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Abstract: Recent speech enhancement studies have mostly focused on completely separating noise
from human voices. Due to the lack of specific structures for harmonic fitting in previous studies and
the limitations of the traditional convolutional receptive field, there is an inevitable decline in the
auditory quality of the enhanced speech, leading to a decrease in the performance of subsequent tasks
such as speech recognition and speaker identification. To address these problems, this paper proposes
a Harmonic Repair Large Frame enhancement model, called HRLF-Net, that uses a harmonic repair
network for denoising, followed by a real-imaginary dual branch structure for restoration. This
approach fully utilizes the harmonic overtones to match the original harmonic distribution of speech.
In the subsequent branch process, it restores the speech to specifically optimize its auditory quality to
the human ear. Experiments show that under HRLF-Net, the intelligibility and quality of speech are
significantly improved, and harmonic information is effectively restored.

Keywords: speech enhancement; denoising; harmonic; fast Fourier convolution; dual branch structure

1. Introduction

In both real-world production and living scenarios, as well as modern communication
devices, interference with audio signals is inevitable. Part of the interference originates
directly from the real-world environments where voice information is collected, and part
arises from signal degradation during compression, transmission, and sampling in elec-
tronic devices. This phenomenon is referred to as voice degradation. Speech enhancement
technologies aim to remove background noise from audio as much as possible while retain-
ing the original speech information. Traditional speech enhancement methods generally
work based on statistical signal principles, such as spectral subtraction [1], minimum mean
square error estimation [2], filtering methods including Wiener filter [3] and Kalman fil-
ter [4], and subspace enhancement methods that use cross-spectral pairs for frequency
filtering of subspace signals [5]. However, these traditional methods often struggle to effec-
tively reduce noise, especially in the presence of multiple noise sources or when the noise
frequency range is concentrated. To devise a more versatile filtering method, S. P. Talebi
proposes an approach based on fractional calculus [6], aiming to address setting α-stable
statistics more effectively, which provides an alternative solution to the requirements of
modern filtering applications.

Currently, the mainstream speech enhancement methods based on deep learning
follow two technical approaches. One is time-domain-based, utilizing neural networks
to directly infer the spectrum of pure speech from noisy speech, which may produce
better harmonic results but require more computational resources and may be less effective
in suppressing non-stationary noise compared to time-frequency domain methods [7].
Time-domain methods for waveform processing can significantly improve the Signal-to-
Distortion Ratio (SDR) [8], but they may lead to a decrease in auditory perception. The
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primary reason for this issue is that the system, working in only one transform domain,
struggles to filter out redundant information in the background noise. The other approach
is frequency-domain-based, typically using masking techniques. The basic idea is to
combine speech and noise signals in a certain way so that the predicted mask can accurately
separate speech and noise signals. Complex Ideal Ratio Mask (CIRM), based on Fourier
transformation and the concept of a crude ideal ratio mask, not only considers amplitude
information but also phase information to preserve the phase information of the original
speech signal and avoid signal distortion due to amplitude changes [9].

Previous research often underestimates the importance of phase information in speech
repair, leading to unavoidable speech distortion in denoised speech, which significantly
interferes with subsequent speech recognition and speaker recognition tasks, reducing their
performances. Hu et al. demonstrate [10] that better utilization of phase information in
speech signals can significantly improve the quality of enhanced speech, achieving better
performances with less loss. Direct estimation of phase information in spectrograms is
challenging, often resulting in large neural networks [11]. To allow the phase information
of the speech to play a greater role in the denoising process, researchers have made a
considerable amount of effort. Inspired by the Taylor series, Li [12] and others propose
a decoupled speech enhancement framework, dividing the optimization problem of the
complex spectrum into two parts: the optimization problem of the magnitude spectrum
and the estimation of complex residues. To refine the phase distribution, they define the
difference between the rough spectrum and the target spectrum to measure the phase gap.
A dual-branch enhancement network is introduced in [13], where the complex spectrum
refinement branch collaboratively estimates the amplitude and phase information of speech
by taking in both the real and imaginary parts. In the work of [14], a dedicated path
encoder-decoder is designed to restore phase information and generate the phase spectrum
for predicting speech. Experimental results have shown that the neural network’s receptive
field significantly affects the efficiency of model parameter utilization. Therefore, expanding
the model’s receptive field to be more sensitive to contextual information can achieve better
phase understanding. Additionally, processing amplitude and phase spectra information
as separate branches in neural networks can better utilize phase information in speech
signals, offering better interpretability.

Therefore, in this paper, we propose the harmonic repair large frame enhancement
model, HRLF-Net, which is a dual-branch speech enhancement model designed with
specialized modules to predict the harmonic distribution of speech. In the real-part branch
of the network, we utilize fast Fourier convolutional operators instead of traditional 2D
convolutions for amplitude spectrum repair, which effectively expands the model’s recep-
tive field and significantly improves the performance of speech harmonics. An architecture
with dilated DenseNet and deconvolution blocks is deployed in the imaginary branch to
fully utilize speech phase information while preserving the temporal characteristics of the
speech signal, making the enhanced speech more accurately reflect the dynamic changes of
the original speech. HRLF-Net is tested on two public datasets, VoiceBank + DEMAND [15]
and DNS Challenge 2020 [16]. Experimental results show that it outperforms most existing
models and achieves state-of-the-art results in terms of Perceptual Evaluation of Speech
Quality (PESQ).

2. Proposed Methods

This article primarily addresses the issue of standard single-channel speech enhance-
ment, aiming to construct a neural network whose target is to fit CIRM that transforms
waveforms with additive noise into pure speech waveforms. The following sections
will provide detailed descriptions of the key components and the overall composition of
the model.
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2.1. Fast Fourier Convolution (FFC)

The Fast Fourier Transform (FFT) converts time-domain signals into frequency-domain
signals. Compared to the Short-Time Fourier Transform (STFT), which decomposes time-
domain signals into spectral components of a series of window functions, FFT first decom-
poses the signal into a sum of sine and cosine functions to represent the spectrum, thus
efficiently computing the Discrete Fourier Transform and obtaining the spectral information
of the signal.

For traditional fully convolutional models, the growth of the effective receptive field is
too slow, and the lack of an effective context-capturing structure often results in suboptimal
enhancement effects, a problem that is more prominent in wideband, long-duration audio.
In the amplitude spectrogram of speech, harmonic structures often form periodic patterns, a
feature that is suitable for processing with FFC, i.e., repetitive microstructures. Considering
the model’s aim to expand the neural network’s receptive field for speech context, using
FFC is more appropriate for analyzing the entire speech spectrum. It is a widely used
non-global operator in the field of Computer Vision (CV) and can replace traditional
convolution layers in network architectures, playing a significant role in repairing damaged
periodic backgrounds.

In computer vision research, the Fourier transform generally applies a complex two-
stage method. In this work, we set the working domain of the Fourier transform as the
frequency component of the feature map. The basic structure of FFC is shown in Figure 1.
Specifically, the basic structure of FFC is implemented as follows.
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Figure 1. The basic structure of FFC.

• Before the signal S enters the operator, it is divided along the feature channels of the
feature map into the local block Sl and the global block Sg, where the local block Sl
will use adjacent local blocks as learning objects, and the remaining global block Sg is
used to obtain speech context associations. We use parameter α to control the division
ratio of channels.

• To cover the entire spectrum with the receptive field of the global block, the original
feature space is transformed into a specific domain on the global Fourier unit, and after
the spectral data is updated, it is restored to a spatial format. Meanwhile, additional
segmentation and combination are performed in the local Fourier unit to make it
more sensitive to spectral detail features. Finally, the output data of the two units are
connected using a residual connection.

• The results of the global and local blocks are simply connected to form the output of
the complete operator. At this point, the entire FFC module is fully differentiable and
can replace all traditional convolutions.
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We apply a real one-dimensional fast Fourier transform on the frequency dimension
of the input feature map at the global component level and then concatenate the real and
imaginary parts of the spectrum along the channel dimension. Next, we apply convo-
lutional blocks on the frequency domain and finally restore the spatial structure using
inverse FFT.

2.2. The Harmonic Repair Module

Although speech signals can be extensively damaged due to noise, the harmonic parts
usually reside in higher energy regions and are not completely masked. Since deep learning
models prioritize fitting high-energy and more robust (prominent) harmonic structures
due to gradient descent and convergence [17], harmonic waveforms exhibit significant
comb-like features, meaning that even if part of them are damaged by noise, the remaining
parts contain information that can infer the original harmonic distribution. To model
harmonic data in the spectrum, the model uses a harmonic-to-fundamental frequency
transformation matrix Q [18], which calculates the corresponding harmonic distribution
using the predicted fundamental frequency. The input XP ∈ RT×F, after convolution energy
normalization, produces a query-key matrix K. Matrix multiplication between K and Q
and the application of the sigmoid method obtains a confidence vector for the pitch of the
fundamental frequency, indicating the likelihood of each candidate value corresponding to
the pitch.

The harmonic repair module uses high-resolution comb tooth spacing to infer the
damaged harmonic distribution and fine-tunes the result using convolution. Figure 2 shows
the structure of the harmonic repair module. Unlike the traditional attention mechanism,
which calculates attention weights using query vectors and key-value pairs, the harmonic
repair mechanism calculates and repairs harmonic information based on the spectral
and harmonic-pitch converter, using a residual connection [19] to mitigate the vanishing
gradient problem. The locality of convolution is the fundamental guarantee for harmonic
modeling, so the module retains the spectral structure even after processing [20].
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The harmonic distribution H can be represented as so f tmax
[
sig

(
K·QT)]. XP and H

are rectified using one-dimensional convolution, and then H is applied to XP for element-
wise multiplication, and the result is convolved to output Xout. Using the harmonic repair
module can effectively repair and restore voice-focused frequency bands in audio and
suppress the impact of harmonic-like noise in noisy speech on the enhancement results.

2.3. The Harmonic Fading-Out Module

Due to the absence of channel interaction in the harmonic repair module, there is
redundancy in the restoration process of mid-to-high frequency harmonics, negatively
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impacting the fidelity of speech timbre restoration. The harmonic fading-out module
extracts spectral information from multiple angles and filters out potentially over-restored
comb-like waveforms. It connects the harmonic repair module to two stacked multi-head
attention [21] modules, one unfolding along the channel dimension and the other along the
frequency dimension.

As illustrated in Figure 3, this module first reshapes the input data X into RC×F×L

and uses three linear layers to obtain the Q, K, and V keys. L and F, respectively, represent
the number of time frames and frequency bins. After rectification via Scale, Qc and Kc are
multiplied and then combined with Vc, and finally, the result is concatenated with Xc to
form a residual connection. The output is then used as the input for the next layer of the
frequency attention module. The frequency attention also operates in a similar structure,
ultimately producing the output of this module X ∈ RC×L×F.
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2.4. Time Series Modeling

To avoid the issues caused by the 3S paradigm adopted in the recent Continuous
Speech Separation (CSS) systems [22–24], such as the increased computational burden due
to multiple overlaps between windows, and the dilemma of choosing window length for
the performance and stitching stability, for time series modeling, the enhancement network
employs Long Short-Term Memory (LSTM) layers with memory skipping to capture the
contextual information of speech [25]. This layer is an improvement on LSTM [26], and the
traditional LSTM mapping function can be represented as

Ŵ, ĉ, ĥ = LSTM(W, c, h), (1)

where W ∈ RT×N is the input sequence, and c and h are the initialized cell state and hidden
state, respectively. On the left side of the equation, Ŵ represents the output sequence, while
ĉ and ĥ are the updated cell state and updated hidden state, respectively. Generally, it is
believed that ĉ encodes the entire long-term memory sequence to form long-term memory,
while ĥ is used for short-term memory of the processed sequence.

In the time domain task of speech, T in the input sequence W ∈ RT×N can usually
take a very large value. W can be divided into several smaller segments

[
w1

l , w2
l , · · · , wS

l
]
,

where S is the total number of segments, and the length of each segment is determined
using the parameter K, with Ws

l = W[sK − K : sk, :] ∈ RK×N .
The Skipping-Memory LSTM, which consists of L basic layers connected in series, is

shown in Figure 4. In each layer structure, S seg-LSTMs are used to process the S small
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segments
[
w1

l , w2
l , · · · , wS

l
]
, where l represents the l-th input. At this point, the mapping

function of the seg-LSTM can be expressed as

WS
l+1, cS

l+1, hS
l+1 = Seg_LSTM

(
Ws

l , ĉs
l , ĥs

l

)
(2)

and
Ws

l+1 = LN
(

Ws
l+1

)
+ Ws

l (3)

where LN is the layer normalization operation in the residual connection, and ĉs
1, ĥs

1 are all
initialized to 0. All the segments are finally collected in the Mem-layer for global modeling
to conduct cross-segment processing. The memory-skipping LSTM constructed in this
way can handle relatively long speech sequences. By purposefully discarding the over-
lapping areas of adjacent segments, it achieves an effective balance between performance
and efficiency.
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2.5. The Harmonic Repair Large Frame Enhancement Model HRLF-Net

Under normal circumstances, the noise in noisy speech is non-additive, and the noisy
speech y ∈ Rp×l can be represented as y = s + n, where s is the pure speech signal desired
in the task, n is the noise, and p is the total number of samples in the signal. The task of
speech enhancement is to separate s from y as much as possible while suppressing the noise
as much as possible.

The input to the proposed model is the complex spectrum after STFT, represented as
Y = S+ N, where Y, S and N respectively represent the complex spectra of the noisy speech,
pure speech, and noise signal, with {Y, S, N} ∈ R2T×F. T and F represent the number of
bins in the time and frequency dimensions in the real and imaginary parts, respectively.
Figure 5 shows the overall architecture of our proposed HRLF-Net.
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Several harmonic repair modules are used to extract and refine features, and harmonic
fading-out modules, represented as HFO in Figure 5, are applied after each processing to
prune the processed features to a certain extent. Harmonic fading-out modules are used
concurrently with each harmonic repair module for optimal filtering.

Real and Imag branches correspond to the real and imaginary parts of the CIRM mask
structure and are processed using two branch networks. In the real branch, convolutional
layers with causal 2D convolution, batch normalization [27], and PReLU [28] preliminarily
filter the input signal and separate different channels, which is an autoencoder design [29],
followed by cascaded FFC modules forming residual connections. The resulting output is
up sampled to obtain the predicted CIRM spectrum’s real part output Mr. To avoid issues of
non-structural and wrapping phase jumps [30], the Imag branch employs a phase decoder
with dilated DenseNet [31]. After the deconvolution block, parallel dual 2D convolution
layers output pseudo-components, and a dual-parameter arctangent function activates
these two components to obtain the predicted CIRM imaginary spectrum output Mi, where
instance normalization layers are connected to standardize the network’s intermediate
features. This structure is based on the definition of the complex ideal ratio mask.

Mr =
YrSr + YiSi

Y2
r + Y2

i
(4)

and
Mi =

YrSi + YiSi

Y2
r + Y2

i
, (5)

where Yr and Yi respectively represent the real and imaginary parts of the noisy complex
spectrum. Sr and Si represent the real and imaginary parts of the pure speech complex
spectrum. The masks calculated using Mr and Mi, estimated from the noisy speech, can be
represented using the following formula:

M =
YrSr + YiSi

Y2
r + Y2

i
+ i

YrSi + YiSi

Y2
r + Y2

i
, (6)

Multiplying the noisy speech spectrum Y = Yr + Yi with the mask M = Mγ + jMi
results in the enhanced speech spectrum, which is then transformed back into the final
waveform (W) using the Inverse Short-Time Fourier Transform (ISTFT):

∼
w = Yγ Mr − Yi Mi + i(Yr Mi + Xi Mr). (7)

2.6. Loss Functions

We use a multilayer loss function to help the network effectively train and fit [28].
The time loss LT is calculated by computing the L1 norm difference between the clean
speech waveform and the model’s output-enhanced waveform Ex,x̂[∥x − x̂∥1], with the
time loss result being the average of the differences across all frames. The magnitude
loss LM is computed by first extracting the magnitude spectra Xm and Xm from the clean
speech and the enhanced speech, respectively, and then calculating the Mean Squared
Error (MSE) between them EXm ,X̂m

[∥∥Xm − X̂m
∥∥2

2

]
. The final loss value is the expected

MSE across all frequency and time points. The function composition also includes the
complex spectrum loss LC, which uses the ground truth and predicted complex spectra
as inputs and calculates the MSE between the two spectral graphs EXr ,X̂r

[∥∥Xr − X̂r
∥∥2

2

]
+

EXi ,X̂i

[∥∥Xi − X̂i
∥∥2

2

]
, yielding the expected errors of the real and imaginary parts as the final

output of LC.
The polynomial of the above losses is used as the final loss function, and appropriate

hyperparameters are set to optimize the model’s performance.
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3. Experiments

In this section, the datasets and performance evaluation metrics used in our experi-
ments are firstly introduced. Then, the effectiveness of the proposed modules is validated
in subsequent experiments, demonstrating overall performance superiority across several
metrics compared with a series of strong baselines.

3.1. Datasets and Experimental Setup

DNS Challenge: To maintain consistency with the evaluation datasets of mainstream
models, in our experiments, we utilize the ICASSP 2020 DEEP NOISE SUPPRESSION
CHALLENGE (DNS Challenge 2020) dataset for training and evaluation. The dataset
includes clean speech predominantly in English, from 2150 speakers selected from over
ten thousand individuals, totaling over 500 h, as well as 60,000 noise segments from
150 different noise categories. During model training, clean speech and noise are randomly
selected from their respective sets and dynamically combined to simulate noisy speech.
The Signal-to-Noise Ratio (SNR) is uniformly distributed between −5 dB and 20 dB. The
training and validation sets are split in a 4:1 ratio and are completely isolated from the
test set.

VoiceBank + DEMAND: This public dataset includes paired noisy and clean speech
clips. The clean speech audio segments are sourced from the corpus, which contains
28 different speakers, 11,518 audio segments, and over 800 speech segments for the test set.
Clean speech segments are mixed with ten different types of noise at SNRs of 0 dB, 5 dB,
10 dB, and 15 dB. The test set includes DEMAND database materials at SNRs of 2.5 dB,
7.5 dB, 12.5 dB, and 17.5 dB.

The model input uses a Hanning window with a length of 20 ms and 50% overlap,
along with an STFT of 320 points, to produce 161-dimensional spectral features. The size
and stride of the convolutional kernel are (2,3) and (1,1), respectively, and the number of
heads in the harmonic integration of the harmonic repair is set to 4. The channel numbers
of the harmonic repair module are {12, 24, 24, 48, 48, 24, 12, 12}, where the first six are
for the main structure, and the last two belong to the compensation components. The
SkiM layer includes four basic SkiM blocks, with the hidden dimension of the LSTM set
to 256. The feature-length segment size S for Seg-LSTM is set to 150, where only layer
normalization is performed in the feature dimension in the causal SkiM. In the FFC module,
the channel ratio used in the global branch is α, which equals to 0.75. The imaginary part
branch applies four convolutional layers with dilation sizes of 1, 2, 4, and 8 in the expanded
DenseNet sequentially. The model undergoes 80,000 iterations of training, with a batch size
of eight. The Adam optimizer is employed, and the learning rate is 0.0001.

3.2. Evaluation Metrics

PESQ: Perceptual Evaluation of Speech Quality is a standardized objective metric
used to assess the quality of speech signals. Initially developed by the International
Telecommunication Union (ITU), it was primarily designed for evaluating speech quality
within telephony systems. PESQ aims to provide an objective quantification of speech
quality by simulating aspects of the human auditory system’s response to audio signals.

STOI: Short-Time Objective Intelligibility is an objective metric designed to assess
the intelligibility of speech signals. Similar to PESQ, STOI aims to provide an objective
and quantitative method for measuring the understandability of speech signals. This
metric primarily focuses on the intelligibility of speech signals in noisy environments and
is applicable to speech communication, speech recognition, and other applications that
involve conveying speech information in the presence of background noise.

SI-SDR: Scale-Invariant Signal-to-Distortion Ratio is an objective metric used to mea-
sure the quality of separating audio sources. It is primarily employed to assess the per-
formance of separation algorithms in audio source separation tasks. SI-SDR considers a
balance between the scale-invariant proportion between the estimated and true source
signals and the level of distortion, making it a scale-invariant measure.
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CSIG: Composite Speech Intelligibility Index is a metric used to assess the performance
of speech processing systems, such as speech enhancement and speech coding. This metric
is primarily employed to measure the intelligibility and quality of speech signals. The
design of CSIG aims to provide a comprehensive evaluation that reflects the impact of
speech processing systems on the original speech signal. It considers not only the clarity
of the speech signal but also the combined effects of factors such as background noise
and distortion.

3.3. Parameter Selection

Table 1 shows the experiments conducted on the DNS Challenge 2020 dataset for
selecting a suitable parameter N, which is the number of paired Repair and HFO blocks.
From Table 1, we see that as N starts to increase from 2, all metrics in the table show a
significant improvement, with PESQ being the most obvious. When N exceeds 4, STOI does
not show a noticeable increase, while other metrics begin to decline to different extents and
contribute to an increase in the model parameters. Based on these results, in our following
experiments, we set N to be 4.

Table 1. Selection of the number of stacked blocks for Repair and HFO Blocks.

Number of Blocks (N) PESQ STOI (%) SI-SDR CSIG Para. (M)

2 3.211 96.43 20.13 4.15 11.943
3 3.350 97.54 20.64 4.08 12.503
4 3.513 97.85 20.52 4.22 13.105
5 3.498 97.76 20.55 4.12 13.842

The optimal values of the objective evaluation metrics are highlighted in bold font.

3.4. Ablation Studies

This study, based on ablation experiments, analyzes the necessity of performance
improvement for each module of the model network. It then evaluates the overall per-
formance of the model based on PESQ, STOI, and SI-SDR. Finally, the comprehensive
performance of the proposed method is verified. The ablation experiments are conducted
on the DNS Challenge 2020 dataset and the VoiceBank + DEMAND dataset.

The experiment results in Tables 2 and 3 show that using only the harmonic repair
module and disabling the fading-out module leads to a significant decrease in speech
quality. This is because the nonlinear operations of the harmonic repair module cause
disturbances, especially in the recovery of harmonics and particularly in high-amplitude
sections, amplifying these disturbances and ultimately affecting the enhancement per-
formance. Pairing the fading-out module with harmonic repair significantly mitigates
this issue. Replacing SkiM with naive LSTM demonstrates that SkiM achieves essentially
the same performance level as naive LSTM while significantly reducing computational
costs. Comparative experiments using the original 2D convolutional kernels for the real
part branch’s FFC module are conducted. These experiments show that thanks to FFC’s
advantage of having a large-scale receptive field, the context of speech is fully utilized
in the recovery process of the real spectrogram. Unlike traditional convolution, where
the receptive field is limited by the size of the kernel, FFC operates convolution in the
frequency domain, considering all frequency components of the input simultaneously,
which allows for better capture of long-term dependencies in the signal. This demonstrates
the advantage of FFC’s large-scale receptive field in fully utilizing the context of speech in
the recovery process of the real spectrogram.
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Table 2. Ablation experiments targeting the main submodules on the DNS Challenge 2020 dataset.

Model Para. (M) PESQ STOI (%) SI-SDR

HRLF-Net 13.105 3.513 96.68 20.36
-Fading-out 12.245 3.229 96.26 17.50
-Harmonic repair 9.535 3.326 95.88 16.38

-skimLSTM 7.630 3.175 95.24 15.92
+LSTM 9.36 3.198 95.56 16.42

-FFC 12.805 3.372 95.22 17.15
+Conv2D (origin) 13.065 3.397 96.13 17.39

To serve as a control, the effectiveness of FFC is studied using conventional 2D convolution substitution, where
+/- indicates whether the submodule is masked in the experiments.

Table 3. Ablation experiments targeting the main submodules on the VoiceBank + DEMAND dataset.

Model Para. (M) PESQ STOI (%) SI-SDR

HRLF-Net 13.105 3.519 96.78 18.67
-Fading-out 12.245 3.329 96.36 17.50
-Harmonic repair 9.535 3.426 95.98 16.38

-skimLSTM 7.630 3.275 95.34 15.92
+LSTM 9.36 3.298 95.66 16.42

-FFC 12.805 3.472 95.32 17.15
+Conv2D (origin) 13.065 3.477 96.23 17.39

To serve as a control, the effectiveness of FFC is studied using conventional 2D convolution substitution, where
+/- indicates whether the submodule is masked in the experiments.

3.5. Comparison with Other Models

We compare the proposed model with other models on two datasets using the ex-
perimental results provided in the original papers. On the DNS Challenge dataset, as
seen in Table 4, our model improved PESQ without significantly increasing the number
of model parameters and maintained an advanced level in other objective metrics. On
the Voicebank + DEMAND dataset, as shown in Table 5, except for slight inferiority to
DEMUCS [30] in CSIG, our model similarly shows significant improvements in all metrics.
Compared to other studies, the advantage of our proposed method lies in considering the
crucial role of harmonic information under noise masking for speech restoration. When
estimating the phase spectrum, we follow the complex spectrum calculation method sep-
arately from the real and imaginary parts. We achieve collaborative optimization of the
phase spectrum and magnitude spectrum using multiple losses while also considering
contextual information in the speech.

Table 4. Comparison with other models on the DNS Challenge 2020 dataset.

Model PESQ STOI (%) SI-SDR CSIG #Params. (M)

2020 DCCRN [10] 2.711 96.0 17.967 2.98 * 3.67
2020 DEMUCS [32] 2.20 82.0 15.56 3.44 * 33.5
2022 Fullsubnet-plus [33] 2.487 79.6 18.34 3.12 * 8.6
2022 TaylorSENet [12] 3.23 97.69 19.78 3.49 * 5.4
2023 MP-SENet [34] 3.50 98.00 20.31 4.73 * 13.24 *
Ours HRLF-Net 3.513 96.68 20.36 4.22 * 13.105

* indicates that the corresponding result is not provided in the original paper, and the value in this table is obtained
through our experiments.
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Table 5. Comparison with other models on the VoiceBank + DEMAND dataset.

Model PESQ STOI (%) SI-SDR CSIG #Params. (M)

2020 DEMUCS [10] 3.03 87.0 * 18.5 * 4.36 60.8
2022 HiFi++ [35] 2.76 89.53 * 18.4 * 4.09 1.7
2022 CMGAN [36] 3.41 96.0 * 16.34 * 4.63 1.83
Ours HRLF-Net 3.519 96.78 * 18.67 * 4.23 13.105

* indicates that the corresponding result is not provided in the original paper, and the value in this table is obtained
through our experiments.

3.6. Spectrogram Analysis

Figure 6 displays the spectrograms before and after enhancement via our proposed
model. The spectrogram comes from a randomly selected ten-second audio in the DNS
Challenge 2020 set. The red rectangular boxes in the image highlight the pure noise
sections that are almost devoid of speech. In these sections, the proposed model effectively
suppresses the background noise, as can be seen in the comparative spectrograms below.
The pure noise sections, containing no human voice, are almost completely silent after
noise reduction. The white and black dashed boxes in this figure indicate the effectiveness
of harmonic restoration. In the white dashed box, the harmonic features are nearly invisible
due to noise masking. After enhancement, the corresponding section in the spectrogram
shows distinct comb-like harmonics, which indicates that the proposed model significantly
restores the harmonics of speech during the enhancement process. This plays a key role in
improving the clarity and distinguishability of the speech.
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4. Conclusions

In this paper, we proposed HRLF-Net, a dual-branch speech-enhanced network. The
harmonic repair module used in the model significantly restores the harmonic distribution
of the speech. In the subsequent imaginary and real dual-branch structure, the FFC module
plays a key role in expanding the receptive field of the model, while the dilated DenseNet
effectively overcomes the phase wrapping and significantly improves the comprehensibility
of the speech. The effectiveness and necessity of each module in the model are validated
through ablation experiments. The proposed network shows a significant improvement in
the PESQ metric compared to other state-of-the-art models, and it maintains a high level of
short-term speech intelligibility.

Furthermore, during the experiments, we observed significant variations in the dy-
namic range of speech signals due to differences in speakers, contexts, and recording
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conditions. Similarly, background noise ranges from low-intensity environmental noise to
high-intensity interference signals such as traffic or industrial noise. Therefore, to further
enhance the speech enhancement system’s ability to handle dynamic range, we will explore
additional data-driven approaches in the future. Also, we plan to extend our work to
real-time applications by achieving even lower latency levels.
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