Enhanced Soft Error Rate Estimation Technique for Aerospace Electronics Safety Design via Emulation Fault Injection
Abstract
:1. Introduction
2. Background
2.1. Radiation Effect
2.2. Single-Event Upsets on SRAM-Based FPGAs
2.3. Fault Injection Methods for SEU Analysis
2.4. Emulation-Based Fault Injection
3. Advanced Techniques in Fault Injection and Error Rate Estimation
3.1. Fault Injection Method
3.1.1. Soft Error Mitigation IP
Step 1: Initialization State
- This is the initial state for activating SEM IP. This step checks whether the configuration memory is accessible and whether SEM IP is operating normally.
- If it can operate normally, it automatically enters the observation state.
- When the ICAP_GRANT signal is applied, it enters the initialization state.
- Upon entering the relevant state, the “status_initialization” signal among the output signals of SEM IP is set to high (the remaining signals are low) to indicate the current state.
Step 2: Observation State
- This state monitors the configuration memory for faults.
- It automatically enters the initialization state and can transition to the IDLE state using a specific command (the “I” command).
- Upon entering the relevant state, the “status_observation” signal among the output signals of SEM IP is set to high (the remaining signals are low) to indicate the current state.
Step 3: IDLE State
- The user waits for a command to be input to request a specific task from SEM IP.
- The users can perform the following tasks using specific external commands (R, N, O, etc.):
- (1)
- R command: Switch to SEM IP initialization state.
- (2)
- N command: Access the desired configuration memory bit with a combination of ‘N’ and 10 hexadecimal numbers and inject a bit flip-flop fault (refer to Section 3.1.2).
- (3)
- O command: Switch to SEM IP observation state.
- Upon entering the corresponding state, all output signals of SEM IP go to low to indicate the current state.
Step 4: Injection State
- This is a state in which the fault injection location (configuration memory address) commanded by the user is identified, and a flip-flop is triggered for the bit at the identified location.
- Once the fault injection is completed, it automatically transitions to the IDLE state and waits to receive the next command.
- Upon entering the relevant state, the “status_injection” signal among the output signals of SEM IP goes high (the remaining signals are low) to indicate the current state.
- This is a state in which the bit errors in the configuration memory are periodically monitored, and when a single bit error occurs, error correction and error classification are performed for the error.
- It automatically transitions to the correction state from the observation state.
- Upon entering the relevant state, the output signal of SEM IP is set according to fault identification and classification, as follows:
- (1)
- Fault observation: The “status_observation” signal is set to high (the remaining signals are low).
- (2)
- Fault detection: The “status_correction” signal is set to high (the remaining signals are low).
- (3)
- Fault classification: The “status_classification” signal is set to high (the remaining signals are low).
3.1.2. Fault Injection Control
3.1.3. Statistical Fault Injection Test
- n = total number of tests, N = Fault Injection Space,
- e = error margin (1%), t = confidence level factor (CI 95% = 1.96),
- p = statistical parameter (worst − case value = 0.5).
3.2. Automatic Configuration Memory Fault Injection Tool
3.2.1. Architecture
3.2.2. Function
- (1)
- Test Scenario Setting
- SLICE Region: Allows the user to define the area for fault injection (based on the SLICE region of the configuration memory). It calculates the total number of bits within the specified fault injection range and presents the result to the user.
- Confidence Interval: Enables the selection of the number of test repetitions for statistical fault injection testing.
- Number of Tests: Displays the final number of tests based on the fault injection range and chosen confidence interval.
- Test Scenario: Automatically generates fault injection commands in accordance with the number of tests.
- (2)
- Automatic Testing
- Target Board Communication Connection: Offers a COM port connection feature for connecting to the target board.
- Message: A window to verify the status of the target board and whether reception was successful.
- Send Message: Provides a function for inputting single fault injection commands.
- Test Start/Finish Time: Indicates the start and end times for the statistical fault injection test.
- Test Start: Conducts the fault injection test and presents the results based on a predefined test scenario.
- (3)
- Test Result Analysis
- SEU Setting: Configuration of single-event upset (SEU) parameters obtained from the literature research.
- AVF Result: Presentation of AVF results based on the automatic fault injection test outcomes.
- CM Size: Display of memory bit size corresponding to the fault injection test range.
- Test Result: Reports the final system SER and provides reliability and failure probability based on .
3.2.3. Statistical Fault Injection Testing Process Using ACMFI
Step 1-1: Set Up Fault Space
Step 1-2: Decide Number of Tests
Step 1-3: Create Test List
Step 2-1: Connect Target Board
Step 2-2: Start Fault Injection Test
Step 2-3: Generate Test Result Report
Step 3: Test Results Analysis (Select SEU Parameter and Reliability Analysis)
3.3. Soft Error Rate Estimation
4. Test Result
4.1. Test Environment
4.2. Test Vector: Open-Source-Based ATPG System
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatterjee, I.; Narasimham, B.; Mahatme, N.N.; Bhuva, B.L.; Reed, R.A.; Schrimpf, R.D.; Wang, J.K.; Vedula, N.; Bartz, B.; Monzel, C. Impact of Technology Scaling on SRAM Soft Error Rates. IEEE Trans. Nucl. Sci. 2014, 61, 3512–3518. [Google Scholar] [CrossRef]
- Dodd, P.; Shaneyfelt, M.; Felix, J.; Schwank, J. Production and Propagation of Single-Event Transients in High-Speed Digital Logic ICs. IEEE Trans. Nucl. Sci. 2004, 51, 3278–3284. [Google Scholar] [CrossRef]
- Kastensmidt, F.; Rech, P. Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs. In FPGAs and Parallel Architectures for Aerospace Applications: Soft Errors and Fault-Tolerant Design; Springer: Cham, Switzerland, 2016; pp. 3–17. [Google Scholar]
- JESD89A; Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices. JEDEC: Arlington County, VA, USA, 2006.
- Rodriguez, J.; Baldomero, A.; Montilla, V.; Mujal, J. LLFI: Lateral Laser Fault Injection Attack. In Proceedings of the 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Atlanta, GA, USA, 25 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 41–47. [Google Scholar]
- Damkjar, S.E.; Mann, I.R.; Elliott, D.G. Proton Beam Testing of SEU Sensitivity of M430FR5989SRGCREP, EFM32GG11B820F2048, AT32UC3C0512C, and m2s010 Microcontrollers in Low-Earth Orbit. In Proceedings of the 2020 IEEE Radiation Effects Workshop (in Conjunction with 2020 NSREC), Santa Fe, NM, USA, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Vanat, T.; Pospiil, J.; Kriek, F.; Ferencei, J.; Kubatova, H. A System for Radiation Testing and Physical Fault Injection into the FPGAs and Other Electronics. In Proceedings of the 2015 Euromicro Conference on Digital System Design, Funchal, Portugal, 26–28 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 205–210. [Google Scholar]
- Hoflinger, K.; Muller, S.; Peng, T.; Ulmer, M.; Ludtke, D.; Gerndt, A. Dynamic Fault Tree Analysis for a Distributed Onboard Computer. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–13. [Google Scholar]
- Bodmann, P.R.; Papadimitriou, G.; Junior, R.L.R.; Gizopoulos, D.; Rech, P. Soft Error Effects on ARM Microprocessors: Early Estimations Versus Chip Measurements. IEEE Trans. Comput. 2021, 71, 2358–2369. [Google Scholar] [CrossRef]
- Keshk, M.E.; Asami, K. Fault Injection in Dynamic Partial Reconfiguration Design Based on Essential Bits. J. Aeronaut. Space Technol. 2018, 11, 25–34. [Google Scholar]
- Abad Garcia, C. Error Injection Study for a SpaceFibre In-Orbit Demonstrator. Master’s Thesis, KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, Stockholm, Sweden, 2020. [Google Scholar]
- Harward, N.A.; Gardiner, M.R.; Hsiao, L.W.; Wirthlin, M.J. Estimating Soft Processor Soft Error Sensitivity Through Fault Injection. In Proceedings of the IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Vancouver, BC, Canada, 2–6 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 143–150. [Google Scholar]
- Aranda, L.A.; Sánchez-Macián, A.; Maestro, J.A. ACME: A Tool to Improve Configuration Memory Fault Injection in SRAM-Based FPGAs. IEEE Access 2019, 7, 128153–128161. [Google Scholar] [CrossRef]
- Mao, C.A.; Xie, Y.; Wei, X.; Xie, Y.Z.; Chen, H. FPGA-Based Fault Injection Design for 16K-Point FFT Processor. J. Eng. 2019, 2019, 7994–7997. [Google Scholar] [CrossRef]
- Lee, H.K.; Ha, D.S. On the Generation of Test Patterns for Combinational Circuits; Technical Report; Virginia Polytechnic Institute and State University, Department of Electrical Engineering: Blacksburg, VA, USA, 1993. [Google Scholar]
- Madeira, H.; Rela, M.; Moreira, F.; Silva, J.G. RIFLE: A General Purpose Pin-Level Fault Injector. In Proceedings of the 1st European Dependable Computing Conference (EDCC-1), Berlin, Germany, 4–6 October 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 199–216. [Google Scholar]
- Choi, G.S.; Iyer, R.K. FOCUS: An Experimental Environment for Fault Sensitivity Analysis. IEEE Trans. Comput. 1992, 41, 1515–1526. [Google Scholar] [CrossRef]
- Martínez, R.J.; Gil, P.J.; Martín, G.; Pérez, C.; Serrano, J.J. Experimental Validation of High-Speed Fault-Tolerant Systems Using Physical Fault Injection. In Proceedings of the Dependable Computing for Critical Applications 7 (DCCA-7), San Jose, CA, USA, 6–8 January 1999; Volume 12, pp. 249–265. [Google Scholar]
- Dawson, S.; Jahanian, F.; Mitton, T. ORCHESTRA: A Probing and Fault Injection Environment for Testing Protocol Imple-mentations. In Proceedings of the IEEE International Computer Performance and Dependability Symposium, Urba-na-Champaign, IL, USA, 4–6 September 1996; p. 56. [Google Scholar]
- Stott, D.T.; Kalbarczyk, Z.; Iyer, R.K. Using NFTAPE for Rapid Development of Automated Fault Injection Experiments; Research Report; Center for Reliable and High-Performance Computing, University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1999. [Google Scholar]
- Carreira, J.; Madeira, H.; Silva, J. Xception: A Technique for the Experimental Evaluation of Dependability in Modern Computers. IEEE Trans. Softw. Eng. 1998, 24, 125–136. [Google Scholar] [CrossRef]
- Ruano, O.; Maestro, J.A.; Reyes, P.; Reviriego, P. A Simulation Platform for the Study of Soft Errors on Signal Processing Circuits through Software Fault Injection. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 3316–3321. [Google Scholar]
- Sieh, V.; Tschache, O.; Balbach, F. VERIFY: Evaluation of Reliability Using VHDL-Models with Embedded Fault Descriptions. In Proceedings of the IEEE 27th International Symposium on Fault-Tolerant Computing, Seattle, WA, USA, 24–27 June 1997; pp. 32–36. [Google Scholar]
- Na, J.; Lee, D. Simulated Fault Injection Using Simulator Modification Technique. ETRI J. 2011, 33, 50–59. [Google Scholar] [CrossRef]
- Na, J.; Lee, D. Acceleration of Simulated Fault Injection Using a Checkpoint Forwarding Technique. ETRI J. 2017, 39, 605–613. [Google Scholar] [CrossRef]
- Warren, K.M.; Sternberg, A.L.; Weller, R.A.; Baze, M.P.; Massengill, L.W.; Reed, R.A.; Mendenhall, M.H.; Schrimpf, R.D. Integrating Circuit Level Simulation and Monte-Carlo Radiation Transport Code for Single Event Upset Analysis in SEU Hardened Circuitry. IEEE Trans. Nucl. Sci. 2008, 55, 2886–2894. [Google Scholar] [CrossRef]
- Ibe, E.; Yahagi, Y.; Yamaguchi, H. Monte-Carlo Simulation for the Effects of Composite Materials on Single Event Effects of Sub-100 nm Semiconductor Devices. In Proceedings of the 2004 Symposium on Nuclear Data, Ibaraki, Japan, 11–12 November 2005; pp. 100–105. [Google Scholar]
- Murley, P.C.; Srinivasan, G.R. Soft-error Monte Carlo Modeling Program, SEMM. IBM J. Res. Dev. 1996, 40, 109–118. [Google Scholar] [CrossRef]
- Tosaka, Y.; Satoh, S.; Oka, H. An Accurate and Comprehensive Soft Error Simulator NISES II. In Simulation of Semiconductor Processes and Devices 2004; Springer: Vienna, Austria, 2004; pp. 219–222. [Google Scholar]
- Xilinx. SEM IP Core. Available online: https://docs.xilinx.com/r/en-US/pg036_sem (accessed on 27 December 2023).
- Benevenuti, F.; Kastensmidt, F.L. Comparing Exhaustive and Random Fault Injection Methods for Configuration Memory on SRAM-Based FPGAs. In Proceedings of the 2019 IEEE Latin American Test Symposium (LATS), Santiago, Chile, 24–27 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Xilinx UG116. Device Reliability Report. 2018. Available online: https://docs.xilinx.com/r/en-US/ug116 (accessed on 12 December 2023).
- Fabero, J.C.; Korkian, G.; Franco, F.J.; Mecha, H.; Letiche, M.; Clemente, J.A. Thermal Neutron-Induced SEUs on a COTS 28-nm SRAM-Based FPGA under Different Incident Angles. In Proceedings of the 2021 IEEE 22nd Latin American Test Symposium (LATS), Quito, Ecuador, 12–15 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Tambara, L.A.; Rech, P.; Chielle, E.; Tonfat, J.; Kastensmidt, F.L. Analyzing the Impact of Radiation-Induced Failures in Programmable SoCs. IEEE Trans. Nucl. Sci. 2016, 63, 2217–2224. [Google Scholar] [CrossRef]
- Agiakatsikas, D.; Foutris, N.; Sari, A.; Vlagkoulis, V.; Souvatzoglou, I.; Psarakis, M.; Ye, R.; Goodacre, J.; Luján, M.; Kastriotou, M.; et al. Single Event Effects Assessment of UltraScale+ MPSoC Systems Under Atmospheric Radiation. IEEE Trans. Reliab. 2023, 1–13. [Google Scholar] [CrossRef]
- Tambara, L.A. Analyzing the Impact of Radiation-Induced Failures in All Programmable System-on-Chip Devices. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2017. [Google Scholar]
- Pérez-Celis, A.; Wirthlin, M.J. Statistical Method to Extract Radiation-Induced Multiple-Cell Upsets in SRAM-Based FPGAs. IEEE Trans. Nucl. Sci. 2019, 67, 50–56. [Google Scholar] [CrossRef]
- Tambara, L.A.; Tonfat, J.; Santos, A.; Kastensmidt, F.L.; Medina, N.H.; Added, N.; Aguiar, V.A.P.; Aguirre, F.; Silveira, M.A.G. Analyzing Reliability and Performance Trade-Offs of HLS-Based Designs in SRAM-Based FPGAs under Soft Errors. IEEE Trans. Nucl. Sci. 2017, 64, 874–881. [Google Scholar] [CrossRef]
- Velazco, R.; Foucard, G.; Peronnard, P. Combining Results of Accelerated Radiation Tests and Fault Injections to Predict the Error Rate of an Application Implemented in SRAM-Based FPGAs. IEEE Trans. Nucl. Sci. 2010, 57, 3500–3505. [Google Scholar] [CrossRef]
- Wolf, C.; Glaser, J.; Kepler, J. Yosys-A Free Verilog Synthesis Suite. In Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), Linz, Austria, 10 October 2013; p. 97. [Google Scholar]
- YosysHQ. Yosys Open SYnthesis Suite. Available online: https://github.com/YosysHQ/yosys (accessed on 12 December 2023).
- Lins, F.M.; Tambara, L.A.; Kastensmidt, F.L.; Rech, P. Register File Criticality and Compiler Optimization Effects on Embedded Microprocessor Reliability. IEEE Trans. Nucl. Sci. 2017, 64, 2179–2187. [Google Scholar] [CrossRef]
- Lins, F.M.; Tambara, L.; Kastensmidt, F.L.; Rech, P. Register File Criticality on Embedded Microprocessor Reliability. In Proceedings of the 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, 19–23 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Tambara, L.A.; Kastensmidt, F.L.; Rech, P.; Lins, F.; Medina, N.H.; Added, N.; Aguiar, V.A.P.; Silveira, M.A.G. Reliability–Performance Analysis of Hardware and Software Co-Designs in SRAM-Based APSoCs. IEEE Trans. Nucl. Sci. 2018, 65, 1935–1942. [Google Scholar] [CrossRef]
- Lindoso, A.; Entrena, L.; Garcia-Valderas, M.; Parra, L. A Hybrid Fault-Tolerant LEON3 Soft Core Processor Implemented in Low-End SRAM FPGA. IEEE Trans. Nucl. Sci. 2016, 64, 374–381. [Google Scholar] [CrossRef]
- Lopes, I.C.; Benevenuti, F.; Kastensmidt, F.L.; Susin, A.A.; Rech, P. Reliability Analysis on Case-Study Traffic Sign Convolutional Neural Network on APSoC. In Proceedings of the 2018 IEEE 19th Latin-American Test Symposium (LATS), São Paulo, Brazil, 12–15 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
Method | Description | Cost | Testing Time | Accessibility | Reproducibility | Realistic |
---|---|---|---|---|---|---|
Hardware | Injects faults via pin connection or neutron ion radiation | High | Fast | Low | Low | High |
Software | Introduces faults through code or trigger mechanisms | Low | Slow | High | High | Low |
Simulation | Injects faults in design simulation via sabotage, ‘force,’ or kernel access | Low | Slow | High | High | Low |
Emulation | Induces soft-error-like phenomena in circuits synthesized on the target board | Medium | Fast | Medium | High | High |
Tag | Host PC | Embedded Board |
---|---|---|
CPU | Intel Core I7-9750H | ARM Cortex-A9 (Mouser Electronics, Mansfield, TX, USA) |
FPGA | - | XC7Z020-1CLG400C (Xilinx, Taiwan) |
Memory | 32 GB | 1 GB |
OS | Window 11 | Embedded Linux |
External Port | USB 3.0 | Micro-USB |
Type | Information | AES128 | DES | SHA | RSA |
---|---|---|---|---|---|
Resource | FF | 4802 | 0 | 6244 | 2926 |
LUT | 2926 | 1102 | 6488 | 7143 | |
BRAM | 99.5 | 0 | 1.5 | 1.5 | |
Test Setting | Test Vector | 3092 | 87 | 1000 | 52 |
X_L | 26 | 36 | 24 | 52 | |
Y_L | 100 | 108 | 44 | 50 | |
X_H | 66 | 49 | 46 | 92 | |
Y_H | 124 | 128 | 72 | 75 | |
Number of CM bits | 65,600 | 18,816 | 69,536 | 42,688 | |
CI | 95% | 95% | 95% | 95% | |
Test Results | Total Test | 8378 | 6359 | 8439 | 7840 |
Normal | 7784 | 6300 | 7420 | 6962 | |
Failure | 543 | 59 | 1010 | 878 | |
AVF | 6.52% | 0.93% | 11.98% | 11.20% | |
SER Estimation | Atmospheric Neutron 1 | 2.23 | 0.32 | 4.10 | 3.84 |
Thermal Neutron 1 | 4.67 | 0.67 | 8.59 | 8.03 | |
Alpha Particle 1 | 15.98 | 2.27 | 29.35 | 27.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Nam, T.; Park, D.; Kim, Y.; Na, J. Enhanced Soft Error Rate Estimation Technique for Aerospace Electronics Safety Design via Emulation Fault Injection. Appl. Sci. 2024, 14, 1470. https://doi.org/10.3390/app14041470
Lee D, Nam T, Park D, Kim Y, Na J. Enhanced Soft Error Rate Estimation Technique for Aerospace Electronics Safety Design via Emulation Fault Injection. Applied Sciences. 2024; 14(4):1470. https://doi.org/10.3390/app14041470
Chicago/Turabian StyleLee, Dongmin, Taehyeong Nam, Daeseon Park, Yeju Kim, and Jongwhoa Na. 2024. "Enhanced Soft Error Rate Estimation Technique for Aerospace Electronics Safety Design via Emulation Fault Injection" Applied Sciences 14, no. 4: 1470. https://doi.org/10.3390/app14041470
APA StyleLee, D., Nam, T., Park, D., Kim, Y., & Na, J. (2024). Enhanced Soft Error Rate Estimation Technique for Aerospace Electronics Safety Design via Emulation Fault Injection. Applied Sciences, 14(4), 1470. https://doi.org/10.3390/app14041470