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Abstract: The stress distribution and fracture parameter calibration of ice–rock models are important
aspects of studying rock properties at high altitudes and latitudes. However, progress in ice–rock
modeling has been slow and singular, and it is limited due to the discrete nature of rocks and
the applicability of fracture mechanics. In this study, a circular inhomogeneous ice–rock model is
proposed for the first time, and a method is provided for calculating the stress field of the model under
biaxial loading. A method for calculating the single-crack stress intensity factor of the model subjected
to biaxial compressive loading is also provided. The novelty of this work is that the inhomogeneous
ice–rock model is treated as a superposition of two models, namely, a circular pore plate and circular
ice, according to the superposition principle. The key is that the stress field distribution law of
the ice–rock model is obtained based on the basis of the displacement continuity of the ice–rock
interface. The analytical and approximate solutions of the stress intensity factor of a single crack were
also obtained by considering the normal phase effect of the crack surface and combining the stress
distribution law of the ice–rock model. Comparison with the CAE method was made to verify the
correctness of the stress field and stress intensity factor calculation methods. The evolution laws of
lateral pressure coefficients, the elastic modulus ratio of ice and rock on the stress field, and the stress
intensity factor were analyzed. The effects of lateral pressure coefficients, elastic modulus ratios, and
crack distributions on the failure modes were investigated using the extended finite element method
(XFEM). This study can provide a theoretical basis for the evaluation of mechanical properties and
prediction of the failure modes of frozen rock bodies.

Keywords: ice–rock model; superposition principle; closed-type cracks; stress intensity factor;
crack extension

1. Introduction

At high altitudes and latitudes, the rock interior is rich in crystalline ice [1]. As human
activity in the region increases, so do the demands on the structural properties of frozen
rock [2–4]. In order to safely and efficiently carry out engineering works in permafrost
regions, it is essential to study the mechanical properties and failure modes of frozen rocks.
However, there have been few studies on the stress field distribution of frozen rocks, and
methods for calculating the stress intensity factor of cracks in frozen rocks under biaxial
compression are lacking. Therefore, it is crucial to construct a realistic ice–rock model and
study the distribution of stress fields within the model, as well as methods for calibrating
fracture parameters.

In the field of mechanical modeling, layered structures have become the preferred
choice for scientists due to their ability to provide uniform stress distribution. In layered
structures, scholars considered the presence of ice as a nodular formation with a certain
thickness and conducted a series of experimental studies. For example, Feng [5] studied
the variability of the thickness of intermediate rock layers in response to earthquakes,
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while Tan [6] investigated the characteristics of large deformation in layered soft rock and
proposed corresponding control techniques. In the field of simulation research, Xiao [7] uti-
lized FLAC3D to conduct a multi-layer-rock true triaxial experiment. They investigated the
anisotropy under real stratigraphic conditions and proposed the type of damage influenced
by the rock matrix and weak planes. Chemenda [8] analyzed the impact of formation thick-
ness on the fracturing process of reservoirs using FD numerical simulation. These studies
advanced the research progress regarding the mechanical properties of ice–rock. However,
finding uniformly layered and continuous ice–rock samples in practical engineering is
challenging, which imposes significant limitations on the current research model.

In terms of the theoretical study of fracture parameters, scholars’ research began with
the analysis of an infinitely large flat plate subjected to uniform tensile stress. They have
developed fruitful calculation methods, such as Green’s function method [9,10] and Legen-
dre’s series expansion method [11,12]. Subsequently, the interaction between multiple holes
and multiple cracks gradually became a popular research field. For example, Tang [13]
calculated the artificial loads on the surface of the cracks and circular holes by introduc-
ing the stress intensity factor to account for the interaction. He then derived a system
of Cauchy-type integral equations. Finally, various methods, such as the displacement
discontinuity method [14], the dislocation density method [15], and the boundary integral
method [16], were introduced. For example, Wei et al. [17] proposed a formula that utilizes
the superposition principle to calculate the stress intensity factor of multiple holes and
cracks under the influence of far-field stresses and surface stresses. Peng [18] calculated
the stress intensity factor at the tip of a closed-type co-linear crack but did not explain
the significance of the covariance and did not provide further analysis of the stress and
displacement fields at the crack tip.

Due to the compressive loading in the far field, there is contact between the surfaces
that are cracked. This causes some difficulties in stress analysis at the crack tip. In this
regard, scholars gradually adopted computer-aided engineering (CAE) methods for further
research. For example, Dolbow [19] and Khoei [20] utilized different iterative algorithms to
investigate the issue of contact friction. Additionally, Elguedj [21] employed the extended
finite element method in conjunction with augmented Lagrange multipliers to simulate the
expansion process of contact friction cracks. This provides a basis for stress analysis and
predicting the extension of closed-type cracks.

Although there have been fewer studies on the mechanical properties of fractured
rocks at freezing temperatures, there have been numerous studies on the mechanical
properties of fractured rocks at room temperature. Acoustic emission experiments [22–24]
and nuclear magnetic resonance (NMR) methods [25] are commonly used experimental
techniques. The mode of crack propagation under various cracking environments, such
as chemical corrosion [26], temperature [27], and filling state [28,29], was investigated.
Meanwhile, the number [30,31] and type [32] of cracks were also studied more extensively.

In order to enhance the mechanical ice–rock model, a calculation method was devel-
oped for the crack stress intensity factor that is applicable to ice–rock. In this paper, we
propose a non-uniform ice–rock model and derive the stress calculation method based on
the superposition principle. According to the pure type II crack stress complex function, the
calculation method for the single-crack stress intensity factor in ice–rock is obtained. The
influence of the lateral pressure coefficient and elastic modulus ratio on stress distribution
and the stress intensity factor is analyzed. XFEM is used to analyze the state of crack
extension under different lateral pressure coefficients, elastic modulus ratios, and crack
distributions in order to provide a theoretical basis for the failure mode and life assessment
of structures in permafrost regions.

2. Method of Calculation
2.1. Stress Field

A model of circular, inhomogeneous ice–rock is created. In the model, rock is used as
the primary support with circular openings inside. Ice is used as a secondary support to fill
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the holes in the rock. When subjected to external loading, the homogeneity assumption
of the model no longer holds. This limitation hinders the application of elastic mechanics
and complicates the stress analysis of the model. To analyze the stress field of the model,
the principle of superposition is used. The model is initially treated as a superposition of a
circular pore plate and a circular body. Secondly, a set of surface forces is applied to the
circumference of the discrete body so that the discrete elastomer satisfies the stress and
displacement conditions prior to discretization. Finally, the displacements of the discrete
elastomer are analyzed so that the displacements at the circumference are equal enough to
obtain the stress field of the model. The principle of superposition is shown in Figure 1.
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As is shown in Figure 1, the superposition principle was applied to discretize both
materials and the external loads. This was carried out to facilitate the analysis of the stress
field in the model. The original external load was split into a superposition of two loads.
The polar coordinates are set at the center of the circle. In the first type of problem, the
circular perforated plate is subjected to an equivalent bidirectional compressive load. In
this case, the stress at any point on the circular plate is only determined by the polar length
and is not affected by the angle at any point. In the second type of problem, the circular
plate is subjected to equal tensile and compressive loads. In this case, the stress on the
circular plate varies periodically.

2.1.1. Category I Issues

For the first type of problem, where the stress at any point on the circular hole plate
is independent of the angle, the applied force on the edge of the circular hole can be
expressed uniformly.

F1 = x
(1 + λ)

2
q (1)

where x is the coefficient to be determined; λ is the lateral pressure coefficient; and q is the
vertical compressive load, MPa.

The stress boundary conditions for the first type of problem can be expressed
as follows:  σρ1 = − (1+λ)

2 q, τρθ1 = 0|ρ → ∞

σρ1 = −x (1+λ)
2 q, τρθ1 = 0|ρ = R

(2)

where σρ1 is the radial stress, MPa; τρθ1 is the shear stress, MPa; ρ is the pole meridian, mm;
and R is the radius of the circular hole, mm.
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For the first type of problem, the stress field can be obtained from the Lame solution.
σρ1 = (1+λ)

2 q
[

R2

ρ2 (1 − x)− 1
]

σθ1 = − (1+λ)
2 q

[
R2

ρ2 (1 − x) + 1
]

τρθ1 = 0

(3)

where σθ1 is the circumferential stress, MPa.

2.1.2. Category II Issues

For the second type of problem, the stress at each point on the circular hole plate varies
periodically with the angle. Therefore, the stress boundary condition for the second type of
problem can be expressed as follows: σρ2 = − (1−λ)

2 q cos 2θ, τρθ2 = (1−λ)
2 q sin 2θ |ρ → ∞

σρ2 = −x (1−λ)
2 q cos 2θ, τρθ2 = x (1−λ)

2 q sin 2θ |ρ = R
(4)

The function of the stress potential of a circular orifice plate can be expressed in the
following way:

ϕ = cos 2θ(Aρ4 + Bρ2 + C +
D
ρ2 ) (5)

where A–D are constants to be determined.
A partial derivative of the stress function gives the stress component expressed in

polar coordinates. 
σρ2 = cos 2θ

(
−2B − 4C

ρ2 − 6D
ρ4

)
σθ2 = cos 2θ

(
12Aρ2 + 2B + 6D

ρ4

)
τρθ2 = sin 2θ(6Aρ2 + 2B − 2C

ρ2 − 6D
ρ4 )

(6)

An expression for the constant to be determined can be obtained by combining the
boundary conditions described in Equation (4).A = 0 B = (1−λ)

4 q

C = − (1−λ)
2 q(1 − x)R2 D = (1−λ)

4 q(1 − x)R2
(7)

A specific expression for the stress components is obtained by combining
Equations (6) and (7).

σρ2 = − (1−λ)
2 q cos 2θ

[
1 − 4(1 − x) R2

ρ2 + 3(1 − x) R4

ρ4

]
σθ2 = (1−λ)

2 q cos 2θ
[
1 + 3(1 − x) R4

ρ4

]
τρθ2 = − (1−λ)

2 q sin 2θ
[
1 + 2(1 − x) R2

ρ2 − 3(1 − x) R4

ρ4

] (8)

2.1.3. Continuity of Boundary Displacements

To solve for the coefficient x in Equations (3) and (8), it is necessary to solve for the
displacements of the circular perforated plate and the circular body separately so that their
radial displacements at the junction are equal. The first type of problem is analyzed.
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The stress component is initially incorporated into the physical equation in order to
derive an expression for the strain component. The physical equations in elasticity are
shown below: 

ερ = 1
E (σρ − uσθ)

εθ = 1
E (σθ − uσρ)

γρθ = 2(1+υ)
E τρθ

(9)

The differential expression for displacement can be obtained by substituting the
strain component obtained from Equation (9) into the geometric equations. The geometric
equations in elasticity are shown below:

ερ =
∂uρ

∂ρ

εθ =
uρ

ρ + 1
ρ

∂uθ
∂θ

γρθ = 1
ρ

∂uρ

∂θ + ∂uθ
∂ρ − uθ

ρ

(10)

An expression for the displacement of the circular orifice plate can be obtained by
integrating the first two terms of Equation (10). uρ1 = (1+λ)

2E1
q
[
− R2

ρ2 (1 − x)(1 + υ1)− ρ(1 − υ1)
]
+ f1(θ)

uθ1 = − f̃1(θ) + f1(ρ)
(11)

Inserting Equation (11) into the third equation of Equation (10) yields the new equation.

f ′1(θ) + f̃1(θ) + ρ f ′1(ρ)− f1(ρ) = 0 (12)

Separating the variables gives the following equation:{
f1(θ) = a1 sin θ + b1 cos θ

f1(ρ) = c1ρ
(13)

By substituting Equation (13) into Equation (11) and simplifying, an expression for the
displacement of the circular orifice plate can be obtained. uρ1 = (1+λ)

2E1
q
[
− R2

ρ2 (1 − x)(1 + υ1)− ρ(1 − υ1)
]
+ a1 sin θ + b1 cos θ

uθ1 = a1 cos θ − b1 sin θ + c1ρ
(14)

The displacement of ice can be expressed as follows: uρ2 = − (1+λ)
2E2

qxρ(1 − υ2) + f2(θ)

uθ2 = − f̃2(θ) + f2(ρ)
(15)

Similarly, by substituting Equation (15) into the third equation of Equation (10) and
separating the variables, a specific expression for displacement can be obtained. uρ2 = − (1+λ)

2E2
qxρ(1 − υ2) + a2 sin θ + b2 cos θ

uθ2 = a2 cos θ − b2 sin θ + c2ρ
(16)

Make ρ = R and uρ1 = uρ2.
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x =
2E2

E1(1 − υ2) + E2(1 + υ1)
(17)

The expression for the stress field of the model is obtained.
σρ = σρ1 + σρ2

σθ = σθ1 + σθ2

τρθ = τρθ2

(18)

The following three special cases of the model can be derived from Equation (17):
E2 → 0 x → 0

E1 = E2 υ1 = υ2 x = 1

E2 → ∞ x = 2
1+υ1

∈ ( 4
3 , 2)

(19)

If the modulus of elasticity of ice is significantly lower than that of rock, the model
can be considered a problem of stress concentration at the edge of a hole in a circular
porous plate. When the modulus of elasticity of ice and rock is the same, it confirms the
homogeneity of the model. If the modulus of elasticity of the ice is much higher than that
of the rock, the ice can be considered a rigid body in comparison to the rock. As a result,
displacement of the pore edge occurs.

2.2. Stress Intensity Factors
2.2.1. Analytic Solution

For a closed crack, the singularity of the type I stress component no longer exists
due to the pressure closing the crack. At this point, the composite crack is transformed
into a special pure type II crack. Figure 2 shows a schematic diagram of the stress on the
crack surface.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 19 
 

 

Figure 2. Schematic diagram of force on cracked surface, where a is the crack half-length, mm; q(x) 

is the positive stress on the crack surface, MPa; and τ(x) is the shear stress on the crack surface, MPa. 

For a pure type II crack under an infinite plate, the stress field expression can be de-

rived using the Westergaard stress function [33]. 

2 2

ef z
Z

z a


 =

−
 (20) 

The expression for the stress component is obtained. 

2Im Re

Re

Re Im

x

y

xy

Z y Z

y Z

Z y Z







 



 

 = +


= −


= −

 (21) 

According to the superposition principle, the crack is currently unaffected by any 

force other than the “pseudo-force” on the crack surface. Therefore, the boundary condi-

tions are as follows: 

,      0x y xyZ   → = = =  (22) 

This results in a calculated form of the stress intensity factors. 

2 2
( )

ef a s
K

a a s







 =

−
 (23) 

where ( )K   is the stress intensity factor at both ends of the crack (a negative sign indi-

cates the left end, while a positive sign indicates the right end), 1/2MPa mm• ; ef  represents 

the effective tangential stress at the crack surface, measured in MPa; and ( ,0)s  denotes an 

arbitrary point on the crack surface. 

The formula for the stress intensity factor can be expressed as an integral, following 

the superposition principle. 

2 2

1
( ) ( )

a

ef
a

a x
K x dx

a a x





−


 =

−
  (24) 

From Equation (24), it can be seen that the parameters required to calculate the stress 

intensity factor at the crack tip are the crack half-length and the effective tangential stress. 

Since the crack half-length is a known parameter, the key to solving the stress intensity 

factor at the crack tip lies in solving the effective tangential stress at the crack surface. 

Since closure of the cracked surface occurs and the cracked surface is subjected to 

both friction and tangential stresses, the effective tangential stresses on the cracked surface 

are calculated as shown below: 

ef f  = −  (25) 

where f  is the friction stress, MPa. 

The crack surface shear stress can be expressed as follows: 

2 2( )sin cos (cos sin )x y xy       = − − −  (26) 

where   is the angle between the local and horizontal coordinates of the crack (°). 

Figure 2. Schematic diagram of force on cracked surface, where a is the crack half-length, mm; q(x) is
the positive stress on the crack surface, MPa; and τ(x) is the shear stress on the crack surface, MPa.

For a pure type II crack under an infinite plate, the stress field expression can be
derived using the Westergaard stress function [33].

ZII =
τe f z

√
z2 − a2

(20)

The expression for the stress component is obtained.
σx = 2ImZII + yReZ′

II

σy = −yReZ′
II

τxy = ReZII − yImZ′
II

(21)

According to the superposition principle, the crack is currently unaffected by any force
other than the “pseudo-force” on the crack surface. Therefore, the boundary conditions are
as follows:
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|Z| → ∞, σx = σy = τxy = 0 (22)

This results in a calculated form of the stress intensity factors.

KII(±) =
τe f√
πa

a ± s√
a2 − s2

(23)

where KII(±) is the stress intensity factor at both ends of the crack (a negative sign indicates
the left end, while a positive sign indicates the right end), MPa•mm1/2; τe f represents the
effective tangential stress at the crack surface, measured in MPa; and (s, 0) denotes an
arbitrary point on the crack surface.

The formula for the stress intensity factor can be expressed as an integral, following
the superposition principle.

KII(±) =
1√
πa

∫ a

−a
τe f (x)

a ± x√
a2 − x2

dx (24)

From Equation (24), it can be seen that the parameters required to calculate the stress
intensity factor at the crack tip are the crack half-length and the effective tangential stress.
Since the crack half-length is a known parameter, the key to solving the stress intensity
factor at the crack tip lies in solving the effective tangential stress at the crack surface.

Since closure of the cracked surface occurs and the cracked surface is subjected to both
friction and tangential stresses, the effective tangential stresses on the cracked surface are
calculated as shown below:

τe f = τ − τf (25)

where τf is the friction stress, MPa.
The crack surface shear stress can be expressed as follows:

τ = (σx − σy) sin β cos β − τxy(cos2 β − sin2 β) (26)

where β is the angle between the local and horizontal coordinates of the crack (◦).
Friction stress can be expressed as

τf = uσn = u
[
σx sin2 β + σy cos2 β − 2τxy cos β sin β

]
(27)

where u is the coefficient of friction of the cracked surface.
Combining Equations (25)–(27) gives the formula for calculating the effective tangen-

tial stress.

τe f = (σx − σy) sin β cos β − τxy(cos2 β − sin2 β)− u
[
σx sin2 β + σy cos2 β − 2τxy cos β sin β

]
(28)

The solutions for the stress intensity factor from Equations (24) and (28) are called
integral solutions.

2.2.2. Approximate Solution

The stress intensity factor of a closed crack can be accurately calculated using
Equation (24). However, applying this equation in engineering practice is challenging
due to the difficulty of integrating Equation (24) and the frequent occurrence of non-
integrable conditions. To make the stress intensity factor calculation formula more widely
applicable, this paper proposes configuring the number of discrete points on the crack
surface with an interval length based on Equation (24). In order to have better control over
the number and placement of individual points, the distribution of these points follows the
Chebyshev polynomials.
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 xi = a cos (2i−1)π
2M

ωi = πa
M sin (2i−1)π

2M

(29)

Combining Equations (24) and (29) leads to the following equation:

KII(±) =
1√
πa

M

∑
i=1

τe f (a cos (2i−1)π
2M )(1 ± cos (2i−1)π

2M )

sin (2i−1)π
2M

ωi (30)

Since Equation (30) is calculated using the local coordinates of the cracked surface, the
corresponding effective tangential stresses must also be converted into those coordinates. A
schematic representation of the calculation for scattered effective tangential stress is shown
in Figure 3.
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From Figure 3, it can be seen that the starting point satisfies the equation in
global coordinates. {

x0 = b cos θ
y0 = b sin θ

(31)

Using the starting point, the position of the discrete point can be calculated in global
coordinates. {

xj = x0 + (a + xi) cos β

yj = y0 + (a + xi) sin β
(32)

The effective tangential stress corresponding to the local coordinate system can be
derived by combining Equation (28)

τ
j
e f = (σ

j
x − σ

j
y) sin β cos β − τ

j
xy(cos2 β − sin2 β)− u

[
σ

j
x sin2 β + σ

j
y cos2 β − 2τ

j
xy cos β sin β

]
(33)

The solution of the stress intensity factor from Equations (30) and (33) is referred to as
the approximate solution.

2.3. Finite Element Analysis
2.3.1. Validation of the Stress Field

To verify the correctness of Equation (18), the finite element software ABAQUS 2022
was used to analyze the same calculation example, and the simulation model is shown in
Figure 4. The obtained stress contrast curve is shown in Figure 5.
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In Figure 4, the model size was set to (length × height × thickness). The C3D8R
cell was used for grid division. The normal phase displacement of the lower surface of
the model and the unit load of the specimen on the upper surface of the model were
constrained. The cracks were assigned by planar components, and the friction action of
the crack surface was defined by universal contact control. The mesh of the crack tip was
divided using adaptive meshing technology, and 98,725 elements were divided. The stress
intensity factor of the crack tip was obtained using contour integral.

In the example analyzed, the lateral pressure coefficient is 0.9, the vertical load is
5 MPa, and the ratio of the modulus of elasticity of ice to rock is 2.

From the figure, it can be seen that the maximum error between the CAE solution
and the analytical solution is 5.15% in the comparisons of radial stress and circumferential
stress. In the shear stress comparisons, the maximum error reaches 17.61%. Considering
the cyclic variation in stress, the reason for the large difference in error is the presence of
stress concentration in the transition zone of the two materials, as indicated by the finite
element analysis. In terms of path stress, the analytical solution is in perfect agreement
with the CAE solution, demonstrating the accuracy of the present method in calculating
the stress field of a non-uniform elastomer.

2.3.2. Validation of Stress Strength Factors

To validate the accuracy of Equation (30) in computing the stress intensity factor at
the tip of a closed-type crack, the results of the perimeter line integral calculation in XFEM
are utilized for comparison. In the comparison example, the crack half-length is 5 mm,
the lateral pressure coefficient is 1, the vertical load is 1 MPa, and the ratio of the elastic
modulus of ice to rock is 2. The comparison results obtained are shown in Table 1.

From the table, it can be seen that the error remains within 12% at all points, except
for a sudden increase in error at certain positions. Taking into account the systematic error
of the finite element software, we can demonstrate the accuracy of the current method for
calculating the stress intensity factor.
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Table 1. SIF comparison.

θ(◦) β (◦)
XFEM Analytic Solution

KII(−) KII(+) KII(−) Error (%) KII(+) Error (%)

0

0 0.00281 0.002251 0 / 0 /
30 0.109355 0.09039 0.10139 7.856 0.14032 35.583
45 0.110175 0.16812 0.11102 0.761 0.17043 1.355
60 0.090844 0.21124 0.08433 7.724 0.16088 31.303
90 0.049012 0.043514 0.045836 6.929 0.04584 5.074

30

0 0.10032 0.21986 0.09301 7.859 0.2151 2.213
30 0.096828 0.21589 0.09932 2.509 0.22346 3.388
45 0.053839 0.16048 0.05397 0.243 0.16292 1.498
60 0.00418 0.003773 0.008381 / 0.07478 /
90 0.115085 0.09607 0.1084 6.167 0.090644 5.986

45

0 0.11846 0.175287 0.11102 6.701 0.17043 2.850
30 0.057369 0.07318 0.05992 4.257 0.07844 6.706
45 0.00105 0.001412 0 / 0 /
60 0.05867 0.075462 0.059921 2.088 0.078441 3.798
90 0.117998 0.17597 0.111025 6.281 0.170429 3.251

60

0 0.11504 0.095317 0.1084 6.125 0.09064 5.160
30 0.002167 0.00076 0.00838 / 0.074784 /
45 0.05567 0.163883 0.053974 3.142 0.162924 0.589
60 0.09788 0.217622 0.099315 1.445 0.22346 2.613
90 0.099468 0.21952 0.093011 6.942 0.215105 2.052

90

0 0.04702 0.04685 0.04584 2.574 0.045836 2.212
30 0.09464 0.216608 0.084328 12.228 0.160884 34.64
45 0.11261 0.17231 0.111025 1.428 0.170429 1.104
60 0.11028 0.091726 0.101392 8.766 0.140321 34.631
90 0 0 0 / 0 /

3. Failure Mode

For ice–rock, the distribution of the stress field is closely related to the material
properties of the ice. If the modulus of elasticity of the ice is large, the displacement of the
rock will be limited. If the modulus of elasticity of the ice is small, the rock will experience
stress concentration. Under different conditions of ice modulus distribution, the stress
distribution law of the rock changes. To examine the expansion of a crack under various
stress distribution states, the extended finite element method (XFEM) was employed. The
analysis focused on a crack with a half-length of 5 mm, located at an angle of 30◦ and
inclined at an angle of 30◦. The crack expansion was studied under different elastic modulus
ratios of 2, 1, and 0. The crack expansion is shown in Figure 6.

As can be observed from the simulation cloud diagram of crack propagation, when
the ice’s modulus of elasticity is high, crack propagation becomes more stable. The crack
then propagates along the original crack surface until it penetrates the rock, and the crack
tip reaches the inner part of the ice before being deflected. At this point, the cracks always
remain as shear cracks. If the model is homogeneous, the crack will first expand along the
crack face and then deflect to the left or upwards. At this point, the crack type gradually
changes from a shear crack to a tensile crack. If the modulus of elasticity of the ice is
much smaller than that of the rock, stress concentration occurs in the rock. The cracks
are deflected during the initial expansion, and the crack tip near the circular hole tends to
propagate along the hole edge. Meanwhile, the crack at the end, away from the circular
hole, rapidly develops into a wing crack.



Appl. Sci. 2024, 14, 1412 11 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 19 
 

3. Failure Mode 

For ice–rock, the distribution of the stress field is closely related to the material prop-

erties of the ice. If the modulus of elasticity of the ice is large, the displacement of the rock 

will be limited. If the modulus of elasticity of the ice is small, the rock will experience 

stress concentration. Under different conditions of ice modulus distribution, the stress dis-

tribution law of the rock changes. To examine the expansion of a crack under various 

stress distribution states, the extended finite element method (XFEM) was employed. The 

analysis focused on a crack with a half-length of 5 mm, located at an angle of 30° and 

inclined at an angle of 30°. The crack expansion was studied under different elastic mod-

ulus ratios of 2, 1, and 0. The crack expansion is shown in Figure 6. 

 

Figure 6. Crack extension at different moduli of elasticity of ice: (a) 2 1/ 2E E = , (b) 2 1/ 1E E = , and 

(c) 2 1/ 0.5E E = . 

As can be observed from the simulation cloud diagram of crack propagation, when 

the ice’s modulus of elasticity is high, crack propagation becomes more stable. The crack 

then propagates along the original crack surface until it penetrates the rock, and the crack 

tip reaches the inner part of the ice before being deflected. At this point, the cracks always 

remain as shear cracks. If the model is homogeneous, the crack will first expand along the 

crack face and then deflect to the left or upwards. At this point, the crack type gradually 

changes from a shear crack to a tensile crack. If the modulus of elasticity of the ice is much 

smaller than that of the rock, stress concentration occurs in the rock. The cracks are de-

flected during the initial expansion, and the crack tip near the circular hole tends to prop-

agate along the hole edge. Meanwhile, the crack at the end, away from the circular hole, 

rapidly develops into a wing crack. 

From the crack evolution law mentioned above, it is evident that incorporating ice 

with a higher modulus of elasticity into the rock matrix can effectively hinder the propa-

gation of cracks into tensile cracks. As a result, this reduces the rate at which frozen rocks 

become destabilized. As the modulus of the elasticity of ice gradually decreases, the rate 

at which cracks develop into tensile cracks gradually accelerates, leading to an increase in 

the rate of the destabilization of ice–rock. In short, the state of damage and the rate of 

destabilization of the ice–rock are positively correlated with the modulus of the elasticity 

of the ice. 

4. Discussion 

4.1. Influence of Lateral Pressure Coefficient 

4.1.1. Stress Field 

The lateral pressure coefficient can affect the stress distribution of the model in two 

main ways. The first option is to alter the magnitude of the stress. As the vertical load 

Figure 6. Crack extension at different moduli of elasticity of ice: (a) E2/E1 = 2, (b) E2/E1 = 1, and
(c) E2/E1 = 0.5.

From the crack evolution law mentioned above, it is evident that incorporating ice with
a higher modulus of elasticity into the rock matrix can effectively hinder the propagation
of cracks into tensile cracks. As a result, this reduces the rate at which frozen rocks become
destabilized. As the modulus of the elasticity of ice gradually decreases, the rate at which
cracks develop into tensile cracks gradually accelerates, leading to an increase in the rate of
the destabilization of ice–rock. In short, the state of damage and the rate of destabilization
of the ice–rock are positively correlated with the modulus of the elasticity of the ice.

4. Discussion
4.1. Influence of Lateral Pressure Coefficient
4.1.1. Stress Field

The lateral pressure coefficient can affect the stress distribution of the model in two
main ways. The first option is to alter the magnitude of the stress. As the vertical load
remains constant, increasing the lateral pressure coefficient causes the overall stress level
of the model to increase. The second approach is to modify the stress distribution. As
the lateral pressure coefficient increases in the model, the occurrence of the first type of
problem also increases, and the stress gradually decreases due to the angle’s influence. The
stress curves with various lateral pressure coefficients are depicted in Figure 7.

In terms of the magnitude of stress, the radial and circumferential stresses at the
interface increase as the lateral pressure coefficient increases. However, the shear stress at
the interface decreases. When the lateral pressure coefficient tends to 0, the shear stress also
tends to 0. It can also be observed from the variation curves of the stress paths that both
the radial and circumferential stresses increase as the lateral pressure coefficient increases.
The shear stress decreases as the lateral pressure coefficient increases. The stress variation
rule mentioned above indicates that as the lateral pressure coefficient increases, the shear
stress on the ice–rock decreases continuously. This decrease is beneficial for preventing
shear damage to the ice–rock.

In terms of the distribution of stress according to the stress distribution law, when the
distance from the center of the circle is constant, the stress varies periodically with the angle.
As the lateral pressure coefficient increases, the shape of the radial and circumferential
stresses changes and eventually forms a circle. However, the shape of the shear stresses
does not change. This is because the shear stress is zero in the first type of problem. With an
increasing polar longitude, the shear stress and radial stress exhibit a non-linear decreasing
trend, while the circumferential stress demonstrates a non-linear increasing trend. This
suggests that the destruction of ice–rock is most likely to occur within the interior of the
rock rather than at the interface between the ice and rock.
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4.1.2. Stress Intensity Factors and Failure Modes

Taking the crack half-length of a = 5 mm as an example, the stress intensity factor of
the lateral pressure coefficient is analyzed from 0 to 1. The relationship curve between the
stress intensity factor and the lateral pressure coefficient is shown in Figure 8.
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As the lateral pressure factor increases, the stress intensity factor at the crack tip
decreases, indicating that crack propagation is impeded. The rate of decrease in the stress
intensity factor is not the same at the left and right ends of the crack. Specifically, the rate
of decrease at the left end of the crack is lower than that at the right end. This indicates that
stress fluctuation is more pronounced away from the interface when ice is present.

A numerical simulation was conducted using XFEM to study the propagation of a
crack at an inclination angle of 30◦. The evolution of the crack is depicted in Figure 9.
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Figure 9. Crack extension pattern under different lateral pressure coefficients: (a) λ = 0, (b) λ = 1.

From the figure, it is evident that when the lateral pressure is 0, the distribution of
wing cracks at the crack tip is highly noticeable, with the upper and lower crack extensions
symmetrically distributed. However, as the lateral pressure increases to 0.5, the crack
extensions become smoother and the development of wing cracks slows down. Therefore,
in practical engineering, increasing the lateral pressure coefficient can effectively inhibit the
formation of tension cracks and help improve the load-bearing capacity of ice–rock.

4.2. Influence of Modulus of Elasticity
4.2.1. Stress Field

The change in Young’s modulus directly affects the magnitude of the stress at the
ice–rock interface. From Equation (17), it can be seen that the stress at the interface increases
with an increase in the modulus of the ice. To further investigate the influence of the
modulus of elasticity on the stress at each position, the model used for the study has a
lateral pressure coefficient of 1 and elastic moduli of ice and rock of 0.5 and 2, respectively.
The stress field distribution obtained from this model is shown in Figure 10.
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It can be seen from the figure that the patterns of change in radial and circumferential
stresses are always opposite, regardless of the elastic modulus ratio. When the Young’s
modulus of the ice is lower than that of the rock, the radial stress near the edge of the hole
is lower than that in the interior of the rock. Inside the rock, the radial stress is always
lower than the circumferential stress. When the modulus of elasticity of ice is higher than
that of rock, the original law of change is exactly the opposite. This shows that the increase
in the modulus of elasticity of the ice contributes to stability at the orifice.

4.2.2. Stress Intensity Factors

A crack with an inclination angle of 30◦ and a position angle of 0◦ was chosen as the
subject of study to analyze the stress intensity factor at the crack tip. The study examined a
range of ice to rock elastic modulus ratios from 0.2 to 3, and the resulting variation curves
of the stress intensity factor are shown in Figure 11.
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The stress intensity factor at the crack tip follows a pattern of an intial decrease before
a subsequent increase. When the modulus of the elasticity of ice is equal to the modulus of
the elasticity of rock, the stress intensity factor at the crack tip reaches its minimum value.
At the same time, when the modulus of the elasticity of ice is smaller than that of rock, the
fluctuation in the stress intensity factor at the crack tip becomes more pronounced due to
the influence of the stress concentration phenomenon at the edge of the hole in the rock.
When the modulus of the elasticity of ice is higher than that of rock, the fluctuation in the
stress intensity factor at the crack tip is relatively moderate. This suggests that controlling
the modulus of the elasticity of ice similarly to that of rock can effectively improve the
bearing capacity of rock within a controllable range. If the modulus of the elasticity of both
materials is not same, the harder ice will increase the load-bearing capacity of the rock.

4.3. Influence of Crack Orientation Angle

Taking the crack half-length of a = 5 mm and the crack inclination angle of 30◦ as
an example, the stress intensity factor at the crack tip was analyzed in the range of crack
position angles from 0◦ to 90◦, and the stress intensity factor curves were obtained, as
shown in Figure 12.

With the change in crack location, the stress intensity factor at the crack tip follows a
pattern of an intial increase, then a decrease, and then another increase. Here, the fluctuation
in the stress intensity factor is stronger at the left end of the crack than at the right end of
the crack. At most positional intervals, the stress intensity factor at the left end of the crack
is higher than that at the right end of the crack. This suggests that in icebergs with a higher
modulus of elasticity, cracks near the ice are more likely to expand. At the same time, the
location of the cracks is critical for crack extension. The stress intensity factor of cracks
at approximately 50◦ shows a lower overall level, which contributes to the load-bearing
capacity of the ice–rock.
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The crack extension pattern obtained for a crack inclination angle of 0◦ is shown in
Figure 13.
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When the orientation angle of the horizontal crack is 0◦, the crack expands in the
direction of the crack surface. However, when the crack orientation angle is not 0◦, obvious
wing cracks appear on both sides of the crack. It is noteworthy that the cracks on both sides
of the fissure, which has an orientation angle of 90◦, expand upwards. The cracks with
different position angles expand in opposite directions, indicating a pattern of downward
expansion on the left side and upward expansion on the right side.

4.4. Influence of Crack Inclination

Taking the orientation angle of 0◦ as an example, the stress intensity factor at the crack
tip was analyzed for crack inclination ranging from 0◦ to 90◦, and the stress intensity factor
was obtained, as shown in Figure 14.

In the mean value model, the stress intensity factor is symmetrically distributed with
a symmetry axis of 45◦. In contrast, in the ice–rock model, the stress intensity factor at the
crack tip lacks symmetry. Meanwhile, the stress intensity factor at the left end of the crack
is significantly higher than that at the right end. This indicates that the crack expansion
rate will be higher at the left end compared to the right end.

The crack propagation patterns for crack inclination angles of 30◦, 45◦, 60◦, and 90◦,
with a crack position angle of 0◦, are shown in Figure 15.
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Figure 15. Crack extension patterns at different crack inclinations: (a) β = 30◦, (b) β = 45◦, (c) β = 60◦,
and (d) β = 90◦.

When the crack position angle is 0◦, the crack always extends horizontally. However,
the difference is that when the crack inclination angle is 90◦, the new cracks at both ends
of the crack always expand horizontally away from the ice. Furthermore, for cracks at
different angles, the left end of the crack will expand horizontally towards the ice, and the
right end of the crack will expand horizontally away from the ice.

5. Conclusions

1. A non-uniform ice–rock structure model in a circular shape was proposed. The
method for calculating stress components in this model was provided, and the accuracy
of this method was verified using the CAE method. It is capable of calculating the stress
components of ice–rock under biaxial loading.

2. The calculation method for determining the stress intensity factor of a single crack
under biaxial compressive loading conditions was derived, and the accuracy of this method
was verified using the CAE method. It is capable of calculating the stress intensity factor at
the crack tip under biaxial compressive loading.

3. The stress distribution law of the ice–rock model was analyzed under different
lateral pressure coefficients and elastic moduli of ice. Higher lateral pressure coefficients
and a higher modulus of elasticity of ice can effectively improve the stress concentration
phenomenon in rocks and reduce the level of shear stress.

4. This study analyzed the changing law of the stress intensity factor and the new law
of crack propagation in a single crack under different lateral pressure coefficients, elastic
modulus ratios, and crack distributions in the ice–rock model. Higher lateral pressure
coefficients and a higher modulus of the elasticity of the ice can effectively inhibit the
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propagation of wing cracks. Meanwhile, the fluctuation in the stress intensity factor at the
left end of the crack is greater than that at the right end of the crack. In practical engineering,
it is necessary to consider both the location of cracks and the characteristics of their dip in
order to comprehensively assess the load-bearing capacity of ice–rock.
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