plot results of the in situ conditions, we can
observe a clear separation in the Vp/Vs and P-impedance domains, allowing for the dif-
ferentiation of lithology and fluid effects. The distinction between the reservoir and the
background trend is notably well defined. Furthermore, there is a marked sensitivity to
fluid variations among the different scenarios, enabling the discrimination of hydrocarbon-
rich conditions from water-saturated ones.

The favorable combination of substantial porosities and thickness in the Hugin Forma-
tion window sands makes them highly suitable for distinguishing between lithology and
fluid properties under in situ rock property conditions.
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Figure 6. (a) Log plot showing the modeling results (in situ scenario). (b) Cross plots showing
the modeling results (in situ scenario). Hydrocarbon sands displayed lower Vp/Vs and P-wave
impedance (AI) values than wet sands. Strong ability to discriminate fluids, particularly in the
AVA domain.

Lithology Modeling

The results from the clay volume and porosity perturbation modeling (Figures 7–9)
illustrate how the elastic properties changed as the porosity, clay volume, and fluid changed.
With increasing Vclay and reducing porosities, although the sensitivity is lowered, the sands
are still suitable for lithology/fluid discrimination, due to their good thickness (Figures 7–9).
Figure 7 shows the modeling results of reducing the porosities by 10 porosity units, and
we see that good separation from the background trend is still observed. Although the
fluid sensitivity is reduced, but there is still a relatively fair separation between the fluid
scenarios and in the AVA domain, the wet scenario shows a class IIP response, while the
hydrocarbon scenario shows a class II response. Overall, the sands’ good thickness makes
them relatively suitable for lithofluid discrimination, even at reduced porosity (although
the sensitivity is reduced).
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Figure 9. Cross plots showing the modeling results (PosVclay 0.2, Neg Por10 p.u. scenario). The sands’
good thickness makes them relatively suitable for lithofluid discrimination, even at reduced porosity
(although the sensitivity is reduced).

Figure 8 shows the cross plots depicting the modeling results when the reservoir
condition is made shalier by increasing the clay volume by 20%. Here, what we see is that,
even at the shalier reservoir condition, there is still a reasonable separation between the
reservoir sands and the background; furthermore, there is a good discrimination between
the wet and hydrocarbon scenario, especially in the upscaled domain. The sands’ good
thickness makes them relatively suitable for lithofluid discrimination, even at a reduced
clay content (although the sensitivity is reduced when compared to the in situ reservoir
condition).

Figure 9 shows the result of increasing the clay content by 20% and reducing the
porosity by 0.1 porosity unit, which is the worst reservoir scenario expected in this field.
The sands are still fairly separable from the background trend in the Vp/Vs ratio and P-
impedance domain, although separating our wet reservoirs and hydrocarbon sands might
be a bit challenging in this domain. In the AVA domain, the wet sands show a class IV AVA
response, while the hydrocarbon scenario shows a class II AVA response.

4.3. Seismic Inversion and Petrophysical Property Prediction

Figure 10 shows the inverted primary wave impedance (AI), shear wave impedance
(SI), and the density for the seismic section inline 10,154. The inversion analysis shows a
good fit between the inverted logs and the original logs (Figure 11). The simultaneous and
sequential prediction results are shown in Figures 12–14.
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The inversion was then carried out after effectively tweaking the impedance parame-
ters with the help of the cross plots from the well information [50,51]. The time slices taken
at 2400 ms, with a window centered on the target and a fixed size of 10 ms, highlight the
simultaneous and sequential prediction results. The black broken lines show the reservoir
bounds. The previously known reservoir area around one of the wells has a low shale
volume, high porosity, and low water saturation, which correlates well with our results
(Figures 12–14).

There is a strong correlation (or dependence) between lithology and porosity, therefore,
predicting Vclay first and subsequently using Vclay as an input for porosity prediction
improved our results. Overall, our results show that the sequential prediction approach
produces a higher accuracy result (with the RMS error between the predicted and the
original data being 0.31) than the simultaneous algorithm (with an RMS error of 0.45).

4.4. CO2 Modeling Results

Figure 15 shows a log plot of well 15/9-F1A, highlighting the Utsira Formation. After
applying fluid substitution to the Utsira Formation and generating synthetic seismic traces
for each CO2 saturation state, a clear fluid effect can be seen.
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Figure 15. Petrophysical analyses—Zone of Interest (ZoI).

There is a sharp decrease in Vp (fizz-gas effect) when CO2 is introduced into a porous
medium, whereas the change in velocity is minimal when the CO2 saturation is greater than
20%. Figures 16–18 summarize the modeling results. Between 0 and 0.1 CO2 saturation,
there is a dramatic decrease in the P-wave velocities (Figure 16a), with a subtle difference
observed for higher saturation. With increasing CO2 saturation, the rock bulk modulus
(Ksat) decreases. Consequently, the P-wave velocity decreases when the bulk density (b)
decreases. At a CO2 saturation of 0.1%, the P-wave velocity increases subtly, due to a
decrease in density.
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In contrast, the increase in S-wave velocity is directly related to CO2 saturation
(Figure 16b). Since the shear modulus remains constant and is unaffected by fluid substitu-
tion, the change in S-wave velocity depends only on the bulk density variations.

Figures 17 and 18 summarize our modeling results, while Figure 19a,b show the
synthetic seismogram and stack results. The distinction in the synthetic traces is most
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noticeable in the fluid substitution zone (~881–1070 m). With the CO2 increment, the
amplitude values in the top reflector (881 m) change due to the substitution. The P-wave
impedance reduction is visible and highlighted at 881 m. A huge reduction occurs between
0 and 10% CO2 saturation, with only minor variations observed at higher saturation levels.
The AVO results (Figure 20) at 881 m show a strong effect from 0 to 0.1 CO2 saturation,
with a sharp drop in the AVA gradient (−0.06 to −0.08) and intercept (0.03 to 0).
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Figure 19. (a) Fluid modeling synthetic gathers. From left to right, there is an increasing CO2 effect.
As highlighted in red, the most significant drop occurs between 0 and 10% CO2 saturation, with only
minor variations observed at higher saturation levels. (b) fluid modeling synthetic stacks. From left
to right, there is an increasing CO2 effect. As highlighted in red, the most significant drop occurs
between 0 and 10% CO2 saturation, with only minor variations observed at higher saturation levels.
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Figure 20. (a) Cross plot of intercept vs. AVA gradient fluid modeling results. AVO results show a
strong effect from 0 to 0.1 CO2 saturation, with a sharp drop in AVA gradient (−0.06 to −0.08) and
intercept (0.03 to 0). A subtle effect is observed for higher CO2 saturation values. (b) Cross plot of
angle vs. reflectivity, where sharp drop in reflectivity is observed from 0 to 0.1 CO2 saturation. A
subtle effect is observed for higher CO2 saturation values.

5. Conclusions

The results of the petrophysical inversion show that the sequential prediction approach
produces a higher resolution than the simultaneous case in this Volve example. Because
of their high porosities and thicknesses, the sands in the Hugin Formation window are
suitable for lithofluid discrimination, according to the Vclay/porosity modeling results.
The impact is particularly noticeable in the in situ conditions for most of the wells in the
upscaled domain. Overall, the outcomes in every Volve field well are consistent. However,
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separating the hydrocarbon scenarios (oil vs. gas) could be difficult. The cross plots of AI
vs. PR colored with facies also demonstrate the effectiveness of discrimination in this area.

Due to the good accuracy in the inversions and log analysis, we undertook fluid
substitution studies for possible CO2 sequestration. The modeling of the CO2 fluids helped
us to model the conditions in the area of interest and the seismic changes that occurred
throughout the various stages of CO2 injection (0% to 100% CO2 saturation). The following
could be observed in the first 10% CO2 substitution: The typical decrease in P-wave velocity
is 12%. The Vs increases in direct proportion to CO2 saturation. A subtle effect is observed
for higher CO2 saturation values. The decrease in Vp and density represents a decrease in
the impedance and reflectivity contrast.
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Appendix A

Keras, a high-level neural network API, was applied. The sequential model in Keras
simplifies the process of model building into the stacking of layers. Each layer in the
sequential model is a transformation function that accepts a weighted input and produces
an output through an activation function. For continuous variable predictions, architectures
with multiple hidden layers, known as deep networks, are common. Within the scope of this
research, a sequential model with 20 hidden layers, each employing the sigmoid activation
function, was utilized to approximate non-linear mapping between the input features and
a continuous target variable. The mathematical summary of how a sequential model works
in the context of a feedforward neural network is summarized in Equation (A1).

Keras models require compilation before training, where the choice of the loss function
and the optimizer is specified. Given the continuous nature of the target variable, the
mean squared error (MSE) was employed as the loss function. For optimization, the Adam
optimizer was selected for its adaptive learning rate capabilities, which adjust as per the
learning gradient of each weight, leading to faster convergence. A sequential model is
composed of n layers, where each layer l has a function f (l) that transforms its input
x(l−1) into an output x(l), which then becomes the input to the next layer. The training
process involves the forward propagation of the input data through the network and
the backpropagation of the errors to update the model weights. In the implementation,
Keras handles the intricacies of the backpropagation, while the Adam optimizer adjusts
the weights in a manner that minimizes the loss function. The optimization algorithm’s
hyperparameters, such as the learning rate and the first and second moment decay rates,
were tuned to enhance the model’s predictive performance.
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The general mathematical representation of the transformation at each layer l is
as follows:

x(l) = f (l)
(

W(l)·x(l−1) + b(l)
)

(A1)

where:

• W(l) represents the weights matrix for layer l.
• b(l) represents the bias vector for layer l.
• f (l) represents the activation function for layer l.

For further technical details and mathematical formulations, you can refer to [52,53].
Also, the source of data used in this study can be found in [54,55].
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