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Featured Application: The technology of the independently rotating wheelset has the potential
to be introduced into urban rail transit to improve small-radius curve negotiation performance.
In-depth knowledge on the dynamics of the independently rotating wheelset prompts better bogie
structure design and stimulates further applied research.

Abstract: For better small-radius curve negotiation performance, the independently rotating wheelset
has the potential to be equipped in urban rail transit. As a crucial part of the running gear, its
dynamic characteristics directly affect the railway vehicle’s stability and curve negotiation ability.
This study follows a model-simulation—-experiment method to delve into the dynamic process and
steady convergent process of the independently rotating wheelset. An improved mathematical
dynamic model of the independently rotating wheelset is established, considering the gravitational
restoring forces of the wheelset and different creepages between the left and right wheels. In addition,
the gyroscopic effects on the independently rotating wheelset with positive wheel tread conicity
and at high speeds are introduced and analyzed. With variations in the longitudinal speed and yaw
suspension coefficients, three kinds of motions, derailment, hunting, and offset running, occur on
the independently rotating wheelset. We find that the gyroscopic effects contribute to the slight
self-guidance ability of the independently rotating wheelset, causing a hunting motion at high
speeds. Through sufficient simulations, the improved mathematical dynamic model is verified to be
closer to the dynamic model built in the general multibody system simulation software SIMPACK
2018 than the classical mathematical dynamic model. Further, we perform experiments on a scaled
independently rotating wheelset experiment system. The dynamic characteristics derived from
theoretical analysis, especially the slight self-guidance ability at high speeds, are verified.

Keywords: independently rotating wheelset; independently rotating wheels; yaw suspension; gravi-
tational restoring force; gyroscopic effects; self-guidance ability

1. Introduction

Light rail vehicles have been popularly applied in urban transportation systems due
to their high capacity, safety, and reliability, which satisfy the needs of mass passenger
transportation. To meet low-floor requirements and lightweight demands, independently
rotating wheelset (IRW) technology is introduced in running mechanisms and widely
studied. At the initial stage of IRW technology development, some advantages were
thought to exist with the IRW, such as increased critical hunting speed, reduced rail and
wheel flange wear, and improved curve negotiation performance [1,2]. However, with
more and more research and attempts for IRW’s applications, some fatal disadvantages
have been discovered, including unique zigzag-type vibration, severe flange contact, and
aggravated wear problems [3-5].
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In contrast to the conventional solid wheelset (SW), the two wheels of an IRW can
rotate at different angular speeds. Then, the compensation of the path difference between
the inner and outer wheel unnecessarily depends on the lateral displacement and the
wheel tread conicity, which theoretically improves the curve negotiation performance of
the IRW. However, decoupling the two wheels in the rotational direction leads to a loss of
longitudinal creep moment, causing self-guidance-ability deficiency on the IRW. Although
many methods were investigated and developed to improve the self-guidance ability of
the IRW [6-14], only a few studies have focused on the intrinsic dynamic characteristics
and the fundamental reasons why the self-guidance ability deficiency happens on the IRW.

Goodall and Li [15] analyzed an unconstrained IRW model using the block diagram
method and made a comparison with the SW model on stability issues. The theoretical
frequency expression shows that on the IRW, the dynamic coupling via inertial effects can
cause a kinematic oscillation. Sugiyama et al. [16] developed a multibody IRW model and
conducted numerical simulations. The results demonstrated that in the change in wheel
rolling radius, longitudinal slip can occur and contribute to a weak coupling of the lateral,
yaw, and pitch motions. Y. Cho and J. Kwak [5] deduced mathematical IRW wheelset
models and IRW bogie models with different settings of DOF and under consideration of
gravitational restoring forces. According to simulation results on a tangent track, flange
contact can be avoided under the restoration effects generated by gravitational restoring
forces. To some extent, these theoretical and mathematical analyses of the IRW model are
intrinsically and logically reasonable. However, due to some issues with hypothesis and
research focus, they remain to be verified by specialized simulation software and experiments.

Most researchers and engineers considered that the hunting motion was eliminated on
the IRW in previous research, but the hunting phenomenon on the IRW has already been
observed in some simulations or practical experiments conducted by different research
groups. Liang and Iwnicki [17] built an IRW simulation model in Simulink and an IRW
experiment system with a test rig. They found that lateral oscillation would occur at high
speeds without an active motor control. Ji et al. [18] developed an active steering control
method for the IRW using hub motor wheels with rotating speed difference feedback.
Their IRW model was built in the software SIMPACK. In their simulation results, when
the output rotating speed fluctuation of the motor was 0.5%, the lateral displacement of
the wheelset fluctuated back and forth around the center line of the rail, which is similar
to the hunting motion on the SW. Yang et al. [19] designed a new type of bogie with
four independently rotating wheels by taking advantage of the caster angle. They also
found similar hunting motion on their experimental scaled IRW bogie.

As to an object rotating or spinning at high speeds, a special kind of stability around
its rotation axis can be generated, such as spins and propellers, of which the phenomenon
is generally called the gyroscopic effect in physics. Kurzeck et al. [20] used the gyroscopic
effect mechanism to explain why the maximum torque values are required when getting
through the transition curves. They found that the gyroscopic moment is related to an
additional rotational velocity around the x-axis caused by the superelevation ramp of the
track. However, whether the gyroscopic effects exist on the IRW with both two wheels
rotating at high speeds on straight tracks or what unique dynamic characteristics would
appear at high speeds were not deeply investigated before.

Motivated by the above considerations, the present study deduced an improved
mathematical model of the IRW through the Euler-Lagrange dynamic analysis method.
Considering that the translational forward speeds of the wheels are different, the creepages
and creep forces were calculated separately on the wheels of each side. The effects of
gravitational restoring forces and gyroscopic moment were also considered. Then, compar-
isons with a model generated in the software SIMPACK 2018 were conducted to verify the
validity of the mathematical model. Further, the dynamic characteristics were analyzed
and summarized with variations in the longitudinal speed and yaw suspension coefficients.
In addition, a scaled IRW experiment system was built to observe and verify the existence
of the dynamic characteristics, especially the slight self-guidance ability at high speeds.
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2. Mathematical Dynamic Model of the IRW

As shown in Figure 1, a concept model of the IRW is introduced to deduce mathe-
matical models and study its dynamic characteristics. For lateral dynamics analysis, an
IRW can be simplified into three main parts: a left wheel, a right wheel, and a carrier of
the two wheels. Under constraints of the bearings between the carrier and wheels, only
relative rotation is allowed. Under constraints of contact patches between rail and wheels,
the contact position of each wheel should obey the geometric profile in three dimensions.
Additionally, under the constraint of the rail gauge, two sides of the wheel-rail contact
patches have a positional relationship between each other. Then, the IRW’s degrees of
freedom (DOF) can be obtained as

DOF=6x3-5x2-1x2-1=5 (1)

Considering the situation of constant longitudinal velocity, four DOFs are taken into
account to describe the lateral motion of an IRW on a straight rail track. We choose four
generalized states, including the lateral displacement v, yaw angle 1, rotational speed of the
left wheel wy,, and rotational speed of the right wheel wg. To substitute for the connection
between the wheelset carrier and the two-axle bogie’s frame and to study the IRW’s dynamic
characteristics separately, a ‘virtual joint” is set moving with the IRW along the center of the
rail track, shown in Figure 1b. The pitch angle of the wheelset is assumed to be constrained to
zero with respect to this “virtual joint’. In addition, a yaw suspension system with springs and
dampers is also installed between the wheelset and this ‘virtual joint’.

Yaw ) X
suspension | .
1Y g Y
mLO FLg L._.,:

Virtual joint

Left wheel =~ Right wheel
Carrier

b

(b)
Figure 1. The IRW model. (a) Back view; (b) top view.

Generally, in the force analysis process of conventional wheelsets for lateral dynamics
research, only creep, spring, damping, and inertia forces are considered. Under the consid-
erable influence of longitudinal creep forces, the effects of gravitational restoring forces are
often simplified or omitted. However, it is widely regarded that the effects of longitudinal
creep forces on the IRW’s lateral dynamics are negligible. Then, some forces simplified or
omitted before may regain dominance in the IRW’s motion. In this study, the influences of
gravitational restoring forces and gyroscopic moment are considered. They are introduced
in Sections 2.2 and 2.3, respectively.

2.1. Creep Force

For an IRW, the left wheel, right wheel, and carrier are three different parts of the
mechanical system, which means that the translational forward speeds of these three parts
are also different from each other, resulting in different creepages on the left wheel and the
right wheel, so the creep forces applied on the left wheel and the right wheel should be
calculated separately.

Considering the yaw speed ¢ of the carrier, the longitudinal forward speeds of the left
wheel and the right wheel can be derived as follows, v}, and vR, respectively.

UL=U+bl]J @)
oR = v — by
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where v is the longitudinal forward speed of the carrier, and b is half the lateral distance
between the left and right wheels.

When calculating creep forces acting on the contact patches of the IRW model on
the rail, these two different longitudinal forward speeds are adopted to improve model
accuracy, which makes it different from the SW in the creep force calculation [21]. For
example, to calculate the lateral creep force generated by the lateral speed for a SW, the
force is given by

y
Feyy = —2k223; 3)
while on the IRW model, the left wheel, right wheel, and carrier are three different parts of
the mechanical system, meaning three different translational speeds; thus, this creep force

should be written as

_ _ y y
Fouti) = Frepsy T Freyii = ~R2 77 0 ky— b¢ @)

where ky; is the lateral Kalker’s creep coefficient.
Other creep forces can be deduced as this pattern similarly. They are shown in
Equations (28)—(31) at the end of Section 2.4 in detail.

2.2. Gravitational Restoring Force

Due to the conicity of wheel tread, the normal forces of both wheels are not strictly
in the direction of gravity, so they have lateral components generally named gravitational
restoring forces. As shown in Figure 1a,b and marked as Fr ¢, and Frgy, these two forces will
work in the lateral and yaw movement, so they should be considered in the IRW model.

If a linear conicity wheel tread is adopted, the contact angle of the left wheel and the
right wheel related to y can be defined as follows, 1 (y) and Jr(y), respectively

{0 ==y —Al1— -
SR(y) =+ 3y =A(1+7)

where §j is the nominal contact angle at the center position, and A is the equivalent wheel—-
rail tread conicity at the center position.

It is assumed that besides the whole gravity force of the IRW itself, there exist extra
vertical loads virtually from the bogie or the vehicle acting on the left and right wheels,
F . and Fg;, respectively. The resultant gravitational restoring force of the IRW can be
expressed as follows

ng _ FLgy _ Fng _ (mc+2mW)28+FLz+FRz [5L(y) _ 5R(y)} ©

= —((mc +2mw)g + FLo + Fre) 3¢

where mc is the carrier mass, myy is the wheel mass, and g is the gravitational acceleration.
Additionally, the moment generated by the gravitational restoring forces can be
expressed as follows

Mgy = FLgybp + Frgybp = ((mc +2mw)g + FL; + Fre)AbY (7)

According to Equation (6), force Fg, and lateral displacement y present a negative
relation, while according to Equation (7), moment Mgy and yaw angle ¢ present a positive
relation. In view of this, force Fgy is generally regarded as a factor contributing to IRW’s self-
centering ability, and moment Mgy, is usually considered a cause for the IRW’s derailment
at low speeds, as shown in Figure 2. These two viewpoints will be verified later.
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Figure 2. Derailment motion caused by gravitational restoring moment Mgy

2.3. Gyroscopic Moment

Strictly analyzing the rotation of the wheels, it is a relative rotational motion in the
carrier reference system. Due to the carrier’s yaw and roll movements, although the IRW
rides at a constant forward velocity on the rail, the carrier coordinate system is a non-inertial
reference coordinate. In addition, the three angular motions of the IRW are orthometric
to each other. Then, some coupling effects exist between the wheels and the IRW. When
the wheels rotate at high speeds, we find that the IRW will regain slight self-guidance
ability to resist the derailment tendency caused by the gravitational restoring moment.
This phenomenon has the same pattern of mechanisms as the gyroscopic effects on a top
spinning at high speeds, which makes the spin top resist the gravity effects and not fall
down to the ground.

Figure 3 demonstrates a tiny rollmg angle Change du of the IRW from position A to

position B after a little time gap dt. Let a, b and ¢ denote the unit direction vectors of
the wheel axle at position A, the wheel axle at position B, and the rolling axis of the IRW,
respectively. The unit direction vector of the wheel axle at position B can be derived as

?:ZMdt(?xZ) ®)

where « is the instantaneous rolling angular speed.

Position A  Position B
~

QI o

b
da(@x dfi—=
a

Figure 3. The IRW running on the rail track with its roll angle changing from position A to B.

Because both sides of the wheels rotate in the same direction when the IRW is riding
forward, the angular momentum magnitude of the wheels is given by

H = Hy + Hg = Jwy(wL + wr) )

where Jwy is the inertia moment of wheel in the y axle.
The variation in this angular momentum can be deduced as

— — —
dH = (H+dH)b — Hd = Hdt(¢ x @ ) +dHb (10)

%
Then, the derivation of H with respect to time ¢ can be obtained as
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—
dH .= — dH> 7 —= dH?
ﬁ—(ﬂ(c)x(Hﬂ)‘f’Eb—D{XH‘Fﬁb (11)

When the IRW rides at a constant longitudinal forward speed, the angular momentum
magnitude H does not change, which means that

dH
= =0 (12)

%
Then, the derivation of H with respect to time ¢ can be written as

dH 7 =
E =a XH (13)
Equation (13) shows that the existence of the rolling angular speed results in the
variation in the angular momentum of the two wheels. Furthermore, the direction of this
cross product is coincidentally the same as the yaw angular direction of the IRW. According
H

to mechanical principles, a gyroscopic moment exists to resist the direction change of H
and to maintain its original rotational direction, which means that the gyroscopic moment
is in the yaw angular direction of the IRW, and its magnitude is

%
_dH

MG: ﬁ

= Jwya(wr + wr) (14)

If both two wheels with positive linear conicity tread are installed on the carrier, the
roll velocity a will present a negative linear relationship with lateral displacement speed v,
which can be determined by the IRW’s geometric parameters and given by

. A
a=—2Y (15)

Then, Mg with adaptation of positive linear conicity tread wheels can be written as

_Mwy

Mg =——

y(wL + wr) (16)

Moment Mg is the gyroscopic moment in the yaw direction of the IRW, and its
magnitude is relative to the carrier’s lateral translational speed and the wheels’ rotational
angular speeds.

The effects brought out by gyroscopic moment can be analyzed through Equation (16)
and can also be described visually in Figure 4. When the positive linear tread conicity
wheels are adopted, lateral velocity y and gyroscopic moment Mg present an opposite
reaction, which forms a type of self-guidance ability on the IRW, and the derailment
tendency can be resisted. According to Equation (16), a large equivalent wheel tread
conicity and high wheel rotational speeds are necessary for acquiring a dominant self-
guidance ability. Furthermore, compared to the inertia moment of the whole IRW in
the yaw direction, the inertia moment of the wheel in the y direction is much smaller.
Thus, the self-guidance ability caused by gyroscopic effects is relatively slight to some
extent, especially at low longitudinal speeds. However, due to the loss of longitudinal
creep moment on the IRW, the gyroscopic moment can significantly affect the dynamic
characteristics of the IRW, especially at high longitudinal speeds. The existence verification
of the self-guidance ability caused by gyroscopic effects through simulations, as well as
experiments, and how the gyroscopic moment affects the lateral dynamics of the IRW will
be demonstrated in Sections 3-5.
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Mg <0 Mg >0 y<0

Figure 4. Slight self-guidance ability under gyroscopic effects.
2.4. IRW Model Deduction

We only consider the IRW rides on a straight, flat rail track at constant longitudinal
speeds, so the coordinate system accompanying the IRW along the rail track center is an
inertial reference system. Then, the dynamic equations can be set up in this coordinate
system through the Euler-Lagrange approach.

The kinetic energy of the carrier for lateral dynamics analysis is

1 2 1. 2 1. .2 1[/A2 2 1. .2
Tczimcy +§]Cx0< +§]c,z¢’ —2<b2]Cx+mc)y +§]ch,’) (17)

where Jcy and Jc; are carrier’s inertia moments in the x and z directions, respectively.
The angular kinetic energy of the left wheel in its rotation direction around its axle is

1
Tip = 5 Jwywi (18)

Additionally, the wheel also moves with the carrier in translational and angular
directions. The translational kinetic energy of the left wheel in the IRW’s lateral direction is

1 2
TLy = Emwy (19)

According to the Koenig theorem, the angular kinetic energy of the left wheel in the
IRW’s yaw direction is

Tip = g et + pmw (09) = 3 (e + myet?) §° 0)

where [y, is the wheel’s inertia moment in the z direction.
Similarly, the angular kinetic energy of the left wheel in the IRW’s roll direction is

1 2
Tio = 5 (Jwe + mwb?)d @y

where Jw, is the wheel’s inertia moment in the x direction.
Then, the total kinetic energy of the left wheel is

Ty, = Toy + Toy + T + Tro

2 2 2 (22
= %((1+)\2)mw+27]Wx)y + 3 (Jwz + mwb?) 9~ + 3 Jwyw? )
Similarly, the total kinetic energy of the right wheel is
1 ) A? 2 1 N2 1 )
TR—Z((HA )mW+b2]Wx>y +§(Iwz+mwb )w + 5 Jwywi (23)

The total kinetic energy of the IRW is
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2 2 .2
T=Tc+TL+1Tr = %(Tl’lc +2(1 +A2>mW + %]Cx + %]Wx)y
.2
+1 ez + 2wz + 2mwb?) Y + Fwyw? + Hwywd

Assuming the linear conical wheel rides on a knife-edged rail and a yaw angular
spring with stiffness coefficient Ky, is installed, the total potential energy of the IRW is

(24)

1 1
V= ch + VLg + VRg + le =0+ mwg(—)\y) + mwgAy + EKlple = §K¢lp2 (25)

Assuming a yaw damper with damping coefficient Cy is installed, the dissipation
energy of the IRW is 1 )

According to Euler-Lagrange mechanics theorem, the dynamic equations for a me-
chanical system can be expressed as follows

doT T oV oD
R 0} (27)
dt og; qi gi  9q;
where t represents time, q; represents generalized coordinates, g; represents generalized
velocities, and Q; represents generalized forces.

Then, the dynamic equations of the IRW for lateral dynamics analysis can be expressed

in detail as follows

) 22 202 - vy y
<mc + 2(1 + A )mw + B2 ]Cx + B2 ]Wx)y + k22 v+b1}1 + kzzv—bt}; (28)

+((mc +2my)g + Fiz + Fre) 1y — 2kaotp = 0

(Jez + 2Jwz + 2mwb?)§ + Cyyp + Kytp — ((mc + 2mw)g + Fz + Fro)Aby

Mwy - wr (ro—Ay)— v+by wr (ro+Ay)— v—by (29)
+ 5%y (wr 4 wr) — kb v+b¢( ) _ v_b¢( ) =0

wr(ro — Ay) — (v + bz,b) B

Jwywr + k1o . =0 (30)
v+ by
| wr(ro+Ay) = (0= by)
Jwywr + k11ro . =0 (31)
v—Dby

where k11 is the longitudinal Kalker’s creep coefficient.
Due to the consideration of both the gravitational restoring forces and gyroscopic
effects, we name this mathematical model the G2-IRW model.

2.5. Steady States Analysis

If the IRW system described by Equations (28)—(31) can be stabilized by the yaw spring
and yaw damper, the steady-state solution of the dynamics equations will represent the
steady characteristics of the IRW.

When steady, the translational and angular accelerations of the IRW are zero, that is,

=0, =0, w, =0,and wr = 0. Whether y is zero or not and whether ¢ is zero or
not is unknown at the beginning of the analysis. Assuming that ¢ # 0, which means that

i = const, noted as § = 1, then if the IRW reaches steady states after time t;, the yaw
angle ¢ varying with time ¢ can be expressed as follows

P(t) = Po-(t —ts) + P(ts) (32)

Substituting Equation (32) into Equation (28), we can find that the lateral speed y
varies with time t, which contradicts with i = 0. Then, ¢ = 0 can be deduced.
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According to Equation (30), when wi = 0, we can deduce that
wr(ro — Ay) — (v + bi,b) =0 (33)

which can be rearranged as .
_v+byp 0w
S ro— Ay ro—Ay

wr, (34)

Similarly, we can also obtain

v-by 0
ro-i—)\y_i’o-i-)ty

WR =

(35)

The Taylor expansion of Equations (34) and (35) at y = 0 are expressed as follows, respectively

A Ay 2 Ay
o= (13 () ()

2 3
A Ay Ay
! roy (ro) (70)

Generally, Ay < 0.1r¢, so the higher-order items can be omitted, and then the differen-
tial rotational speed of the two wheels Aw can be deduced as

S

<
=)

(36)
WR =

Sl

_v_
ro+Ay

2
Aw = wy, — wR = gy (37)
"o
Based on the analysis above, Equation (29) can be simplified as
/\]Wy .
Kyyp = ((mc +2mw)g + Rz + Frz)AbY + —=y(wr + wr) =0 (38)

Consider the situation where Ky > ((mc +2mw)g + F., + Fr;)Ab, then the yaw
angle i can be obtained as
AMwy (WL + wR)
b(KIP - ((mC + ZmW)g +h.+ FRZ)Ab)

p=- iy (3)

When steady, the lateral speed y should be quite low. Additionally, because the
magnitude of the yaw stiffness is usually large enough, the coefficient in front of y is
generally less than 0.1. Then, yaw angle i can be treated as zero when the IRW reaches
steady states, that is

Pp=0 (40)

Then, Equation (28) can be simplified as

S| >

kzz% - kzz% + ((mc +2mw)g + F; + Frz) 7y =0 (41)

The relation between the lateral speed i and the lateral displacement y can be deduced as

— _/\U((mC +2mW)g+ FLz + FRz)y

2bky (42)

Equation (42) is an ordinary differential equation, and if the IRW’s dynamic oscillation
is suppressed after time #;, its solution can be expressed as

)w((mC —+ 2mW)g +F.+ FRZ) (t _ ts))

) = y(t)exp - s )

In Equation (43), the coefficient in front of time duration ¢ — t; is negative, which
means that the lateral displacement y(t;) will decay and finally converge. Define this decay
coefficient as 7, that is
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g = _ Ao((me +2my)g + Az + Frz) (44)
2bky

The steady-states conclusions gather as follows

J=0¢=0wL=0,wr=0,9=0,p=0 (45)
Av((mc +2m +h: +

1) = y(tyexp( -T2 L R P el )

2bky
Aw = wp, — wR = @y (47)

"o

Equation (46) demonstrates that the lateral displacement y will exponentially converge
to zero under the gravitational effects after time f;, which means that the convergence rate
decreases with the convergence of y. Thus, when y is quite close to zero, the convergence
rate will be quite low as well. Additionally, the denominator of the decay coefficient 5
contains the lateral Kalker’s creep coefficient ky, of which the magnitude is large, resulting
in a small decay coefficient. Additionally, a small wheel tread conicity A is sometimes
adopted. Therefore, although the lateral displacement y can converge to zero eventually,
the convergence rate is very small, which makes y almost steady in a short duration of time.
That is why the running trailer of the IRW is always offset to the center of the railway track,
and only if the time duration is long enough, will the lateral displacement y converge to
zero under the gravitational effects eventually.

Equation (47) shows a kinematic relation between differential rotational speed Aw
and lateral displacement y. The coefficient is relevant to the equivalent wheel-rail tread
conicity A, the velocity of the IRW v, and the nominal wheel radius r¢. This kinematic
relation demonstrates the intrinsic law for the offset running phenomenon on the IRW. Due
to the freedom of the two wheels in the rotation direction around their axles, the differential
rotational speed of the IRW does not have to be zero because the lateral displacement y
can compensate for it. When the steady state of the IRW changes, for example, the differential
rotational speed Aw changes from Aw; to Aw,, and the lateral displacement y also changes
from y; to y, along the kinematic relation described by Equation (47). Then, the IRW will adjust
to a new balanced steady state (12, Aw,). Therefore, the freedom of the differential rotational
speed on the IRW leads to the freedom of the lateral displacement. That is why the IRW can be
balanced at any state pair (y, Aw) as long as their kinematic relation can satisfy Equation (47).
This phenomenon will be demonstrated later in the simulations and experiments.

Figure 5 shows three types of steady convergent motions. If the IRW runs along the
center of the railway track, the motion is named centered running. If the IRW does not run
along the center of the railway track and is with lateral displacement y, according to the
analysis before, it will take a long time for the IRW to converge to the center of the railway
track. The motion in this long-time duration is named offset running in this paper.

<>

(@) (b) ()

Figure 5. Three types of steady convergent motions. (a) Centered running (y = 0, wp = wR);
(b) right-of-center offset running (y > 0, wy, > wg); (¢) left-of-center offset running (y < 0, wy, < wg).
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In this section, the creep forces of the two wheels are separately calculated for higher
accuracy, the gravitational restoring forces are considered, and the gyroscopic effect can be
theoretically proved through mechanics analysis. However, whether these three factors can
significantly affect the IRW’s dynamic characteristics still needs to be verified. In the next
section, a classical IRW model is introduced without consideration of the three factors, and
an IRW model built in the general multibody system simulation software SIMPACK 2018 is
regarded as a criterion. The G2-IRW model deduced in Section 2.4 will be compared with
them in detail.

3. Comparison of the Models

A type of classical IRW model has been presented in some research papers, which has
been adopted to analyze the IRW dynamic characteristics and to design control methods.
Concerning yaw suspension, the mostly adopted IRW model in these studies [2,16,17] can
be expressed as follows

my + Zk%y — 2k221/J =0
I+ (220 4 Cy )b + Kyp — 220 4 2Mhny g (48)
. 2 . .
Iy + g — bk gy Ak =0

where m is the total mass of the IRW, meaning m = mc + 2my. 0 is defined as half

differential rotational speed between the left and right wheels, meaning 20 = wy — wg. Lis
the total inertia moment of the IRW in the yaw direction, meaning I = Jc; + 2Jw; + 2mwb?.
Iy is the inertia moment of the wheel about its rotational axle, meaning Iy = Jwy-

An IRW model built in the general multibody system simulation software SIMPACK
2018, as shown in Figure 6, is more approximate to the IRW in the real world and regarded
as a criterion. The wheels adopt a 1/10 linear conicity tread with a 15 cm linear section
in width, and the rails adopted the UIC60 shape. The wheel-rail contact analysis is
demonstrated in Figure 7. A two-point contact between the rail and the wheel happens
when y reaches about —32 mm.

In this section, the comparison results among the classical IRW model, the improved
G2-IRW model deduced in Section 2.4, and the SIMPACK IRW model will be demonstrated
and discussed. All these three simulation models were built with one set of physical
parameters, shown in Table 1.

A number of running conditions were designed to validate the G2-IRW model and
analyze the gravitational and gyroscopic effects. We considered the variations in the
longitudinal speed, yaw stiffness, and yaw damping, which are listed in Tables 2—4, re-
spectively. We chose nine representative conditions to demonstrate the results, including
V1-51-C1, V1-S6-C6, V1-510-C10, V5-51-C1, V5-56-C6, V5-510-C10, V10-51-C1, V10-56-C6,
and V10-510-C10. A 5 mm lateral displacement was given as the system’s initial state step
input, and then the IRW responses without any extra force and moment input.

(b)

Figure 6. The IRW model built in the software SIMPACK 2018. (a) Back view; (b) top view.
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Figure 7. Wheel-rail contact analysis. (a) Contact patches with connection lines; (b) number of

contact patches.

Table 1. The IRW’s parameters in simulations.

Symbol Definition Value
mc Carrier mass 200 kg
my Wheel mass 75 kg
Jox Carrier’s inertia moment in the x direction 35 kg~m2
Jcy Carrier’s inertia moment in the y direction 20 kg'm2
Jcz Carrier’s inertia moment in the z direction 30 kg'm2
Twx Wheel'’s inertia moment in the x direction 5 kg-m2
Jwy Wheel’s inertia moment in the y direction 8 kg-m2
Jwz Wheel'’s inertia moment in the z direction 5 kg-m2
b Half lateral distance between the left and right wheels 0.72m
70 Nominal wheel radius 04 m
A Equivalent wheel-rail tread conicity at the center position 0.1
k11 Longitudinal Kalker’s creep coefficient 4 x 10°N
koo Lateral Kalker’s creep coefficient 6 x 10° N
g Gravitational acceleration 9.81 m/s?
F, Extra vertical loads on the left wheel 50 kN
Frs Extra vertical loads on the right wheel 50 kN
Table 2. Simulation conditions of longitudinal speed.
No. Vi V2 V3 V4 V5 V6 V7 \'%) V9 V10
Velocity 1 5 10 15 20 25 30 35 40 45
(m/s)
Table 3. Simulation conditions of yaw stiffness.
No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Yaw Stiffness
(kKNm/rad) 0 2 5 10 20 50 100 200 500 1000
Table 4. Simulation conditions of yaw damping.
No. C1 C2 C3 Cc4 C5 Ce Cc7 C8 C9 C10
Yaw Damping
(kNms/rad) 0 0.02 0.05 0.1 0.2 0.5 1 2 5 10

As shown in Figure 8, at a low speed and without a yaw suspension, derailment
happens on the IRW quickly and sharply. As analyzed in Section 2.2, the relation between
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the yaw angle and the moment formed by gravitational restoring forces is positive feedback.
Thus, a slight disturbance of the yaw angle can lead to a surging lateral deviation and
divergent derailment.

(@ 10 (b) 2
5 g Q (=g —— =
E‘ ~~~~~~~~~~~~~~~~ = —SIMPACK IRW model
8 ob—A—Ft— [ T —_9 —=== Classical IRW model
=) = | e G2-IRW model
>\
-5t 47
-10 6
o 1 2 3 4 5 g & &8 & 8
Time [s] Time [s]
(0 10 (d) 2
E )] et AN SRS S —— 0
£10 =2
ISI %‘
<120 il
-30 -6
0 1 2 3 4 5 —10 -5 0 5 10
Time [s] Y [mm]

Figure 8. Lateral dynamics simulation results (V1-51-C1). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.

Figure 9 shows that at low speed and with a certain yaw suspension, the IRW slightly
vibrates and finally converges. The vibrations of y and Aw gradually disappear with a
tendency toward zero, but the speed of the lateral convergence toward 0 is quite slow. By
contrast, { converges to zero much more quickly. As analyzed in Section 2.5 and shown in
Equations (45)—(47), ¥ is 0, while y slowly converges to 0 during the steady convergent process.
-3

@) 5.02 b) 2212

———SIMPACK IRW model
—-== Classical IRW model
s G2-IRW model

=500
S
~4.98}
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Figure 9. Lateral dynamics simulation results (V1-56-C6). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.

Figure 10 shows the simulation results with large yaw suspension parameters, leading
to a sharp vibration at the beginning and immediately entering the steady convergent
process. Compared with condition V1-56-C6, adopting large yaw suspension parameters
does not result in an intuitively quicker lateral convergence but almost the same lateral
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convergence speed. That is because, in Equation (46), the steady convergent motion
does not relate to the yaw suspension parameters. However, the large yaw suspension
parameters affect the dynamic process at the beginning and shorten the vibration process
before entering the steady convergent process.

—4
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Figure 10. Lateral dynamics simulation results (V1-S10-C10). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.

When the longitudinal speed increases to 20 m/s, the gyroscopic moment also in-
creases and begins to gain the tendency to resist the derailment caused by the gravitational
restoring moment. As shown in Figure 11, the yaw angle does not surge in one direction
but bounces back after reaching the curve valley. The lateral displacement also tends to
bounce back. However, due to the lateral displacement having already reached —32 mm,
according to Figure 7, two-point contact between the rail and the left wheel will happen.
Then, the dynamic process fundamentally changes and leads to another IRW’s dynamic
characters, which is out of remit in this paper.

——SIMPACK IRW model
(@ 20 | i i | (b) 0.2 ™ |~-— Classical IRW model |]
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Figure 11. Lateral dynamics simulation results (V5-S1-C1). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) ¥ — ¢ phase diagram.
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When yaw suspensions are added, as shown in Figure 12, the IRW enters the steady
convergent process after some vibrations. The y — ¢ phase curve is a convergent spiral
line with the yaw angle’s damping at the beginning. When the vibration disappears, the
¥y — ¢ phase curve turns into a straight line along axis ¢ = 0 and toward the origin point

(y=0,9=0).
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Figure 12. Lateral dynamics simulation results (V5-56-C6). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.

Figure 13 shows almost the same curve pattern as the condition V1-510-C10. But at a
faster longitudinal speed, the speed of the lateral convergence toward 0 is also faster than
that at v = 1 m/s, which is in accordance with the analysis of Equation (46) in Section 2.5.
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Figure 13. Lateral dynamics simulation results (V5-510-C10). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.

Figure 14 shows an interesting phenomenon on the IRW. When the longitudinal
speed is fast enough, the IRW regains self-guidance ability on the straight track without
yaw suspension. As analyzed in Section 2.3, owing to gyroscopic effects, if the angular
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momentum of the wheels is large enough, the direction of the angular momentum regains
self-stabilizing ability. For an IRW at high longitudinal speed, the derailment tendency
caused by the gravitational restoring moment can be conquered by the gyroscopic moment.
Then, the IRW regains self-guidance ability. This phenomenon is named the slight self-
guidance ability of the IRW in this paper.

Although the IRW regains self-guidance ability at high longitudinal speeds, the gyro-
scopic effects can be suppressed by yaw suspension. As shown in Figure 15, the IRW enters
the steady convergent process in 4 s with an initial step input of 5 mm lateral deviation. Un-
der this condition, the yaw stiffness is 50 kNm/rad, and the yaw damping is 500 Nms/rad,
which is just about 1% of the coefficients on a conventional bogie with SWs. In view of these
results, for the IRW at high speeds, firstly, the self-guidance ability is regained owning to
the gyroscopic effects. Secondly, the oscillation motion can be stabilized by yaw suspension
with much smaller suspension coefficients, which makes the IRW much more accessible to
pass curves with small radii than the SWs.

As demonstrated in Figure 16, the oscillation is almost completely suppressed with
larger yaw suspension coefficients. In addition, at longitudinal speed v = 45 m/s, the
speed of the lateral convergence toward 0 is much faster than thatat v = 1 m/s.

If the simulation duration is expanded to 100 s, the whole steady convergent process
can be demonstrated in Figure 17. The curves show the negative-exponential convergent
process, as Equation (46) describes. Because the convergence duration is more than 60 s
with initial step-input y = 5 mm and even at speed v = 45 m/s, an extra self-guidance
control is necessary to be developed to speed up this convergent process. Especially if the
longitudinal speed is too slow, such as during the standing start process, the convergence
duration for the IRW may become too long to be practically acceptable. Thus, self-guidance
control is crucially essential for the IRW at low speeds.

——=SIMPACK IRW model
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Figure 14. Lateral dynamics simulation results (V10-51-C1). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.
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Figure 15. Lateral dynamics simulation results (V10-56-C6). (a) Lateral displacement; (b) yaw angle;
(c) differential wheel rotational speed; (d) y — ¢ phase diagram.

Under the above conditions, the simulation results of the G2-IRW model are verified
close to the SIMPACK model, demonstrating that the G2-IRW model is more accurate than
the classical IRW model. The significant effects of the gravitational restoring forces and
gyroscopic moment analyzed in Sections 2.2 and 2.3, respectively, are verified by simulation
results. The steady-states analysis in Section 2.5 and the detailed steady convergent process
described by Equations (45)—(47) are also verified by simulation results.
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Figure 16. Lateral dynamics simulation results (V10-S10-C10). (a) Lateral displacement; (b) yaw
angle; (c) differential wheel rotational speed; (d) y — ¢ phase diagram.
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Figure 17. Lateral dynamics simulation results (V10-510-C10, 100 s). (a) Lateral displacement; (b) yaw
angle; (c) differential wheel rotational speed; (d) y — i phase diagram.

Furthermore, the closeness between the G2-IRW model and the SIMPACK model
indicates another accurate description of the IRW’s dynamics for future study. Under
consideration of cost, complexity, and real-time performance, only the rotational speeds
of the wheels and the yaw angle of the IRW can be accurately measured. However, for
better stability control and curve negotiation control of the IRW, the lateral displacement
and the lateral velocity are key state variables that should be measured in real-time. Owing
to the programmability and rapid iterative computability of the differential equations,
Equations (28)—(31) is a better option for state observer design. Although irregularities
input from the rail track and uncertain nonlinearity influences of the model coefficients exist
in practice, according to the study on finite-time continuous extended state observers [22],
the observer can be precisely designed and obtain excellent performance.

After verifying the G2-IRW model through comparison in simulations, the dynamic
characteristics described by Equations (28)-(31) and the steady convergent process de-
scribed by Equations (45)—(47) will be demonstrated and analyzed in the next section.

4. Dynamic Characteristics Analysis

As in the simulation results shown in Section 3, the dynamic characteristics of the
IRW are highly affected by the gravitational restoring forces, the gyroscopic moment,
and their interactions. Three types of dynamic motions can be observed through the
comparisons under different conditions. They are derailment, hunting, and offset running.
In addition, the dynamic motions change with the variations in velocity, yaw stiffness,
and yaw damping. In this section, how these three factors’ variations affect the dynamic
motions of the IRW will be analyzed. The simulation results are totally from the G2-IRW
model after comparisons with the one built in SIMPACK 2018 for precise and accurate
descriptions. Consistent with Section 3, the initial step-input of all the simulations in
Section 4 is also set as yp = 0.005 m.

4.1. The Three Types of Dynamic Motions

As Shown in Figure 18, if the IRW runs at 15 m/s and with no yaw suspension, the
gravitational restoring moment plays an important role in the IRW’s dynamics motion,
resulting in derailment. If just a yaw damper is installed on the IRW, the derailment
speed becomes slower. If just a yaw spring is installed on the IRW with a proper stiffness
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coefficient, the gravitational restoring moment can be conquered. Then, under the effects of
the gyroscopic moment, the hunting motion is generated. However, the mechanism of the
hunting motion on the IRW differs from that on the SW, because the gyroscopic moment
is much smaller than the longitudinal creep moment on the SW. Then, the self-guidance
ability of the IRW is much lighter than that of the SW, and it is constrained by the yaw
spring to some extent. Therefore, although the dynamic process presents as hunting motion,
the long-time average lateral displacement presents as offset running. If both a yaw spring
and a yaw damper are installed, the hunting motion can be suppressed. Then, the IRW can
be suppressed into the steady convergent process and only presents as offset running. If
the simulation duration is long enough, the lateral displacement can eventually converge
to zero or nearly zero.

0.04 T T T T T T
Hunting+Offset Running

0.02 \ , -

O - -

—0.02F Offset Running ]
o

— —0.04 Derailment -
>
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Figure 18. y — ¢ phase diagram (v = 15 m/s) with different yaw suspension configurations.

The blue curve in Figure 19 demonstrates that when the IRW runs at a high speed,
the derailment tendency caused by the gravitational restoring moment can be conquered
by the gyroscopic moment, and the IRW’s motion presents as hunting. Furthermore, the
long-time average lateral displacement is close to zero. This phenomenon proves that if the
speed is high enough, the gyroscopic moment can recouple the two wheels of the IRW, and
then the self-guidance ability is generated. If just a yaw damper is installed, the hunting
motion is suppressed, and the IRW can run along the center of the straight rail track. If just
a yaw spring is installed, the self-guidance ability of the IRW is constrained to some extent,
and the IRW’s motion presents as hunting with offset running. If both a yaw spring and a
damper are installed, the hunting motion can be suppressed, and the IRW’s motion enters
the steady convergent process after damped oscillations.
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Figure 19. y — ¢ phase diagram (v = 40 m/s) with different yaw suspension configurations.

4.2. Steady Convergent Process

As shown in Figure 20, after entering the steady convergent process, the end states
of all the curves from different initial states are located on a straight line in the three-
dimensional space expanded by y — ¢ — Aw, and this straight line is in the plane ¢ = 0.
This finding validates Equation (47) deduced in Section 2.5. The straight line in Figure 20
can be calculated through the linear fitting method, which is Aw = 13.49y + 1.33 x 1077,
According to Equation (47), the theoretical function of the straight line is Aw = 12.5y, and the
relative error is 7.9%. Due to some nonlinear issues of the wheel-rail contact, the equivalent
wheel-rail tread conicity is not always equal to the wheel geometry tread conicity 0.1 but
varies with the lateral displacement. Thus, the simulation results are a little different from the
theoretical functions.

Figure 21 shows the whole process with a simulation duration of 500 s from only
one initial state. The first stage of the entire motion is the dynamic process. In this stage,
the IRW moves from the initial state to another on the straight line in plane ¥ = 0. Once
the state converges to this straight line, the motion will enter the second stage, the steady
convergent process. In this stage, the IRW converges to (y = 0,9 = 0, Aw = 0) along the
straight line following the law depicted by Equation (47).

0.10—

0.05—

Aw [rad/s]
(=)
|

—0.05

x10 o [rad] y[m]

Figure 20. y — ¢ — Aw phase diagram (v = 10 m/s, Ky = 10 kNm/rad, Cy = 1 kNms/rad) from
different initial states.
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Figure 21. y — ¢ — Aw phase diagram (v = 10 m/s, Ky = 10 kNm/rad, Cy = 1 kNms/rad) from
initial states (1o = —0.005, ¥y = —0.002 rad).

Under the interactions among the gravitational restoring forces, gyroscopic moment,
and yaw suspension, the dynamics of the IRW are complicated, making the IRW technology
hard to apply to urban railway vehicles. Three types of dynamic motions exist: derailment,
hunting, and offset running. Only at high speed and with a yaw damper can the IRW
run along the center of the rail track. Under other conditions, the dynamic motions of
the IRW are unwanted in practical applications. In addition, with proper yaw suspension
coefficients, IRW’s state can converge to zero eventually, but the steady convergent process
takes a long time, usually hundreds of seconds, which is unacceptable. Thus, self-guidance
control is still essential for the IRW, especially at low speeds.

Although the dynamic characteristics and the steady convergent process are verified
by simulation results, due to considerations of inevitable irregularities input from the
rail track and time-varying nonlinear frictions generated by bearings, the experimental
verification illustrated in the next section is strongly necessary.

5. Experimental Verification

For further study of the wheelset or bogie dynamics, the full-size or scaled roller rig
technique is widely used in many research institutions and universities [8,13,17,19,23]. We
built a 1/9 scaled IRW system to verify the existence of the three dynamic characteristics of
the IRW mentioned in Section 4. We collected and recorded the experimental phenomena
as presented in the Supplementary Materials Video S1.

As Shown in Figure 22¢,d, the roller is driven by a large-torque electric motor, and the
wheelset on the roller can be regarded as an IRW of a trailer truck. Figure 22b demonstrates
that a pair of yaw suspensions are installed between the traction plate and the IRW. A thrust
ball bearing is installed between the IRW and the traction plate, which makes the friction
in the yaw direction negligible, so when disconnecting the yaw suspension, the IRW can
yaw toward the traction plate freely. In the measurement system, two laser displacement
sensors, one yaw angle sensor, and a pair of rotary encoders are installed, as shown in
Figure 22a,b. Lateral displacement y, yaw angle ¢, and wheel rotational speeds w;, and
wr can be measured accurately, synchronously, and in real-time. With a rotary encoder
installed on the roller’s axle, the rotational speed of the roller can be stably controlled,
varying from 0 to 300 r/min with a less than £1 r/min fluctuation. Correspondingly, the
rotational speed of the wheels can vary from 0 to 2250 r/min.

As shown in Figure 23a, the two wheels are solid and adopt a 1/10 linear conicity
tread with a 4 cm length of the linear section in width. The surface profile of the roller
near the wheel-roller contact patches is shown in Figure 23b. The fundamental physical
parameters of this scaled IRW are shown in Table 5.



Appl. Sci. 2024, 14, 1548 22 of 34

yaw st (0) 4!

Figure 22. The scaled IRW experimental roller rig. (a) Back view; (b) top view; (c) side view;

(d) oblique view.
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Figure 23. The profile design for the experiments. (a) Wheel tread; (b) roller surface.
Table 5. The scaled IRW’s parameters in experiments.
Symbol Definition Value
m Total mass of IRW 10.62 kg
myy Wheel mass 292 kg
Jox Carrier’s inertia moment in the x direction 553 x 102 kg-m2
Jey Carrier’s inertia moment in the y direction 594 x 1073 1<g~m2

Jcz Carrier’s inertia moment in the z direction 532 x 1072 kg-m2
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Table 5. Cont.

Symbol Definition Value
Jwx Wheel's inertia moment in the x direction 3.08 x 1073 kg-m?
Jwy Wheel's inertia moment in the y direction 3.91 x 1073 kg-m?
Jwz Wheel's inertia moment in the z direction 3.08 x 1073 kg-m?
b Half lateral distance between the left and right wheels 0.083 m
70 Nominal wheel radius 0.04 m
A Equivalent wheel-rail tread conicity at the center position 0.1
dy Nominal roller diameter 0.6 m
my Extra vertical loads 5kg

5.1. Derailment

The yaw suspensions of the scaled IRW can be disconnected, as shown in Figure 24.
The experimental results in Figure 25 demonstrate that if the IRW rides at low speeds
without any yaw suspension, the states of the IRW will all diverge, which means that the
IRW will ride towards one side of the rail until the wheel flange contacts with the rail
profile, and the IRW will not come back to the center of the rail track again. The derailment
tendency caused by the gravitational restoring moment discussed in Section 2.2 is verified.

Figure 24. The scaled IRW without any yaw suspension.
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Figure 25. Experiment results of the IRW without any yaw suspension at average rotational

speed 200 r/min. (a) Lateral displacement; (b) yaw angle; (c) differential wheel rotational speed;

(d) y — ¢ phase diagram.
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It is necessary to re-install the yaw suspensions onto the IRW and re-conduct the
experiment at the same speed. All the states of the IRW converge, as shown in Figure 26,
which shows the same dynamic characters as the simulation results in Section 4.1.
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Figure 26. Experiment results of the IRW with yaw suspensions at average rotational speed
200 r/min. (a) Lateral displacement; (b) yaw angle; (c) differential wheel rotational speed;
(d) y — ¢ phase diagram.

5.2. Hunting

If the yaw suspensions are all disconnected, and the IRW is accelerated to the wheel
rotational speed of 895 r/min, a unique phenomenon similar to the hunting motion on the
SW will also appear on the IRW, as shown in Figure 27. The experimental results show that
the lateral displacement y and yaw angle i oscillate alternately. However, the differential
wheel rotational speed Aw also varies with y, which differs from the SW. This phenomenon
demonstrates that although the IRW rides without any yaw suspension, if the rotational
speeds of the wheels are high enough, the derailment tendency will be conquered, and the
self-guidance ability will be regained. The experimental results are in accordance with the
simulation results in Sections 3 and 4.1, and the phenomenon can be interpreted by the
gyroscopic effects discussed in Section 2.3.

It is necessary to re-install the yaw suspensions and let the IRW still run at a high speed.
The experimental results are shown in Figure 28. The critical oscillation velocity of the IRW
with yaw suspensions is 800 r/min. It demonstrates a counterintuitive phenomenon that
if yaw suspensions with relatively low yaw damping are installed, the critical oscillation
velocity of the IRW is lower than that without yaw suspensions. Furthermore, the frequency
of the oscillation is higher. It is analyzed that the function of the yaw spring on the IRW
is not to suppress the oscillation but to resist the derailment tendency caused by the
gravitational restoring moment. It is the yaw damper that is the main factor contributing to
oscillation suppression. When the derailment tendency is resisted or partially resisted, the
slight self-guidance effects caused by the gyroscopic moment dominate the lateral motion.
Then, the oscillation is prone to appear. If the longitudinal speed decreases, the oscillation
is suppressed by the yaw dampers, as shown in Figure 29. Due to the limitation of the
suppression ability of the yaw dampers on the scaled IRW in this paper, the oscillation
appears when the speed is high enough.
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Figure 27. Experiment results of the IRW without any yaw suspension at average rotational

speed 895 r/min. (a) Lateral displacement; (b) yaw angle; (c) differential wheel rotational speed;
(d) y — ¢ phase diagram.
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Figure 28. Experiment results of the IRW with yaw suspensions at average rotational speed

800 r/min. (a) Lateral displacement; (b) yaw angle; (c) differential wheel rotational speed;
(d) y — ¢ phase diagram.



Appl. Sci. 2024, 14, 1548 26 of 34

(@ 10 - T - T T (b) 6
_ 5 3
g o =
— >
>\
—5 —3
=10 -6
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time [s] Time [s]
(c) 10 d) 6
g 3 3
g 0 e 0
= e
3 >
<1 -5 —3
-10 -6
0 1 2 3 4 5 6 -10 -5 0 5 10
Time [s] y [mm]

Figure 29. Experiment results of the IRW with yaw suspensions at average rotational speed
620 r/min. (a) Lateral displacement; (b) yaw angle; (c) differential wheel rotational speed;
(d) y — ¢ phase diagram.

5.3. Offset Running

When the IRW enters the steady convergent process, the dynamic oscillations are
suppressed by the yaw suspensions, and the IRW only presents offset running, as described
by Equations (45)—(47) in Section 2.5. Here, we applied some instantaneous lateral distur-
bances in sequence on the traction plate. The process of each disturbance input is shown in

Figure 30.
v
—_—
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Figure 30. Apply instantaneous lateral disturbance force after the IRW enters the steady convergent
process. (a) Before disturbance; (b) under disturbance; (c) after disturbance.

Considering the IRW being installed on an IRW bogie, the traction plate shown
in Figures 22d and 30 can be regarded as the “bogie frame”. When disturbance force is
applied on the bogie frame, the bogie’s heading angle will change, leading to yaw angle
variations in the IRW. Because of the relation between the longitudinal creep forces and the
yaw angular velocity ¢ of the IRW in the wheel rotational direction, as demonstrated in
Equations (30) and (31) in Section 2.4, the rotational angular accelerations of the two wheels,
wr, and wg, will change. When the disturbance force is removed, because the longitudinal
creep forces also relate to the lateral displacement y, the rotational speeds of the two wheels
will continuously vary with y. The regulation law can be inferred as follows
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y\L/a)L < O,(J.JR > Oer \l//wR T

Then, the IRW will eventually reach another steady state with another (y, wr, wg).

As shown in Figure 31, several instantaneous lateral disturbances act on the IRW every
10 s. Because the disturbances are instantaneous and the longitudinal creep forces vary
simultaneously, the whole stabilization process is too short to be detected in detail. The
lateral displacement y and the differential wheel rotational speed Aw both change after
each disturbance, and almost remain unchanged during the intervals of the adjacent two
disturbance inputs.

The yaw angle sensor is installed on the yaw joint shown in Figures 22a and 30, so
only the yaw angle to the traction plate can be measured. Under the suppression effects
of the yaw suspensions, the yaw angle to the traction plate is almost unchanged during
the stabilization process of each disturbance. That is why the curve of i in Figure 31 stays
around 0° just with the sensor noise during the 120 s experiment.

The average lateral displacement y and average differential wheel rotational speed Aw
can be calculated in every interval of the adjacent two disturbances. The linear regression
results of these data points are demonstrated in Figure 32, which shows a positive linear
relation between Aw and y. According to Equation (47) in Section 2.5, the theoretical slope
of this line is 301.1, which means that the relative error is 9.4%. These experimental results
also demonstrate that the IRW should have many steady states, which shows the exact
characteristic of the offset running. That is, after the oscillation has been suppressed, the
states on the straight line described by Equation (47) all become steady states. They finally
converge to 0, but the steady convergent process is too long in practice, which means they
can be treated as steady states and lead to the IRW’s offset running. These features are in
accordance with the analysis in Section 2.5 and previous simulation results in Section 4.2.
Actually, if the real equivalent wheel-rail tread conicity and nominal wheel radius of
the experiment IRW can be estimated more precisely on the scaled roller, the calculated
theoretical slope is possibly more accurate.
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Figure 31. Experiment results of the IRW with yaw suspension at average rotational speed 575 r/min
with disturbance inputs several times. (a) Lateral displacement; (b) yaw angle; (c) differential wheel
rotational speed; (d) y — ¢ phase diagram.
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Figure 32. Linear regression results of the experiment data during IRW’s offset running at average
rotational speed 575 r/min.

6. Discussion
6.1. Initial State Selection

Although the initial states were not forced to a fixed point during the experimental
verification, the three types of the IRW’s dynamic characteristics, derailment, hunting,
and offset running, are still observable and recognizable. During about half a year of
conducting simulations and experiments, we have not encountered a situation where
initial state selections can change the type of the dynamic characteristics. For example, the
dynamic characteristic is always derailment if the IRW runs at low speeds and without yaw
suspensions, no matter where the initial states are. In contrast, the dynamic characteristic
is always offset running if the IRW runs at low speeds but with yaw suspensions, no
matter where the initial states are. We found that for an already designed IRW system,
only velocity, yaw stiffness, and yaw damping could significantly influence the type of the
dynamic characteristics in one specific experiment. We speculate these three parameters
prominently affect the system poles of the IRW’s root locus diagrams and are now working
on theoretical proof.

In view of the simulation results in Figure 20 and the analysis in Section 4.2, if proper
yaw suspensions are deployed, no matter where the initial states are, the IRW will expe-
rience two stages: a damped dynamic stage and a steady convergent stage. Firstly, they
all converge to the straight line described by Equation (47), as shown in Figure 20. Then,
they will move slowly along this straight line to the origin (y = 0,4 = 0, Aw = 0). Thisis a
reflection of the simulation results on the explanation and speculation above.

Additionally, since the sensors are high-precision and sensitive, especially the roller
continuously rotating during the whole experiment, it is difficult to ensure that we can put
the scaled IRW precisely on one fixed-state point every time we begin to record results.

6.2. Precision Issues

Machining tolerances and bearing frictions are the two potential precision issues
affecting the experimental results the most.

The larger the machine part is, the harder to guarantee the machining accuracy. The
largest machine part of the scaled IRW experimental system is the roller, which also can
input irregularity excitations on the IRW’s wheels and affect the dynamic processes. Thus,
the machining tolerances of the roller, especially of the surface profile near the wheel-
roller contact patches, should be reduced. We collaborated with a machining company
to build the experimental system. They have a large CNC lathe capable of machining a
cylinder up to 60 cm in diameter, with a machining process accuracy of £0.01 mm. The
geometry information of the surface profile was coded into the CNC lathe so the nonlinear
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surface profile could be well processed. We used a dial gauge to check several points of
the surface profile to check the machining tolerances, as shown in Figure 33. Because of
the nonuniformity of materials, the roller will slightly deform with time. When the heavy
scaled IRW with vertical loads runs on the roller, it will also slightly deform. In addition,
the assembling clearances in the whole mechanical system deteriorate the machining
working accuracy. Overall, the machining tolerances cannot be decreased to £0.01 mm. We
have made three versions of the experimental systems and can guarantee the machining
tolerances within +0.1 mm of the best one.
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Figure 33. The machining tolerance test of the roller’s surface profile near the wheel-roller contact
patches. (a) The test points; (b) a dial gauge for checking the machining tolerances.

The three most important points for decreasing bearing frictions are guaranteeing
installation accuracy, adopting high-quality bearings, and lubricating bearings before
experiments. The carrier plate was processed in a CNC drilling and milling machine with
a machining process accuracy of £0.01 mm. The thread holes can be located accurately
to guarantee installation accuracy. As shown in Figure 34, there are two types of relative
rotations on the scaled IRW. One is the wheels’ rotational motion to the carrier, and the other
is the IRW’s yaw motion to the traction plate. The ball bearings and thrust bearing were
bought from an online professional machine parts supplier, MiSUMi, to reduce rotational
frictions. The bearings” accuracy satisfied the Japanese standard JIS B 1514 Class 0 [24],
meaning the rotational frictions of the bearings themselves are small enough. Moreover,
we lubricated these bearings before experiments to decrease the bearing frictions.

all bearing assembly

Figure 34. Bearings’ installation on the scaled IRW.

Due to machining precision issues and the unavoidable bearing frictions, it is not reason-
able to compare the experimental results of the scaled IRW with the one built in SIMPACK
2018 point by point in the time domain. Although we have made three sets of the experimen-
tal systems and chose the best one, the least machining tolerance of the roller is 0.1 mm,
which can still cause unwanted irregularity input and influence the results. As shown in
Figures 26 and 29, the high-frequency oscillations in the steady convergent process demon-
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strate the impact. The amplitude of the high-frequency oscillations on the differential rotational
speed curve in Figure 29 is about 0.5 r/min. According to Equation (47), the corresponding
lateral displacement y is 0.162 mm, which is very close to the machining tolerances of the roller.

However, the demonstrations of the three types of dynamic motions and the steady
convergent process are not affected. The derailment, hunting, and offset running are still
observable and recognizable. The experimental results are still in accordance with the
theoretical analysis and the phenomena found in simulations.

6.3. Center of Gravity Position

Although no parameters directly indicate the center of gravity position in the lateral
direction in the differential equations of the IRW’s dynamics, the center of gravity position
can affect the vertical loads on the wheels of each side, and then the Kalker’s creep coeffi-
cients k17 and ky, of the two wheels will be different. In addition, if the mass distribution
changes, the principal axis of inertia will change, and the inertia moments to the geometric
rotation center will change. These variations will probably affect the dynamic process.

We changed the lateral position of the extra mass loads in the container, as shown in
Figure 35, and conducted some experiments. Let ye. denote the lateral position of the extra
mass loads’ gravity center to the axis of symmetry. The range of y.. for adjustment is from
—4 cm to 4 cm.

We found that the three dynamics characteristics still existed and could be observed.
However, the critical speed w, between the offset running and hunting motion significantly
varied with yec, as shown in Figure 36.

The faster the critical speed, the less potential to generate a hunting motion. The results
shown in Figure 36 demonstrate that when ye. = 0, the scaled IRW is most susceptible to
the gyroscopic effects, and the hunting motion can be sustained at rotational speeds higher
than 800 r/min. When |yec| = 4, according to the equation of gyroscopic moment described
as Equation (16) in Section 2.3, a larger gyroscopic moment is needed to cause the hunting
motion, meaning the scaled IRW is less prone to oscillate below the critical speed.

(b)

Figure 35. The center of gravity position of the extra loads in the lateral direction. (a) Centered;
(b) off-center.

Additionally, the effect of the gravity center’s lateral position on the critical speed is
nonlinear. We speculated that it is related to the interaction between the variations in the
inertia moments and the variations in Kalker’s creep coefficients. With the extra loads” gravity
center becoming far from the axis of symmetry in the lateral direction, the inertia moments to
the geometric rotation center grow larger, which makes the scaled IRW less prone to oscillate.
However, the difference between the vertical loads on the two wheels also becomes larger,
which decreases the average Kalker’s creep coefficients and makes the scaled IRW more likely
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to oscillate. The farther the gravity center’s lateral position away from the axis of symmetry,
the more significantly the dynamics are affected by the variation in Kalker’s creep coefficients.
These two factors cause the nonlinear variations in w, with ye.. Nonetheless, more detailed
experiments and theoretical analysis are needed for solid confirmation.
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Figure 36. The experimental results of the critical speed w, with variations in yec.

Although the center of gravity position in the lateral direction can affect the dynamics
process according to the experimental results, the steady states of the IRW can still be
described by Equation (47) in Section 2.5. Because only the geometric parameters A and ro,
and the longitudinal speed v can influence the equation, the relation between Aw and y is
not affected by the center of gravity position in the lateral direction.

6.4. Future Works

Although the three types of IRW’s dynamics characteristics, derailment, hunting, and
offset running, have been observed and presented during experiments, some potential
areas are worthy of further exploration, listed as follows:

e  The critical speed between the convergent process and the hunting motion needs to be
determined theoretically or technically. It affects the security boundary in practice;

e Rail profile irregularities are prevailing and inevitable in practice. Whether the dy-
namic characteristics can be significantly affected needs to be verified on a real-life rail
track;

e  Only 1/10 linear conicity tread wheels are adopted in the present study. If nonlinear
tread wheels were adopted, as shown in Figure 37, the dynamics would become more
complicated and diversified;

e Inview of the IRW’s complex dynamics, how to design a reliable bogie structure and
robust control methods to conquer the derailment, hunting, and offset running at
different longitudinal speeds and how to realize a stabilized centered running state
urgently need to be explored.
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Figure 37. LM nonlinear wheel tread profile in the Chinese railway standard TB/T 449—2003 [25].

7. Conclusions

This paper reports on basic research investigating the dynamic characteristics of the
IRW and its underlying mechanisms. Compared to the previous research, the creepages
and creep forces are calculated separately on the wheels of each side. More importantly,
the effects of the gravitational restoring forces and the gyroscopic moment are carefully
considered and analyzed. An improved IRW model G2-IRW is derived through the Euler—
Lagrange theorem, from which the three dynamic characteristics of the IRW, derailment,
hunting, and offset running, are discovered and summarized. Simulations and scaled-
model experiments verified the existence.

For an IRW without any yaw suspension, the gravitational restoring moment leads to
derailment at low speeds, and the gyroscopic moment contributes to slight self-guidance
ability at high speeds. When yaw suspensions are installed, the yaw spring can effectively
prevent derailment at low speeds, and the yaw damper can effectively suppress hunting
motion at high speeds. However, because the self-guidance ability is relatively slight,
the IRW could stay in the offset running state for a long time. The mathematical steady-
states analysis demonstrates negative-exponential convergence effects under the act of the
gravitational restoring forces and an intrinsic linear relation of the IRW between the lateral
displacement and the differential rotational speed.

The improved mathematical model of the IRW proposed in this paper was built in
Simulink, and a model built in SIMPACK 2018 with the same set of model parameters was
generated. The simulation results demonstrated that the improved mathematical model
G2-IRW is much closer to the SIMPACK model than the classical one. In addition, a scaled
roller rig and a scaled IRW were designed and built. All three dynamic characteristics:
derailment, hunting and offset running, as well as the intrinsic relation law between the lat-
eral displacement and the differential wheel rotational speed, appeared in the experimental
results, through which the validity of the theoretical analysis is verified.

Supplementary Materials: The following supporting information can be viewed at: https://www.
youtube.com/watch?v=zikUywBYqPg or https://www.bilibili.com /video/BV1fK411b7Ga/, (ac-
cessed on 20 December 2023). Video S1: Dynamic characteristics of the IRW for railway vehicles.
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