Dento-Alveolar Changes after Maxillary Hybrid Expansion and Multi-Bracket Therapy: A Comparative Study at Three Different (Vertebral) Maturation Stages
Abstract
:1. Introduction
2. Materials and Methods
- Cusp: buccal cusp was considered. For the first molar, the point was placed on the mesio-vestibular cusp.
- Centroid: the center of the occlusal table.
- Lingual point: the most palatal point at the level of the tooth collar.
- The crowns of the dental elements were selected with the ‘Segmentation’ option.
- When the crowns were selected, the following commands were entered: ‘Segment crowns’ > ‘Separate crowns’ > ‘Complete separation’.
- Using the ‘Aligner’ option and selecting the ‘permanent teeth’ preference, the values were obtained by the ‘Tooth movement’ command (Figure 3).
- 4.
- The segmented STL models were opened in OnyxCeph (Image Instrument, Chemnitz, Germany).
- 5.
- Using the ‘Segmentation’ tool, the soft tissues and all the dental elements were removed from the model except for element 11 and element 26.
- 6.
- The file was uploaded to Paint (Microsoft, Redmond, WA, USA). The occlusal plane and the vertical straight line perpendicular to the horizontal plane were drawn.
- 7.
- The plans were checked with the options ‘Show’ > ‘Scale’ of Paint program (Microsoft, Redmond, WA, USA).
- 8.
- The FA point, according to Andrews, was positioned in the center of the crown.
- 9.
- The tangent was drawn at the center of the crown on the vestibular face.
- 10.
- The image was then added to an online program to calculate angles (https://www.ginifab.com/feeds/angle_measurement/online_protractor.it-it.php, accessed on 1 June 2022), where it was possible to measure the angle between the vertical line and the tangent to the center of the crown on the vestibular face.
Sample Size
3. Results
Statistical Analysis
4. Discussion
4.1. Treatment Effects at Different CVM Stages
4.2. Limits of the Study
5. Conclusions
- The tooth–bone-borne maxillary expander produced a significant clinical expansion with negligible dental compensation.
- Dental compensation and torque values after expansion and multi-bracket therapy were similar among the three maturation groups.
- The effects of maxillary expansion and multi-bracket therapy showed no differences in terms of transversal diameter changes and torque values among maturation groups.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McNamara, J.A. Maxillary transverse deficiency. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 567–570. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Moray, L.J. Prevalence of malocclusion and orthodontic treatment need in the United States: Estimates from the NHANES III survey. Int. J. Adult Orthod. Orthognath. Surg. 1998, 13, 97–106. [Google Scholar]
- Brunelle, J.A.; Bhat, M.; Lipton, J.A. Prevalence and distribution of selected occlusal characteristics in the US population, 1988–1991. J. Dent. Res. 1996, 75, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Bilgic, F.; Gelgor, I.E.; Celebi, A.A. Malocclusion prevalence and orthodontic treatment need in central Anatolian adolescents compared to European and other nations’ adolescents. Dent. Press J. Orthod. 2015, 20, 75–81. [Google Scholar] [CrossRef]
- Haas, A.J. Rapid Palatal Expansion: A Recommended Prerequisite to Class III Treatment; Transactions European Orthodontic Society: London, UK, 1973; pp. 311–318. [Google Scholar]
- Tollaro, I.; Baccetti, T.; Franchi, L.; Tanasescu, C.D. Role of posterior transverse interarch discrepancy in Class II, Division 1 malocclusion during the mixed dentition phase. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Ghoneima, A.; Abdel-Fattah, E.; Eraso, F.; Fardo, D.; Kula, K.; Hartsfield, J. Skeletal and dental changes after rapid maxillary expansion: A computed tomography study. Australas. Orthod. J. 2010, 26, 141–148. [Google Scholar] [CrossRef]
- Baccetti, T.; Franchi, L.; Cameron, C.G.; McNamara, J.A. Treatment timing for rapid maxillary expansion. Angle Orthod. 2001, 71, 343–350. [Google Scholar] [PubMed]
- Seif-Eldin, N.F.; Elkordy, S.A.; Fayed, M.S.; Elbeialy, A.R.; Eid, F.H. Transverse Skeletal Effects of Rapid Maxillary Expansion in Pre and Post Pubertal Subjects: A Systematic Review. Open Access Maced. J. Med. Sci. 2019, 7, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Lagravere, M.O.; Major, P.W.; Flores-Mir, C. Long-term skeletal changes with rapid maxillary expansion: A systematic review. Angle Orthod. 2005, 75, 1046–1052. [Google Scholar]
- Angelieri, F.; Cevidanes, L.H.; Franchi, L.; Gonçalves, J.R.; Benavides, E.; McNamara, J.A., Jr. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 759–769. [Google Scholar] [CrossRef]
- Lin, L.; Ahn, H.W.; Kim, S.J.; Moon, S.C.; Kim, S.H.; Nelson, G. Tooth-borne vs. bone-borne rapid maxillary expanders in late adolescence. Angle Orthod. 2015, 85, 253–262. [Google Scholar] [CrossRef]
- Mosleh, M.I.; Kaddah, M.A.; Abd Elsayed, F.A.; Elsayed, H.S. Comparison of transverse changes during maxillary expansion with 4-point bone-borne and tooth-borne maxillary expanders. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 599–607. [Google Scholar] [CrossRef]
- Choi, S.H.; Shi, K.K.; Cha, J.Y.; Park, Y.C.; Lee, K.J. Nonsurgical miniscrew-assisted rapid maxillary expansion results in acceptable stability in young adults. Angle Orthod. 2016, 86, 713–720. [Google Scholar] [CrossRef]
- Cantarella, D.; Dominguez-Mompell, R.; Mallya, S.M.; Moschik, C.; Pan, H.C.; Miller, J.; Moon, W. Changes in the midpalatal and pterygopalatine sutures induced by micro-implant-supported skeletal expander, analyzed with a novel 3D method based on CBCT imaging. Prog. Orthod. 2017, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, D.; Dominguez-Mompell, R.; Moschik, C.; Mallya, S.M.; Pan, H.C.; Alkahtani, M.R.; Elkenawy, I.; Moon, W. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 337–345. [Google Scholar] [CrossRef]
- Moon, H.W.; Kim, M.J.; Ahn, H.W.; Kim, S.J.; Kim, S.H.; Chung, K.R.; Nelson, G. Molar inclination and surrounding alveolar bone change relative to the design of bone-borne maxillary expanders: A CBCT study. Angle Orthod. 2020, 90, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, B.; Ludwig, B.; Vasudavan, S.; Nienkemper, M.; Drescher, D. The T-Zone: Median vs. Paramedian Insertion of Palatal Mini-Implants. J. Clin. Orthod. 2016, 50, 543–551. [Google Scholar]
- Migliorati, M.; Drago, S.; Schiavetti, I.; Olivero, F.; Barberis, F.; Lagazzo, A.; Capurro, M.; Silvestrini-Biavati, A.; Benedicenti, S. Orthodontic miniscrews: An experimental campaign on primary stability and bone properties. Eur. J. Orthod. 2015, 37, 531–538. [Google Scholar] [CrossRef]
- Ludwig, B.; Glasl, B.; Bowman, S.J.; Wilmes, B.; Kinzinger, G.S.M.; Lisson, J.A. Anatomical guidelines for miniscrew insertion: Palatal sites. J. Clin. Orthod. 2011, 45, 433–467. [Google Scholar] [PubMed]
- Karagkiolidou, A.; Ludwig, B.; Pazera, P.; Gkantidis, N.; Pandis, N.; Katsaros, C. Survival of palatal miniscrews used for orthodontic appliance anchorage: A retrospective cohort study. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 767–772. [Google Scholar] [CrossRef]
- Caprioglio, A.; Fastuca, R.; Zecca, P.A.; Beretta, M.; Mangano, C.; Piattelli, A.; Macchi, A.; Iezzi, G. Cellular midpalatal suture changes after rapid maxillary expansion in growing subjects: A case report. Int. J. Mol. Sci. 2017, 18, 615. [Google Scholar] [CrossRef]
- Akin, M.; Akgul, Y.E.; Ileri, Z.; Basciftci, F.A. Three-dimensional evaluation of hybrid expander appliances: A pilot study. Angle Orthod. 2016, 86, 81–86. [Google Scholar] [CrossRef]
- Melsen, B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am. J. Orthod. Dentofac. Orthop. 1975, 68, 42–54. [Google Scholar] [CrossRef]
- Stockmann, P.; Schlegel, K.A.; Srour, S.; Neukam, F.W.; Fenner, M.; Felszeghy, E. Which region of the median palate is a suitable location of temporary orthodontic anchorage devices? A histomorphometric study on human cadavers aged 15–20 years. Clin. Oral Implant. Res. 2009, 20, 306–312. [Google Scholar] [CrossRef]
- Knaup, B.; Yildizhan, F.; Wehrbein, H. Age-related changes in the midpalatal suture. A histomorphometric study. J. Orofac. Orthop. 2004, 65, 467–474. [Google Scholar] [CrossRef]
- Schlegel, K.A.; Kinner, F.; Schlegel, K.D. The anatomic basis for palatal implants in orthodontics. Int. J. Adult Orthod. Orthognath. Surg. 2002, 17, 133–139. [Google Scholar]
- Wehrbein, H.; Yildizhan, F. The mid-palatal suture in young adults: A radiological-histological investigation. Eur. J. Orthod. 2001, 23, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Angelieri, F.; Franchi, L.; Cevidanes, L.H.S.; Gonçalves, J.R.; Nieri, M.; Wolford, L.M.; McNamara, J.A., Jr. Cone beam computed tomography evaluation of midpalatal suture maturation in adults. Int. J. Oral Maxillofac. Surg. 2017, 46, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Angelieri, F.; Franchi, L.; Cevidanes, L.H.; McNamara, J.A., Jr. Diagnostic performance of skeletal maturity for the assessment of midpalatal suture maturation. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 1 June 2022).
- Wertz, R. Skeletal and dental changes accompanying rapid midpalatal suture opening. Am. J. Orthod. 1970, 58, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Rungcharassaeng, K.; Caruso, J.M.; Kan, J.Y.; Kim, J.; Taylor, G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 428.e1–428.e8. [Google Scholar] [CrossRef] [PubMed]
- Vassar, J.W.; Karydis, A.; Trojan, T.; Fisher, J. Dentoskeletal effects of a temporary skeletal anchorage device-supported rapid maxillary expansion appliance (TSADRME): A pilot study. Angle Orthod. 2016, 86, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Bazargani, F.; Lund, H.; Magnuson, A.; Ludwig, B. Skeletal and dentoalveolar effects using tooth-borne and tooth-bone-borne RME appliances: A randomized controlled trial with 1-year follow-up. Eur. J. Orthod. 2020, 43, 245–253. [Google Scholar] [CrossRef] [PubMed]
Group 1 (CS1–CS2) | Group 2 (CS3–CS4) | Group 3 (CS5–CS6) | |
---|---|---|---|
N | 21 | 28 | 19 |
Sex | |||
M | 12 | 10 | 7 |
F | 9 | 18 | 12 |
Age (years) | 10.21 ± 1.34 | 13.37 ± 1.36 | 17.14 ± 3.48 |
Mean nominal expansion (mm) | 7.13 ± 1.27 | 7.73 ± 1.84 | 8.04 ± 1.98 |
Mean activation time (days) | 12.86 ± 2.29 | 13.93 ± 2.84 | 14.21 ± 2.53 |
Mean treatment duration (months) | 21.96 ± 11.47 | 14.16 ± 5.12 | 14.11 ± 6.29 |
Mean time difference of superimposed models (months) | 28.98 ± 13.75 | 19.78 ± 8.48 | 17.31 ± 28.09 |
Group 1 (CS1–CS2) | Group 2 (CS3–CS4) | Group 3 (CS5–CS6) | Intergroup | |
---|---|---|---|---|
p-Value | ||||
N | 21 | 28 | 19 | |
III (mm) | ||||
C | 31.34 ± 2.27 | 33.18 ± 2.78 | 32.20 ± 2.47 | 0.141 |
cent | 28.16 ± 1.84 | 30.16 ± 2.48 | 28.29 ± 1.71 | 0.015 |
Group 1 vs. Group 2: 0.036 | ||||
Group 1 vs. Group 3: 1.000 | ||||
Group 2 vs. Group 3: 0.043 | ||||
L | 24.18 ± 2.06 | 24.75 ± 2.06 | 23.21 ± 1.61 | 0.098 |
IV (mm) | ||||
C | 38.05 ± 2.63 | 38.90 ± 3.05 | 37.46 ± 2.47 | 0.225 |
cent | 33.01 ± 2.25 | 33.79 ± 2.67 | 32.51 ± 1.99 | 0.194 |
L | 25.32 ± 2.32 | 25.82 ± 2.37 | 24.76 ± 2.04 | 0.298 |
V (mm) | ||||
C | 44.77 ± 2.09 | 43.42 ± 3.41 | 42.86 ± 3.08 | 0.607 |
cent | 39.18 ± 1.97 | 38.42 ± 3.09 | 37.73 ± 2.77 | 0.624 |
L | 30.14 ± 1.90 | 29.93 ± 2.64 | 29.45 ± 2.32 | 0.798 |
VI (mm) | ||||
C | 46.99 [45.40, 50.28] | 48.26 [47.47, 49.45] | 48.74 [47.21, 50.87] | 0.130 |
cent | 42.61 ± 3.07 | 44.15 ± 2.07 | 44.21 ± 2.34 | 0.063 |
L | 30.57 ± 2.29 | 31.97 ± 1.90 | 32.16 ± 2.15 | 0.031 |
Group 1 vs. Group 2: 0.071 | ||||
Group 1 vs. Group 3: 0.058 | ||||
Group 2 vs. Group 3: 1.000 |
Group 1 (CS1–CS2) | Group 2 (CS3–CS4) | Group 3 (CS5–CS6) | Intergroup | |
---|---|---|---|---|
p-Value | ||||
N | 21 | 28 | 19 | |
Torque (°) | ||||
1.6 | −11.99 ± 4.13 | −12.35 ± 8.36 | −16.63 ± 5.39 | 0.047 |
Group 1 vs. Group 2: 1.000 | ||||
Group 1 vs. Group 3: 0.083 | ||||
Group 2 vs. Group 3: 0.090 | ||||
1.5 | −9.56 ± 5.97 | −10.24 ± 6.70 | −11.19 ± 9.18 | 0.884 |
1.4 | −15.40 [−17.00, −9.45] | −11.05 [−15.72, −8.03] | −18.60 [−22.40, −9.43] | 0.073 |
1.3 | 3.48 ± 6.06 | 3.69 ± 7.18 | 1.94 ± 8.59 | 0.744 |
2.3 | 1.44 ± 5.07 | 3.10 ± 6.69 | 2.12 ± 9.98 | 0.810 |
2.4 | −15.94 ± 4.07 | −11.81 ± 6.94 | −14.99 ± 7.49 | 0.137 |
2.5 | −7.50 ± 6.42 | −7.69 ± 7.12 | −9.09 ± 7.49 | 0.811 |
2.6 | −11.82 ± 7.25 | −11.97 ± 7.56 | −13.65 ± 5.45 | 0.648 |
Group 1 (CS1–CS2) | Group 2 (CS3–CS4) | Group 3 (CS5–CS6) | Intergroup | |
---|---|---|---|---|
T1–T0 | T1–T0 | T1–T0 | p-Value | |
N | 21 | 28 | 19 | |
III (mm) | ||||
C | 3.31 ± 2.94 | 1.61 ± 2.02 | 2.24 ± 1.78 | 0.120 |
p-value | 0.002 | 0.003 | <0.001 | |
cent | 3.13 [2.56, 4.55] | 1.32 [0.48, 3.04] | 2.17 [1.36, 3.01] | 0.112 |
p-value | 0.001 | <0.001 | <0.001 | |
L | 2.05 ± 2.09 | 1.42 ± 1.48 | 2.35 ± 1.33 | 0.276 |
p-value | 0.004 | 0.001 | <0.001 | |
IV (mm) | ||||
C | 6.00 ± 2.28 | 4.75 ± 2.67 | 5.48 ± 1.69 | 0.227 |
p-value | <0.001 | <0.001 | <0.001 | |
cent | 5.30 [4.29, 6.29] | 4.16 [3.02, 5.12] | 4.90 [3.84, 6.08] | 0.122 |
p-value | <0.001 | <0.001 | <0.001 | |
L | 3.93 [2.81, 6.05] | 3.52 [2.83, 4.50] | 4.33 [3.16, 5.39] | 0.557 |
p-value | <0.001 | <0.001 | <0.001 | |
V (mm) | ||||
C | 6.30 ± 1.37 | 5.43 ± 2.12 | 5.41 ± 2.49 | 0.809 |
p-value | 0.015 | <0.001 | <0.001 | |
cent | 5.42 ± 1.54 | 4.73 ± 2.01 | 4.72 ± 2.20 | 0.855 |
p-value | 0.026 | <0.001 | <0.001 | |
L | 4.58 ± 1.74 | 4.26 ± 1.68 | 4.23 ± 1.78 | 0.947 |
p-value | 0.045 | <0.001 | <0.001 | |
VI (mm) | ||||
C | 3.65 ± 2.15 | 3.67 ± 1.56 | 3.82 ± 1.71 | 0.950 |
p-value | <0.001 | <0.001 | <0.001 | |
cent | 2.79 ± 1.87 | 2.81 ± 1.48 | 3.02 ± 1.76 | 0.889 |
p-value | <0.001 | <0.001 | <0.001 | |
L | 3.46 [2.42, 4.56] | 2.90 [2.28, 3.39] | 3.25 [1.95, 4.08] | 0.529 |
p-value | <0.001 | <0.001 | <0.001 |
Group 1 (CS1–CS2) | Group 2 (CS3–CS4) | Group 3 (CS5–CS6) | Intergroup | |
---|---|---|---|---|
T1–T0 | T1–T0 | T1–T0 | p-Value | |
N | 21 | 28 | 19 | |
Torque (°) | ||||
1.6 | −0.60 ± 4.76 | −2.17 ± 8.43 | −0.62 ± 5.43 | 0.642 |
p-value | 0.567 | 0.185 | 0.624 | |
1.5 | 8.04 ± 7.21 | 4.25 ± 6.90 | 6.32 ± 6.63 | 0.434 |
p-value | 0.067 | 0.009 | <0.001 | |
1.4 | 4.00 [1.55, 11.35] | 1.65 [−2.35, 8.35] | 5.20 [2.10, 9.35] | 0.216 |
p-value | 0.083 | 0.161 | 0.001 | |
1.3 | −0.40 [−1.12, 4.70] | −1.35 [−7.98, 2.52] | −0.75 [−3.85, 0.62] | 0.736 |
p-value | 1.000 | 0.284 | 0.338 | |
2.3 | 2.70 [−4.45, 5.60] | −2.80 [−4.60, 1.40] | −2.20 [−7.00, 3.00] | 0.438 |
p-value | 0.765 | 0.194 | 0.145 | |
2.4 | 6.99 ± 6.66 | 2.50 ± 5.99 | 5.45 ± 7.54 | 0.119 |
p-value | 0.006 | 0.036 | 0.005 | |
2.5 | 1.30 ± 2.05 | 4.11 ± 8.19 | 2.09 ± 7.22 | 0.643 |
p-value | 0.387 | 0.028 | 0.224 | |
2.6 | −0.08 ± 7.77 | −1.72 ± 6.51 | −1.42 ± 6.46 | 0.696 |
p-value | 0.965 | 0.173 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig, B.; Migliorati, M.; Drago, S.; Gallo, B.; Persano, R.; Pesce, P.; Menini, M. Dento-Alveolar Changes after Maxillary Hybrid Expansion and Multi-Bracket Therapy: A Comparative Study at Three Different (Vertebral) Maturation Stages. Appl. Sci. 2024, 14, 1541. https://doi.org/10.3390/app14041541
Ludwig B, Migliorati M, Drago S, Gallo B, Persano R, Pesce P, Menini M. Dento-Alveolar Changes after Maxillary Hybrid Expansion and Multi-Bracket Therapy: A Comparative Study at Three Different (Vertebral) Maturation Stages. Applied Sciences. 2024; 14(4):1541. https://doi.org/10.3390/app14041541
Chicago/Turabian StyleLudwig, Björn, Marco Migliorati, Sara Drago, Beatrice Gallo, Roberta Persano, Paolo Pesce, and Maria Menini. 2024. "Dento-Alveolar Changes after Maxillary Hybrid Expansion and Multi-Bracket Therapy: A Comparative Study at Three Different (Vertebral) Maturation Stages" Applied Sciences 14, no. 4: 1541. https://doi.org/10.3390/app14041541
APA StyleLudwig, B., Migliorati, M., Drago, S., Gallo, B., Persano, R., Pesce, P., & Menini, M. (2024). Dento-Alveolar Changes after Maxillary Hybrid Expansion and Multi-Bracket Therapy: A Comparative Study at Three Different (Vertebral) Maturation Stages. Applied Sciences, 14(4), 1541. https://doi.org/10.3390/app14041541