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Abstract: The controlled source audio-frequency magnetotelluric method (CSAMT) stands out
for its economic efficiency and widespread application in geophysical monitoring. However, the
separate inversion of time-lapse monitoring data encounters challenges in comparing and identifying
abnormal changes due to variations in data fitting. Furthermore, the utilization of a method akin
to Cagniard apparent resistivity for inversion necessitates the simultaneous observation of at least
two components of the electromagnetic field, making it unsuitable for extensive three-dimensional
observations. This paper proposes a 3D time-lapse electric field inversion algorithm for CSAMT,
addressing the complexities in geophysical monitoring. The algorithm introduces two regularization
factors and defines an objective function with both temporal and spatial constraints. Synthetic
testing reveals the stability of the 3D time-lapse electric field inversion algorithm, demonstrating its
effectiveness in delineating underground variations. This solution resolves the challenges posed by
the independent inversion of time-lapse monitoring data.
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1. Introduction

Electromagnetic exploration and monitoring technology are extensively applied in
various domains such as coal [1], water [2], oil [3], gas, geothermal [4], engineering [5],
resource exploitation [6], scientific research [7], and environmental studies [8]. It offers tech-
nical advantages such as cost-effectiveness, efficiency, and non-invasiveness towards the
monitoring target. Despite the widespread use of electromagnetic monitoring technology,
challenges persist in the processing of time-lapse monitoring data. Analyzing abnormal
positions in monitoring results becomes intricate due to variations in data observation
conditions, noise levels, and the inversion fitting degree of the analytical method applied to
detect abnormal changes in monitoring targets. Particularly during the data preprocessing
stage, subjective human factors introduce variability, rendering the inversion results more
challenging to compare.

Electromagnetic monitoring typically forecasts the changes in underground struc-
tures by comparing inversion results and analyzing resistivity alterations. Hu et al. [9]
predicted the Sebei 2 gas reservoir by scrutinizing the resistivity residual profile using
two-dimensional inversion. Xie et al. [10] employed a time-lapse long-offset transient
electromagnetic sounding method to monitor oilfield waterflooding production. They
identified and predicted the underground oil production range through the resistivity
profile obtained via subtractive inversion. However, variations in observation equipment,
changes in observation conditions, and data preprocessing adversely impact data quality.
Concurrently, different noise levels in monitoring data, diverse fitting degrees of data, and
the choice of a prior model significantly influence the reliability of inversion results. Conse-
quently, the separation of inversion outcomes from time-lapse monitoring data can lead to
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inaccurate monitoring results. This was emphasized by Kim et al. [11], who demonstrated
that the isolated inversion of monitoring data can create false anomaly blocks, thereby
complicating the analysis of monitoring results.

To enhance the efficacy of inversion in highlighting changes in monitoring targets and
address the challenges arising from the separate inversion of monitoring data, numerous
scholars have conducted research. Daily et al. [12] employed the inversion of the ratio
between the initial data set and the subsequent data set to emphasize changes in the
underground electrical structure. Labrecque et al. [13] attempted to minimize the data
difference between the initial data set and the subsequent data set and its difference from
the response model. Loke et al. [14] rectified the initial model parameters of the inversion
data in each monitoring stage to mitigate false anomaly blocks generated by inversion.
Kim et al. [15] introduced a time-lapse inversion algorithm for the simultaneous inversion
of multiple time observation data, capable of handling data with distinct observation times
and varying noise levels. The aim is to eliminate random errors in multiple data sets and
underscore changes in the underground media over time. After Kim et al. [11] proposed
a 4D time-lapse inversion algorithm that put data sets and model parameters into the
space–time domain, many scholars continued to study the theory of time-lapse inversion.
Karaoulis et al. [16] refined the time-lapse resistivity inversion method by introducing
variable time regularization factors and improving the inversion parameter optimization
method. Hayley et al. [17] simultaneously inverted data sets and model parameters at
multiple time points, while Loke et al. [18] utilized the smooth constrained least square
method in conjunction with the L-curve parameter optimization method to enhance the
speed of time-lapse inversion. Liu et al. [19] refined the time-lapse algorithm by setting
inversion weights based on the quality of observation data, thereby improving inversion
reliability. Hu et al. [20] applied the time-lapse inversion algorithm to the CSAMT. Through
the study of the synthetic data test, it was found that time-lapse inversion cannot only
eliminate false anomalies but also obtain reliable inversion results in high noise or when
there is a large amount of missing observation data.

The controlled source audio-frequency magnetotelluric method (CSAMT) circumvents
reliance on random weak natural field source signals, mitigates issues related to the dead
band of natural field sources, and remains impervious to high-resistance shielding. This
method offers advantages such as a high signal-to-noise ratio and economical observation
costs. Due to the utilization of artificial sources in field construction, electromagnetic
noise environments are present; nevertheless, reliable signals can still be measured. This
characteristic makes it the preferred technology for electromagnetic monitoring applications.
CSAMT typically defines apparent resistivity similarly to MT Cagniard apparent resistivity
but is unsuitable for large-area three-dimensional observation due to the need to observe
the magnetic field. The method involves the simultaneous observation of two mutually
orthogonal electric and magnetic fields while sharing magnetic channels among multiple
electric channels during the production process. Any loss or noise contamination in the
magnetic data can impact the calculation of Cagniard apparent resistivity at multiple
sites [21]. Furthermore, a deviation in the horizontal direction of the magnetic probe
arrangement can introduce measurement errors in Cagniard apparent resistivity [22].

By altering the inversion strategy of the controlled source audio-frequency magne-
totelluric method to exclusively utilize the electric field component for inversion, the need
for magnetic field measurements is avoided. This not only avoids the issues caused by the
Cagniard effect but also leads to a significant reduction in the number of sites, equipment
costs, and field work expenses. Consequently, large-scale three-dimensional observations
using the CSAMT become more feasible.

To address the challenge of comparing separate inversions in large-area three-dimensional
measurements, a 3D time-lapse electric field inversion algorithm for CSAMT is proposed.
This algorithm leverages the electric field component for inversion, reducing instrument lay-
out requirements and rendering fieldwork more suitable for large-area three-dimensional
measurements. The algorithm discontinues the calculation of Cagniard apparent resis-
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tivity, thereby avoiding potential errors in the magnetic field measurement process. The
designed objective function not only incorporates model terms to impose constraints on
the inversion in model space but also introduces time-lapse terms to establish connections
among the inversion data at different time steps, thereby enforcing temporal constraints. A
function with temporal and spatial constraints is defined, and through formula derivation
and synthetic testing, the feasibility of the 3D time-lapse electric field inversion algorithm
is discussed. We designed two constantly changing high and low resistivity anomalous
bodies in the theoretical model. In the dynamic model, three time steps are selected to
calculate the forward responses and perform synthetic data testing. Various levels of noise
are introduced to the forward response for time-lapse inversion, testing the reliability of the
algorithm. The synthetic test results indicate that the 3D time-lapse electric field inversion
algorithm for CSAMT performs well, effectively addressing the challenge of comparing
data with different noise levels. The observation method aligned with the algorithm proves
suitable for large-scale three-dimensional measurements. The algorithm, which incorpo-
rates dual constraints in both temporal and spatial dimensions, demonstrates stability and
feasibility in the field of monitoring.

2. Methodology
2.1. Electromagnetic Field Governing Equation

The three-dimensional forward modeling employs the staggered sampling finite
difference method. Under the international system of units, the harmonic factor is expressed
as eiωt. Combining this with the constitutive equation, Maxwell’s equations are derived,
leading to the Helmholtz equation corresponding to the electric field (Equation (1)):

∇×∇× E + iωµ0σE = −iωµ0Js (1)

In the above formula, ∇ is the Hamiltonian operator, E is the electric field strength, and
i, ω, µ0, and σ represent imaginary unit, angular frequency, permeability, and conductivity,
respectively. For the electric dipole source, the ground source is denoted as Js = Idlδ(r − r0),
where I is the amplitude of transmission current, dl is the length of ground source, and δ(r)
is the unit impulse function. Singular points are formed at the field source r = r0 because
of the properties of the impulse function. The resistivity model σ is decomposed into the
background model σp and anomaly model σs. The total field E = Ep + ES is obtained by
the strategy of obtaining the primary field (background field) Ep, and the secondary field
ES separately addresses the singularity problem at these points [23]. Finally, the secondary
field control equation of the frequency-domain controlled source electromagnetic method
is derived (Equation (2)):

∇×∇× Es + iωµ0σEs = −iωµ0(σ− σp)Ep (2)

2.2. Electric Field Responses

In background model σp, the Fast Hankel transform is applied to calculate the primary
field (background field) Ep, as expressed in Equation (3):

Ep =
Idl

2πr3σp ·G·
[(

3 cos2 φ − 2
)
− e−ikr(1 + ikr)

]
(3)

where Idl is the dipole moment, σp is the conductivity of half space, k =
√

iωµσ is the
wave number, ω is the angular frequency, r is the distance from the site to the center point
of the transmitting source (i.e., the transmitter and receiver distance), and φ indicates the
included angle between the sites and the center of the transmitting source. G is the factor
related to the resistivity and thickness of the layers.

For the secondary field (induced field) ES in the anomaly model σs, the staggered grid
finite difference method using the Yee grid [24] is applied. The secondary field ES is defined
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at the midpoint of the grid element edge. The staggered grid finite difference method is
depicted in Figure 1.
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The control Equation (2) is discretized in the X, Y, and Z directions. The electric field
on each edge of the cells can be represented by the 12 electric field components around
it. According to the rectangular grid, Nx·

(
Ny − 1

)
·(Nz − 1) + Ny·(Nx − 1)·(Nz − 1) +

Nz·(Nx − 1)·
(
Ny − 1

)
, equations are formed. The linear algebraic Equation (4) is obtained

by finite difference discretization of rectangular grids:

K·Es = S (4)

In Equation (4), K is a large symmetric sparse coefficient matrix, S is the vector related
to the boundary conditions and the primary field, and Es is the value of the secondary
field to be solved. This study adopts the first boundary condition, also known as Dirichlet
boundary condition. By employing the quasi-minimal residual method (QMR) to solve the
system of Equation (4), the electric field components at each node are obtained.

2.3. Objective Function

The objective of inversion in electromagnetic exploration is to deduce the correspond-
ing geoelectric model based on the functional relationship between observation data and
geophysical model parameters. During the monitoring process of the controlled source
electromagnetic (CSEM) method, dynamic changes in the underground electrical structure
result in alterations to the electric field responses measured on the ground. The mapping
relationship between the electric field values observed at different times and the resistivity
model at the corresponding time is established for inversion. The 3D time-lapse electric
field inversion algorithm for the controlled source audio-frequency magnetotelluric method
(CSAMT) is defined as follows (Equation (5)):

σs = arg min (φd + λ(φs + βφt)) (5)

where φd is the data fitting residual term, φs is the model smoothness constraint term, φt
is the time-lapse constraint item of the model, and λ and β are regularization factors.

2.3.1. Data Fitting Residual Term and Model Term

The data fitting residual term is defined by the following equation (Equation (6)):

φd = {Wd[D − F(M)]}T{Wd[D − F(M)]} (6)
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The model term is defined by the following Equation (7):

φs =
(

M − Mre f

)T
C−1

m

(
M − Mre f

)
(7)

In Equations (6) and (7), D = [d1 d2 · · ·dnt]
T is the observed electric field response

dataset, with dimensions of (nd × nt)× 1. nd refers to the number of data at one time
step, nt refers to the number of time steps, and dnt is the electric field response data
measured at nt time step. F(M) is forward response; Wd is the data weighting matrix:
Wd = diag

{
1/σ1, 1/σ2, · · · , 1/σ(nt×nd)

}
. M = [m1 m2 · · ·mnt]

T is the resistivity parame-
ter of the model corresponding to each observation time step. Mref is the reference model
resistivity parameter. M is an iterative, and the dimensions of Mref and M are (nm × nt)× 1.
nm represents the number of rectangular grids, and C−1

m is the linear smooth matrix of
the model.

2.3.2. Time Lapse Term

Time-lapse inversion constrains the changes in models over time by introducing
a time-lapse term to the objective function. The time-lapse term is defined as follows
(Equation (8)):

φt = ∑∞
nt=1 ∥ mnt − mnt−1 ∥2 = MTCTCM (8)

where mnt is the model parameter at time step nt, C is the coefficient matrix, and the
expression is given in Equation (9), where nt is the total number of measured time steps.
The time-lapse term establishes connections between spatial models at different time steps.
Each iteration simultaneously inverts the observation data at nt time steps and obtains
the underground electrical structure model at nt time steps. The mutual constraint of the
observation data at each time step facilitates the realization of the time constraint effect.

C =


I1 −I2 0 0 0
0 I2 −I3 0 0
0 0 I3 −I4 0

0 0
. . . . . . 0

0 0 0 Int−1 −Int

 (9)

2.3.3. Regularization Factor

The Tikhonov regularization method [25] has gained widespread acceptance and
application for addressing ill-posed inverse problems. Regularized inversion mitigates the
multiplicity of solutions by incorporating model constraints into the objective function. The
regularization factor serves as the compromise coefficient between the data fitting function
and the model stability function. A higher value of the regularization factor emphasizes
model constraint, often resulting in underfitting of the data [26]. Conversely, a lower value
of the regularization factor indicates a bias towards data fitting, potentially leading to false
structure due to the influence of data noise, commonly known as overfitting. Therefore, the
choice of the regularization factor significantly impacts the inversion outcome, playing a
pivotal role in the inversion effect [27].

The symbol β represents the regularization factor of the time-lapse term and mathe-
matically signifies the weight of the time-lapse term’s influence on the inversion result. β
controls the similarity between models at each time step, representing temporal constraints.
In this algorithm, β is set to a fixed scalar value, indicating that the differences between
models do not change in the time dimension. A larger β value implies a closer iterative
trend model, suggesting minimal differences between models at each time step. Conversely,
a smaller β value reduces the weight of the time-lapse term’s influence on inversion results,
allowing greater differences in model changes at each time during the iteration process.
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When calculating measured data, the value of β can be determined based on the variance
of the electric field response section at each time step.

The effect of λ aligns with that of the Tikhonov regularization factor. To achieve both
data fitting and dual constraints of temporal and spatial considerations, λ is gradually
decreased when the number of iterations increases and the root-mean-square (RMS) of the
data fitting difference no longer decreases. This reduction in λ is expressed by Formula (10):

λk+1 = 0.1·λk (10)

2.3.4. Data Fitting Difference Formula

The parameter reflecting the quality of inversion results, the root-mean-square (RMS)
misfit, is defined as follows (Equation (11)), where N = nt × nd denotes the total number of
sites. The parameter α serves as a given data deviation used to assess the reliability of the
measured data. In ideal circumstances, the disparity between the forward response and the
measured data should be zero. A smaller value of α indicates higher data reliability, while
a larger initial RMS necessitates an increase in the number of iterations for the inversion to
enhance the fitting degree.

RMS =

√
1
N ∑N

i=1

(
di − fi(m)

α

)2
(11)

2.4. Time Lapse Inversion
2.4.1. Gradient of the Objective Function

The inversion algorithm in this study adopts the nonlinear conjugate gradient (NLCG)
method, with the gradient derived based on the research findings of Lin et al. [28]. To avoid
computational errors caused by the increasing number of inversion time steps leading to
the accumulation of gradients, the gradients were normalized based on the number of time
steps. The gradient representation of the objective function for the 3D time-lapse electric
field inversion algorithm for CSAMT is given by the following Equation (12):

g(m) = (σs)
′ = 1/nt(φd)

′ + λ/nt(φs)
′ +

λβ

nt − 1
(φt)

′ (12)

To address the challenges of computing the Jacobian matrix for obtaining the gradient
g(m) of the objective function, the classical “pseudo-forward” method is employed to
overcome the difficulties associated with directly solving for the Jacobian matrix.

2.4.2. The Process of 3D Time-Lapse Electric Field Inversion

The general process of the 3D time-lapse electric field inversion algorithm for CSAMT
can be roughly divided into the following four steps:

1. Import data: Inversion parameters such as regularization factors λ and β, minimum fit-
ting error ε, observed data D, model parameters M, and prior model parameters Mref;

2. Forward modeling: Calculate the electric field response F(M) for each time-lapse model;
3. Iteration assessment: Evaluate the objective function (σs) and determine the termina-

tion condition for inversion based on the root-mean-square RMS being less than ε.
4. Model update: Utilize the gradient of the objective function g(m) in Equation (12).

By choosing the negative gradient direction as the descent direction for the objective
function to calculate the search direction p, update the step length α, and then update
the model parameters using the formula m = m + αp. The detailed calculation process
refers to Figure 2.

In this algorithm, the minimum fitting error ε is set to 1.05. When the RMS reaches the
minimum fitting error of 1.05, the program determines that the inversion result is closest to
the true underground situation and terminates the iteration.
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Figure 2. Flow of time-lapse electric field inversion algorithm.

3. Synthetic Test

Synthetic data testing was conducted on a Linux system using the IFort compiler
for compilation. The device’s CPU model is AMD5950X, and it has a memory capacity
of 128 GB.

Various levels of noise were introduced to the theoretical responses, and a 3D time-
lapse electric field inversion algorithm for CSAMT was executed with varying noise levels
and inversion parameters. The stability and reliability of the testing algorithm, along with
the impact of time-lapse terms, were assessed. During the monitoring process, the noise
level of the measured data is subject to variation due to changes in instrument status,
measurement environment, and human electromagnetic noise. Hence, it is essential to
conduct inversion tests on algorithms using various noise data or noise pollution data. The
levels of added noise and the inversion parameters are detailed in Table 1.

Table 1. Testing data noise levels and inversion parameters.

Parameter 1t 2t 3t Beta Lambda

Test 1 2% 8% 5% 10 0

Test 2 2% 8% 5% 10 0.1

Test 3 2% 50% 5% 10 0.1

3.1. Layout of Survey and Time-Lapse Model

The simulated survey layout is depicted in Figure 3. The center of the transmitting
source is situated at 6000 m in the x-direction, with a length of 1000 m and a power supply
current of 10 A, indicated by the red line in the figure. There are 25 survey lines, each
spanning 1200 m and comprising 25 sites per line, spaced 50 m apart, totaling 625 sites, as
denoted by the black dots in the figure. The simulated observations span 18 frequencies
ranging from 8192 to 0.1 Hz (8192, 4096, 2048, 1280, 640, 320, 160, 80, 64, 32, 16, 8, 4, 2, 1, 0.5,
0.25, 0.1).
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In the dynamic model of the time-lapse model containing high and low resistivity
anomaly blocks, 1t, 2t, and 3t time steps are selected for CSAMT forward and time-lapse
electric field inverse testing. The relationship between the scale of the resistivity anomalies
and the site positions at three time steps is illustrated in Figure 4.
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Figure 4. Relationship between the time-lapse model’s resistivity anomaly blocks and the positions
of the sites.

In Model O, within a background stratum of 100 Ω·m, a model is constructed fea-
turing a high-resistivity block of 2000 Ω·m with a continuously decreasing scale and a
low-resistivity block of 10 Ω·m with a continuously increasing scale, as illustrated in
Figure 4. Nx, Ny, and Nz represent the number of grids employed for the purpose of
discretization. The forward calculation of three time-step models employs the identical
grid discretization. The background medium is omitted in the figure, with only the varying
subsurface media displayed.
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3.2. Time-Lapse Data Synthesis

Comparing independent inversion results may be challenging due to variations in
noise levels and fitting degrees. Particularly, significant contamination of the data with
noise at specific instances can result in inaccurate monitoring outcomes. We introduced
noise of comparable magnitude to simulate smooth monitoring, incorporate elevated noise
levels to replicate noise pollution data, and simulate monitoring failures. We performed
numerous tests using synthetic data to assess the algorithm’s stability, its capability to
address the challenge of comparing monitoring results, the reliability of pollution data, and
the influence of inversion parameters on the outcomes.

Figure 5 presents the synthetic data used for the time-lapse model and algorithm
testing, with the black dots indicating the positions of the observation sites. Time-lapse
Model 1t, Time-lapse Model 2t, and Time-lapse Model 3t represent the slices of the forward
responses (Ex = 16 Hz) at three different time steps for the time-lapse model. Gaussian
noise at levels of 2%, 8%, and 5% was added to the forward responses of the three time steps
for the time-lapse model at 18 frequencies. Two different time-lapse inversions, Test 1 and
Test 2, were conducted with different inversion parameters to discuss the time constraint
effect of the time-lapse term. The noise level of Time-lapse Model 2t was increased to 50%
for Test 3, addressing the anti-noise effect of the time-lapse inversion.
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3.3. Inversion Results for Time-Lapse
3.3.1. Inversion Parameters

Theoretically, when RMS = 0, the resistivity model derived from inversion aligns
with the underground resistivity distribution. However, it is not possible to achieve an
inversion result with RMS = 0 due to the presence of noise. Figure 6 illustrates a smooth
decrease in RMS with an increasing number of iterations, along with a smooth descent
curve. This indicates the stable convergence of the inversion process and reflects the
stability of the algorithm.
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Analyzing the RMS reduction curves of Test 1 and Test 2 in Figure 6 reveals that the
incorporation of the time-lapse regularization factor β decelerates the rate of RMS reduction
in data fitting. This phenomenon can be attributed to the diminished influence of the data
term in the inversion process, a consequence of integrating the time-lapse term. In the
synthetic data test, the deviation value α remains constant. However, in Test 3, certain
measurement points are impacted by high noise, leading to a higher initial RMS value
compared to Test 1, as depicted in Equation (11). Test 3 underscores the challenge of fitting
high-noise data, resulting in a more gradual reduction in RMS.

Based on the selected plotting results in Figure 6, profiles at z = 200 m and x = 0
are separately depicted in Figure 7. In Figure 7, the red box corresponds to the range of
high-resistivity anomaly blocks at each time step, while the blue box corresponds to the
range of low-resistivity anomaly blocks. The results indicate that the 3D time-lapse electric
field inversion algorithm for CSAMT has, to varying degrees, recovered the positions and
resistivity values of the designated high and low resistivity anomaly blocks.

Figure 7a displays the inversion results of Test 1 with β = 0, where the time-lapse term
does not impact the inversion results. Figure 7b illustrates the inversion results of Test 2
with a time lapse factor of 0.1. When comparing the horizontal slice results in the two
figures, it is observed that the high resistivity volume range within the red box is closer to
the theoretical position, and the false anomaly range around the blue box is significantly
reduced. β is a regularization factor that theoretically spans from 0 to ∞. However, if
the value is excessively large, it prevents the inversion from converging, whereas if it is
too small, it fails to provide a constraining effect. Upon examining Figure 6, it is evident
from the RMS descent curves of Test 1 and Test 2 that the inclusion of a time-lapse term
hampers the convergence rate of the inversion process. Despite Test 1 having a lower RMS
value compared to Test 2, the results of Test 2 align more closely with the theoretical model,
suggesting that the time-lapse term facilitates the inversion process.
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We evaluated the algorithm’s effectiveness in mitigating inverse crime [29] by varying
the grid size and number and performing the time-lapse electric field inversion in Test 2.
The inversion results are depicted in Figure 8a. The algorithm demonstrates stability and
does not exhibit any prominent issues of inverse crime. Figure 6 depicts the RMS decline
curve of the inversion crime test, represented by the green curve.
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In Figure 8b, the data yielded in Test 3 were highly noisy and polluted, and the time-
lapse inversion accurately recovered the locations of high and low resistivity anomaly
bodies. Moreover, in Test 3, the time-lapse data at three different noise levels, 1t, 2t,
and 3t, were iteratively inverted simultaneously, mitigating the challenge of comparing
independently inverted data at each time step due to varying fitting degrees.

3.3.2. Results and Discussion

In the objective function, λ controls the smoothness of the model in spatial terms,
with a larger value resulting in a smoother inverted model. On the other hand, β governs
the degree of temporal variation in the model. A comparative analysis of the inversion
results of Test 1 and Test 2 reveals that the time-lapse term enhances the inversion accuracy.
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A larger β value suppresses changes in the model at adjacent time steps, yielding more
similar inversion results at each time step. Conversely, a smaller β value imposes fewer
constraints on the model at each time step, allowing for more liberal changes in the model
at adjacent time steps. The inclusion of the time-lapse term in the results of Test 2 not only
improves the accuracy of recovering the low-resistivity anomaly block but also reduces
false anomalies around the blue box. Temporal constraints holds great significance for
monitoring purposes as they not only enhance the ability to identify anomalies but also
enable a more efficient comparative analysis of the monitoring results.

The time-lapse calculation represents the disparity between model parameters, while
the weight in inversion aims to minimize the discrepancy between the models. Thus, even
when the data are heavily contaminated with noise, accurate results can still be obtained
through the process of inversion.

4. Conclusions

The conclusions drawn from the synthetic data testing of the 3D time-lapse electric
field inversion algorithm for CSAMT are as follows:

The algorithm, incorporating dual constraints in both temporal and spatial dimensions,
demonstrates stability and feasibility, exhibiting robust performance in inverting monitor-
ing data across various noise levels. The algorithm demonstrated its reliability by adjusting
the size and number of discrete grid cells without significant inversion crime issues. By
implementing time-lapse inversion on the observational data at each time step, the algo-
rithm effectively addresses the challenge posed by the separate inversion of the monitoring
data, enhancing the comparability of the results. Independent inversion, particularly when
handling noise pollution data, is susceptible to generating inaccurate monitoring outcomes.
Conversely, time-lapse inversion can be executed seamlessly, showcasing commendable
performance under the combined influences of temporal and spatial constraints.

Directly inverting a single electric field component, without the need for calculating
the Cagniard apparent resistivity, yields reliable inversion results. This implies that during
field operations, the monitoring objectives of the controlled source audio-frequency mag-
netotelluric method can be attained by observing only a single component of the electric
field. The technology of CSAMT monitoring combined with this algorithm is well-suited
for large-scale three-dimensional measurements in a diverse environment.
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