The Effect of the Chemical Composition on Mechanical Properties of CMAS Diopside Glass Ceramics
Abstract
:1. Introduction
2. Sample Preparation and Simulation Method
- (a)
- To create the glass structure, a slab simulation box with dimensions near 20 nm × 20 nm × 2 nm was set, and then the Ca, Mg, Si and O ions were placed in the simulation box, following the diopside crystal structure, as shown in Figure 1b. The diopside cell structure belongs to the space symmetry group of C12/C1 (as shown in Figure 1a) and the lattice paraments were calculated based on the ab initio calculation, so the structure was optimized to find the ground state before MD simulation [29]. The diopside structure is also stable in the MD simulation with the CMAS94 potential. The system first minimized the energy using the conjugated gradient method, and then heated up to about 3000 K for 2 ns in NVT (canonical ensemble) [30]. A temperature of 3000 K is sufficient to melt the diopside crystal into an amorphous form. As shown in Figure 1c, as the temperature raised to about 2500 K, the average displacement vector magnitude for ions increased significantly, which means that the diopside crystal converted to amorphous melting. Finally, we cooled down the melt to 300 K over a period of 8 ns in NPT (Nose/Hoover isobaric–isothermal ensemble) with zero pressure in all three dimensions.
- (b)
- To create the diopside GCs, we first created the CMS diopside crystal structure and then the structure was subsequently cut into ellipsoids with a radius of 4 nm. Then, we created an ellipsoid void with the same shape in the glass by deleting ions and refilled with the pre-made diopside crystal, so the diopside GCs structure was created. The total ion number in CGs samples is the same as the glass sample, to make the comparison reasonable. Finally, to relax the interface between the glass and the inserted ellipsoid crystals, the assembled samples were heated up to 1000 K and relaxed for 2 ns in the NPT ensemble with zero pressure and then cooled down to 300 K to relax for another 2 ns.
- (c)
- To create different CMAS diopside GCs samples, we adjusted the atom type in the glass phase and relaxed the system for 2 ns at 1000 K and 300 K. The total ion number for the samples in the simulation box was about 100,000. In this study, we investigated the effect of Mg, Ca and Al ion ratios, so the O and Si ion ratios would not change.
3. Results and Discussion
3.1. Effect of the Nanocrystal
3.2. Effect of the Ca/Mg Ratio in Glass Composition
3.3. Effect of the Al in Glass Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hland, W.; Beall, G. Applications of Glass-Ceramics. Glass-Ceram. Technol. 2012. [Google Scholar] [CrossRef]
- Deubener, J.; Allix, M.; Davis, M.J.; Duran, A.; H?Che, T.; Honma, T.; Komatsu, T.; Krüger, S.; Mitra, I.; Müller, R. Updated definition of glass-ceramics. J. Non-Cryst. Solids 2018, 501, 3–10. [Google Scholar] [CrossRef]
- Mastelaro, V.R.; Bayer, P.S.; Zanotto, E.D. Crystallization mechanism and kinetics of a Fe-diopside (25CaO 25MgO·50SiO2) glass–ceramic. J. Mater. Sci. 2019, 54, 9313–9320. [Google Scholar] [CrossRef]
- Zanotto, E.D. A Bright Future for Glass-Ceramic. Am. Ceram. Soc. Bull. 2010, 89, 19–27. [Google Scholar]
- Gong, W.; Luo, Z.; Liu, Y. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites. Int. J. Mater. Res. 2022, 113, 520–528. [Google Scholar] [CrossRef]
- Ye, F.; Liu, L.; Wang, Y.; Zhou, Y.; Peng, B.; Meng, Q. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass–ceramic composites. Scr. Mater. 2006, 55, 911–914. [Google Scholar] [CrossRef]
- Ritzberger, C.; Apel, E.; Höland, W.; Peschke, A.; Rheinberger, V.M. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies. Materials 2010, 3, 3700–3713. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, X.; Zhao, G.; Zhong, B.; Zhang, X.; Wen, G. Microstructure and mechanical properties of zirconia-toughened lithium disilicate glass–ceramic composites. Mater. Chem. Phys. 2014, 143, 845–852. [Google Scholar] [CrossRef]
- Song, G.W.Z. Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics. Acta Mater. 2007, 55, 3583–3591. [Google Scholar]
- Hooshmand, T.; Parvizi, S.; Keshvad, A. Effect of Surface Acid Etching on the Biaxial Flexural Strength of Two Hot-Pressed Glass Ceramics. J. Prosthodont. 2008, 17, 415–419. [Google Scholar] [CrossRef]
- Li, D.; Guo, J.W.; Wang, X.S.; Zhang, S.F.; He, L. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic—ScienceDirect. Mater. Sci. Eng. A 2016, 669, 332–339. [Google Scholar] [CrossRef]
- Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. Glass-ceramics: Their production from wastes—A Review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef]
- Barbieri, L.; Lancellotti, I.; Manfredini, T.; Pellacani, G.C.; Rincón, J.M.; Romero, M. Nucleation and Crystallization of New Glasses from Fly Ash Originating from Thermal Power Plants. J. Am. Ceram. Soc. 2001, 84, 1851–1858. [Google Scholar] [CrossRef]
- Spotorno, R.; Ostrowska, M.; Delsante, S.; Dahlmann, U.; Piccardo, P. Characterization of Glass-Ceramic Sealant for Solid Oxide Fuel Cells at Operating Conditions by Electrochemical Impedance Spectroscopy. Materials 2020, 13, 4702. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liao, X.; Huang, Z.; You, P.; Yin, G. Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 194–202. [Google Scholar] [CrossRef]
- Zhang, M.; Pu, X.; Chen, X.; Yin, G. In-vivo performance of plasma-sprayed CaO–MgO–SiO2-based bioactive glass-ceramic coating on Ti–6Al–4V alloy for bone regeneration. Heliyon 2019, 5, e02824. [Google Scholar] [CrossRef]
- Feng, K.C.; Wu, Y.J.; Wang, C.Y.; Tu, C.S.; Chen, P.Y. Enhanced mechanical and biological performances of CaO-MgO-SiO2 glass-ceramics via the modulation of glass and ceramic phases. Mater. Sci. Eng. C 2021, 124, 112060. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Jensen, M.; Yue, Y.Z. Theoretical Calculation and Measurement of the Hardness of Diopside. J. Am. Ceram. Soc. 2010, 91, 514–518. [Google Scholar] [CrossRef]
- Saravanan, C.; Sasikumar, S. Bioactive Diopside (CaMgSi2O6) as a Drug Delivery Carrier—A Review. Curr. Drug Deliv. 2012, 9, 583–587. [Google Scholar] [CrossRef]
- Karpukhina, N.; Hill, R.G.; Law, R.V. Crystallisation in oxide glasses—A tutorial review. Chem. Soc. Rev. 2014, 43, 2174–2186. [Google Scholar] [CrossRef]
- Gong, W.; Luo, Z.; Shen, Y. Sintering behavior, microstructure and dielectric performance of Al2O3ceramic with addition of new Bi2O3B2O3SiO2ZnO glass. J. Mater. Res. 2023, 38, 2169–2178. [Google Scholar] [CrossRef]
- Sayed, M.; Mahmoud, E.M.; Bondioli, F.; Naga, S.M. Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process. Ceram. Int. 2019, 45, 9025–9031. [Google Scholar] [CrossRef]
- Tulyaganov, D.U.; Dimitriadis, K.; Agathopoulos, S.; Fernandes, H.R. Glasses and glass-ceramics in the CaO–MgO–SiO2 system: Diopside containing compositions-A brief review. J. Non-Cryst. Solids 2023, 612, 122351. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, C. Fracture resistance of Cu/Nb metallic nanolayered composite. J. Mater. Res. 2019, 34, 1533–1541. [Google Scholar] [CrossRef]
- Deng, B.; Luo, J.; Harris, J.T.; Smith, C.M.; McKenzie, M.E. Toughening of Li2O-2SiO2 glass-ceramics induced by intriguing deformation behavior of lithium disilicate nanocrystal. J. Am. Ceram. Soc. 2020, 103, 965–972. [Google Scholar] [CrossRef]
- Deng, B.; Luo, J.; Harris, J.T.; Smith, C.M.; Wilkinson, T.M. Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li2O-2SiO2 glass-ceramics. Acta Mater. 2021, 208, 116715. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Moschovas, D.; Tulyaganov, D.U.; Agathopoulos, S. Development of novel bioactive glass-ceramics in the Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 system. J. Non-Cryst. Solids 2020, 533, 119936. [Google Scholar] [CrossRef]
- Matsui, M. Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2. Phys. Chem. Miner. 1996, 23, 345–353. [Google Scholar] [CrossRef]
- Walker, A.M.; Tyer, R.P.; Bruin, R.P.; Dove, M.T. The compressibility and high pressure structure of diopside from first principles simulation. Phys. Chem. Miner. 2008, 35, 359–366. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Zanotto, E.D.; Serbena, F.C.; Hench, L.L. Compositional and microstructural design of highly bioactive 3 P2O5–Na2O–CaO–SiO2 glass ceramics. Acta Biomater. 2012, 8, 321–332. [Google Scholar]
- Mahdy, E.A.; Khattari, Z.; Salem, W.M.; Ibrahim, S. Study the structural, physical, and optical properties of CaO–MgO–SiO2–CaF2 bioactive glasses with Na2O and P2O5 dopants. Mater. Chem. Phys. 2022, 286, 126231. [Google Scholar] [CrossRef]
- Cormier, L.; Cuello, G. Structural investigation of glasses along the MgSiO3–CaSiO3 join: Diffraction studies. Geochim. Et Cosmochim. Acta 2013, 122, 498–510. [Google Scholar] [CrossRef]
- Logrado, M.; Eckert, H.; Murata, T.; Nakane, S.; Yamazaki, H. Structure-property relations in crack-resistant alkaline-earth aluminoborosilicate glasses studied by solid state NMR. J. Am. Ceram. Soc. 2021, 104, 2250–2267. [Google Scholar] [CrossRef]
- Deng, B.; Shi, Y.; Zhou, Q.; Bauchy, M. Revealing the structural role of MgO in aluminosilicate glasses. Acta Mater. 2022, 222, 117417. [Google Scholar] [CrossRef]
- Tantardini, C.; Zakaryan, H.A.; Han, Z.-K.; Levchenko, S.V.; Kvashnin, A.G. Hardness Descriptor Derived from Symbolic Regression. arXiv 2023, arXiv:2304.12880. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Shen, Y.; Li, B.; Liu, G.; Qiang, N.; Gong, W. The Effect of the Chemical Composition on Mechanical Properties of CMAS Diopside Glass Ceramics. Appl. Sci. 2024, 14, 1503. https://doi.org/10.3390/app14041503
Huang S, Shen Y, Li B, Liu G, Qiang N, Gong W. The Effect of the Chemical Composition on Mechanical Properties of CMAS Diopside Glass Ceramics. Applied Sciences. 2024; 14(4):1503. https://doi.org/10.3390/app14041503
Chicago/Turabian StyleHuang, Sixie, Youqu Shen, Bin Li, Guocong Liu, Na Qiang, and Weiping Gong. 2024. "The Effect of the Chemical Composition on Mechanical Properties of CMAS Diopside Glass Ceramics" Applied Sciences 14, no. 4: 1503. https://doi.org/10.3390/app14041503
APA StyleHuang, S., Shen, Y., Li, B., Liu, G., Qiang, N., & Gong, W. (2024). The Effect of the Chemical Composition on Mechanical Properties of CMAS Diopside Glass Ceramics. Applied Sciences, 14(4), 1503. https://doi.org/10.3390/app14041503