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Abstract: Fourier ptychographic microscopy (FPM) is a computational imaging technology that has
endless vitality and application potential in digital pathology. Colored pathological image analysis is
the foundation of clinical diagnosis, basic research, and most biomedical problems. However, the
current colorful FPM reconstruction methods are time-inefficient, resulting in poor image quality
due to optical interference and reconstruction errors. This paper combines coloring and FPM to
propose a self-supervised generative adversarial network (GAN) for FPM color reconstruction. We
design a generator based on the efficient channel residual (ECR) block to adaptively obtain efficient
cross-channel interaction information in a lightweight manner, and we introduce content-consistency
loss to learn the high-frequency information of the image and improve the image quality of the
staining. Furthermore, the effectiveness of our proposed method is demonstrated through objective
indicators and visual evaluations.

Keywords: Fourier ptychographic microscopy; self-supervised GAN; virtual staining; digital
pathology

1. Introduction

The use of light microscopy for minimally invasive high-resolution imaging is funda-
mental to human understanding of biological systems and processes. In clinical pathology,
analyzing high-resolution color pathological images from optical microscopes remains
a widely used standard method for diagnosing diseases ranging from cancer to blood-
borne infections. To perform quantitative and accelerated pathological image analysis, the
whole slide imaging (WSI) [1] system is gradually replacing traditional optical microscopes.
Fourier ptychographic microscopy (FPM) [2,3], which has been popularized in recent years,
is considered a high-throughput imaging technology that does not require mechanical
scanning and has more advantages over conventional whole slide imaging systems in
digital pathology. First of all, FPM does not require mechanical scanning to achieve both
high resolution (HR) and a large field of view, and it can simply add LED arrays to other
microscopes to set up experimental platforms. Secondly, the digital refocusing process
is utilized by FPM to correct sample defocusing after acquisition [2,4]. Furthermore, the
phase information recovered from the FPM provides more localized scattering details of
the sample, which enhances the accuracy and reliability of pathological diagnosis [5,6].

However, the application of FPM in pathology still faces some challenges [6]. On the
one hand, the time efficiency of FPM acquisition and reconstruction is relatively poor. FPM
usually requires continuous acquisition with red, green, and blue separate illumination,
composing hundreds of low-resolution (LR) images for better color reconstruction, leading
to slower acquisition and reconstruction speeds. On the other hand, FPM color reconstruc-
tion images are usually of poor quality due to coherent artifacts caused by light interference
and reconstruction errors. Furthermore, the GlaS dataset in Figure 1 is pathological sections
of the differentiation tissue of colon cancer glands stained with hematoxylin and eosin
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(H&E), and the MoNuSeg dataset is composed of various H&E stained histological images
across multiple patients and organs obtained from different hospitals. It can be observed
in Figure 1 that the color reconstruction results of the same batch of pathological sections
will have significant visual differences due to the influence of factors such as collection
personnel, technology, and the external environment. In biological and clinical medicine
applications, the color information of the sample after staining with reagents helps the
observer quickly locate the regions of interest and interpret the relevant information about
tissues and cells. Therefore, we use a virtual staining method for the colorful reconstruction
of FPM single-channel grayscale images.
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Figure 1. Different H&E color styles on the two datasets. (a) GlaS dataset, (b) MoNuSeg dataset.

Recently, significant advances have been made in the field of deep learning, paving the
way for the application of neural networks in a variety of image-processing tasks, including
virtual tissue staining. To better obtain the color information of FPM-stained tissue sections,
image translation can be applied to convert the recovered monochromatic FPM image to
the style of regular incoherent microscopy. The mathematical mapping between input and
output [7] can be found accurately by this deep learning technology based on the deep
convolutional neural network (CNN), and the coherence artifacts of FPM recovery can also
be reduced [8], thus improving the quality of colored FPM pathology images.

Since its inception, the unsupervised learning image-to-image translation model Cy-
cleGAN [9] has shown its powerful transformation ability between two image domains,
which makes it a popular method of virtual staining in the field of biomedical imaging.
However, the cyclic consistency [9] assumption dictates that the relationship between the
two domains must be bijective [10], which is often not ideal, as it may limit the diver-
sity of images. To overcome this limitation, contrastive learning has recently achieved
optimal progress [11,12] in the field of self-supervised representation learning. Subse-
quently, contrastive unpaired translation (CUT) [13] introduced contrastive learning to
maximize the learning of mutual information between the two image domains for unpaired
image translation.

In this paper, we propose a self-supervised generative adversarial network (GAN)
based on contrastive learning for the virtual staining of single-channel images of FPM.
While CUT has demonstrated the efficiency of contrastive learning, it may not efficiently
capture domain gaps, color, and the high-frequency information of the images in our appli-
cation. To further take advantage of contrastive learning while avoiding the disadvantages
of cyclic consistency, our method trains a GAN with efficient channel residual (ECR) block
and content-consistency loss to learn the cross-channel and high-frequency information
of images more effectively, as well as to reduce coherent artifacts, and improve the image
quality. The network training and testing processes are illustrated in Figure 2. This method
provides a better foundation for subsequent research on medical cell recognition, segmen-
tation, classification, and other related fields. The main contributions of this paper are
listed below:
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• We adopt the unpaired learning architecture of CUT to treat the virtual staining of
the FPM pathology images as a transformation from a single-channel image to a color
image. Since CUT cannot accurately identify the light-colored part of the image and
will produce unnecessary artifacts, we design the ECR block in the generator to extract
cross-channel interaction information and improve the network performance.

• CUT cannot effectively capture the edges and details of the image. We introduce the
content-consistency loss based on multi-scale structural similarity (MS-SSIM) to avoid
feature distortion between input and output images and enhance the high-frequency
information of images.
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Figure 2. Training and testing process framework for the proposed method. (a) Train one generator–
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channel grayscale image into a three-channel virtual stained image with improved image quality. 
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Figure 2. Training and testing process framework for the proposed method. (a) Train one generator–
discriminator pair using two unpaired datasets (X and Y). (b) The generator converts a FPM single-
channel grayscale image into a three-channel virtual stained image with improved image quality.

We conducted comparative experiments to demonstrate the qualitative and quantita-
tive advantages of our method in single-channel FPM virtual staining tasks compared to
other methods. In addition, our method theoretically reduces the collection time of 2/3
of color FPM, standardizes the staining process, and improves the objectivity of disease
diagnosis. Moreover, we do not need to obtain paired data, as simply using unpaired input
domain X and output domain Y images can achieve good staining results, which effectively
solves the problem of difficult matching data acquisition, especially in digital pathology.

2. Related Work
2.1. Color-Based FPM Imaging

The combination of virtual staining and FPM can improve imaging efficiency while
providing further convenience for the detection and diagnosis of pathological sections. A
classical coloring method [14] is used to restore the HR image at three wavelengths with
a monochromatic camera and then synthesize the HR full-color image. The Wavelength-
Multiplexed FPM (WMFPM) [15] scheme was proposed by Dong et al. with a monochrome
camera and multi-wavelength simultaneous illuminations. A color transfer-based FPM
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virtual staining method called CFPM [16] was reported by Gaod et al. The CFPM scheme
sacrifices only about 0.4% imaging accuracy, but the efficiency is improved by three times.

Different deep learning methods represented by CNN have also been widely used in
FPM. Zhang et al. [17] proposed color FPM based on a 3D CNN, using the trained CNN to
establish the mapping relationship between monochrome HR images and color LR images
to generate color HR images. Wang et al. [18] proposed the application of cyclic consistency
to generate the adversarial network CycleGAN in FPM imaging, enabling virtual bright
field and fluorescence staining of single-channel images. Zhang et al. [19] designed a CNN
model for reconstructing FPM HR color pathology images and phase maps.

2.2. Image-to-Image Translation

The application of deep learning in virtual staining is mainly reflected in image-to-
image translation. The introduction of this model effectively promotes the development of
virtual staining. GANs [20] have been widely used in a series of image applications, achiev-
ing significant results in the field of image-to-image translation in particular. Generally
speaking, image-to-image translation can be categorized into two methods, i.e., supervised
learning and unsupervised learning methods. The widespread application of supervised
methods is limited because it requires a large amount of paired data for training.

In recent years, unsupervised methods have become a hot topic of focus for researchers.
UNIT [21] proposed a shared latent space assumption that generates high-quality trans-
lations by utilizing shared information between two domains. CycleGAN proposed the
cyclic consistency assumption, which learns the mapping relationship between two do-
mains through two generator networks and two adversarial discriminator networks to
improve the quality and consistency of image conversion. This assumption requires the
transformation to be reversible and consistent, resulting in strong limitations. Recently, to
alleviate the problems caused by cyclic consistency, some methods [22,23] have adopted
different constraints from different aspects in an attempt to break this cycle.

2.3. Contrastive Learning

Contrastive learning facilitates deep learning by training a model to maximize the
similarity between similar samples and minimize the similarity between dissimilar samples
in the field of self-supervised learning. This method is very suitable for image translation
models, especially for image data whose output shape is the same as its input. The introduc-
tion of contrastive learning in image translation can preserve the content of input [23] and
reduce mode collapse [24–26]. CUT introduced noise contrast estimation into the image
translation tasks and achieved better performance than that based on cyclic consistency
through learning the correspondence between input image patches and generated image
patches for the first time.

2.4. Attention Mechanism

Inspired by the fact that humans can naturally and efficiently find significant areas
in complex scenes, attention mechanisms have been introduced in computer vision to
simulate this process to focus on important features and rationally assign weights. The
attention mechanism can overcome the acceptance field limitation of CNN by capturing
long-distance dependencies in images. There have also been several unprecedented efforts
to integrate GAN with attention mechanisms in recent years. Zhang [27] obtained remote
relationships in the images by self-attention. Spatial attention GAN (SPA-GAN) utilized
attention maps from the discriminator to guide the generator’s focus on discriminative
areas in the image [28]. Hu [29] designed a query-selected attention (QS-Attn) module to
intentionally select important anchors for comparative learning. Torbunov [30] equipped
the generator of CycleGAN with a Vision Transformer (ViT) to improve non-local pattern
learning and network performance.
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3. Proposed Method
3.1. Network Architecture

Figure 3 shows the overall architecture of our proposed method, which has been
improved based on the CUT model. The core concept is to use only one generator (G) and
discriminator (D) pair to map features in one direction, which greatly improves memory
efficiency and training speed. We utilize G to convert the single-channel FPM grayscale
images (input domain X) into high-resolution FPM color images (output domain Y). The
true color image of the target domain Y and the generated color image of the input domain
X are distinguished by the trained D.
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Figure 3. The overall architecture of the network. The generator G is broken down into two com-
ponents: an encoder Genc and a decoder Gdec. We use Genc and the MLP (Hl) as the embedding
of domain X and domain Y. We expect the PatchNCE loss to make the red patch in the fake image
generated by generator G more consistent with the yellow patch in the real input image while
minimizing the similarity with other blue patches.

The generator and discriminator structures of this paper are shown in Figure 4. Gener-
ator G includes three downsampling modules, nine ECR blocks, two upsampling modules,
and one convolutional layer. The downsampling module extracts low-frequency features
of the image through convolution operation and enters it as input into the ECR. The ECR
block is formed from a residual block and a channel attention block through the residual
connection, which adaptively combines similar features of the image to provide higher-
level semantic information. The upsampling module reconstructs the details and resolution
of the image through transposed convolution operations. We utilize PatchGAN [31] as
the discriminator D, and the receptive field of PatchGAN is set to 70 × 70, which makes
PatchGAN faster and still guides the generator to produce realistic results.

3.2. Efficient Channel Residual Block

In this paper, we expect the generator to be able to generate FPM color images similar
to the domain Y. The ResNet-based [32] generator is widely used in the field of image-
to-image translation. However, CUT failed to accurately identify the unstained part of
the pathological section when staining the single-channel FPM input image, resulting in
unnecessary artifacts and producing low-quality color images. The weight of each channel
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in a deep neural network can be recalibrated by using channel attention. This allows for
a more adaptive selection process for determining the object of focus in different feature
maps, as each channel can represent a different object. However, most of the methods
proposed in recent years have focused on designing more complex attention modules. It
undoubtedly increases the complexity of the model while delivering better performance.
For this purpose, we designed an ECR block to replace the residual block in the CUT.
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As shown in Figure 5, we introduce ECANet [33] into the residual block of the genera-
tor. Concretely speaking, the ECR block consists of two parts by the shortcut connection.
One part is the original residual block, which includes two convolutional layers and one
RELU layer, and the other is the efficient channel attention (ECA) block, which includes
a global average pooling layer, a one-dimensional convolutional layer with an adaptive
convolutional kernel, and a sigmoid layer. These two parts each have a shortcut connection
between the input and output.

ResNet can truly deepen the depth of convolutional neural networks without reduc-
ing network accuracy, and its powerful representation ability can significantly improve
network performance in many computer vision fields. The ECA block improves network
performance by avoiding reducing channel dimensions to learn effective channel attention
while obtaining cross-channel interaction information in an extremely lightweight manner.
We add identity maps to the ECR block, which not only ensures that there is no gradient
vanishing problem during backpropagation but also shifts the network to learning residual
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functions, ensuring a smoother decision function for the entire network and improving
generalization performance.
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3.3. Loss Functions
3.3.1. PatchNCE Loss

As with the setting of CUT, we enable the network to maximize the mutual informa-
tion between the input and output corresponding patches by using a noise contrastive
estimation framework [34]. The core idea of contrast learning is to relate the two sig-
nals of a “query” and its “positive” example, not associated with other examples in the
dataset (called “negatives”). Firstly, the probability of choosing “positive” instead of other
“negatives” is represented by calculating the cross-entropy loss [35] as follows:

ℓ
(
v, v+, v−

)
= − log

 exp(v · v+/τ)

exp(v · v+/τ) +
N
∑

n=1
exp

(
v · v−n /τ

)
 (1)

where v, v+ ∈ RK, and v− ∈ RN×K indicate mapping query, positive, and N negatives to
K-dimensional vectors, respectively. vn

− ∈ RK denotes the n-th negative. τ is the parameter
used to scale the distance between the query and the other examples, with the default value
set to 0.07 in our experiments.

The Genc and Hl are used to share weights to extract features from domain X and
domain Y. The L layers are selected first and pass the feature mappings through Hl, as used
in SimCLR [12]. A feature stack {Zl}L =

{
Hl

(
Gl

enc(x)
)}

L
is then generated, where the

output of the l-th selection layer is represented by Gl
enc. Similarly, we encode the output

image G(x) belonging to domain Y into
{

Ẑl
}

L =
{

Hl

(
Gl

enc(G(x))
)}

L
. Our goal is to

match the input and output patches corresponding to a specific position. The PatchNCE
Loss [13] for the one-way mapping in this article is represented as follows:

LPatchNCE(G, H, X) = Ex∼X

L

∑
l=1

Sl

∑
s=1

ℓ
(

ẐS
l , ZS

l , ZS\s
l

)
(2)

where the number of spatial positions in each layer is represented by Sl . ZS
l ∈ RCl repre-

sents the corresponding feature (“positive”), ZS\s
l ∈ R(Sl−1)×Cl represents other features

(“negatives”), where the number of channels in each layer is represented by Cl .

3.3.2. Content-Consistency Loss

Although CUT has produced competitive results with less computational costs for
training, we believe that the model’s performance is limited due to certain design options.
CUT may not be able to capture domain gaps efficiently, thus missing edges and details
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of the image data, as one embedding is shared in two distinct image domains (domain X
and domain Y). For the above problems, the content-consistency loss is designed in the
loss function for joint training. The content-consistency loss derived from the multiscale
structural similarity index (MS-SSIM) enhances the high-frequency information of the
image [36]. The definition of content-consistency loss is as below:

LContent(G, X) = Ex∼X [1 − msSSIM(G(x), x)] (3)

where the content change between the generated color image G(x) and the input single-
channel image x ∈ X is reduced as much as possible. We aim to avoid color inversion and
feature distortion between input and output images through content-consistency loss [37].

3.3.3. Adversarial Loss

We use the adversarial loss [20] to make the output image G(x) of the generator G
as visually identical as possible to the color image of the target domain Y. For the one-
way mapping with the generator/discriminator (G/D) pair, the GAN loss is represented
as follows:

LGAN(G, D, X, Y) = Ey∼Y[log D(y)]
+Ex∼X [log(1 − D(G(x)))]

(4)

where G tries to generate images G(x) that look similar to images from domain Y, while D
aims to distinguish between translated samples G(x) and real samples y.

3.3.4. Identity Loss

We add an identity loss [10] to avoid unnecessary changes from generator G. The main
idea of identity loss is to take the image y of domain Y as the input of G, and the output
image G(y) should be as consistent with the input image y as possible, without producing
other content.

LIdentity(G, Y) = Ey∼Y[∥G(y)− y∥1] (5)

The input and output mappings are encouraged to preserve color and brightness composi-
tion by such an identity loss.

3.4. Overall Objective

Our ultimate goal is to make the patches of the network input and output images learn
the same correspondence, thereby generating more realistic color images. The total loss is
estimated by:

L(G, D, H) = λGAN LGAN(G, D, X, Y) + λNCELPatchNCE(G, H, X)
+λCCLLContent(G, X)
+λIdtLIdentity(G, Y)

(6)

where λGAN , λNCE, λCCL and λIdt are the weight coefficients of adversarial loss, patchNCE
loss, content-consistency loss and identity loss, respectively. The weight coefficients of
losses are set to λGAN = 1, λNCE = 10, λCCL = 1, and λIdt = 1 by default.

4. Experiments
4.1. Datasets

We need to construct a large-scale dataset containing a training set and a test set to
train the neural network. However, directly collecting high-resolution color images from
FPM has a series of disadvantages: (1) the amount of raw data collected is too large to build
datasets of sufficient size; (2) the ground truth of the dataset is obtained through traditional
reconstruction methods, so the effect of network reconstruction is limited by traditional
methods; (3) the dataset is bound to a specific system, so it is difficult to flexibly apply to
other systems.



Appl. Sci. 2024, 14, 1662 9 of 16

To avoid the above problems, we directly used the publicly available dataset
GlaS@MICCAI’ 2015 [38] as the ground truth (the image resolution was 775 × 522) and
generated the corresponding single-channel high-resolution input data through a Fourier
ptychographic microscopy imaging model simulation. Our simulation dataset includes
1363 single-channel FPM images and 1362 unpaired color FPM images. Additionally,
1208 single-channel grayscale images and 1279 color images were used for network train-
ing, while the rest were used for testing.

4.2. Training Settings

Our proposed model was optimized and improved based on CUT. To better compare
with the baseline, we trained our model primarily using the settings specified in CUT.
More specifically, the initial learning rate was set to 0.0002, and due to GPU memory
limitations, the batch size was set to 1. Because the Adam [39] optimizer has the advantages
of an adaptive adjusted learning rate, integrated gradient and momentum, robustness, and
parallel computation-friendliness, it was selected in this paper to adaptively update the
model parameters. The size of all training images was resized to 256 × 256 pixels and
200 epochs were trained. Cropping the image to 256 × 256 was done because the size is
large enough to include the main details in the image while maintaining computational
efficiency, making it easy to input them into the neural network for training and processing.
The learning rate began to decay linearly when the network was trained to half of the total
epochs. The model presented in this paper was deployed and trained on the PyTorch deep
learning framework and a single NVIDIA GPU (RTX 3080, 10 GB).

4.3. Comparison Results with Unsupervised Deep Learning Methods

Here, we provide a comprehensive qualitative and quantitative evaluation of our
approach by comparing it to recent state-of-the-art unsupervised methods, such as CUT [14],
CycleGAN [10], UNIT [21], GCGAN [22], and DCLGAN [23]. These methods are retrained
in our datasets and evaluated using ground truth values.

4.3.1. Visual Comparisons

Figure 6 illustrates the results of the qualitative comparison of the different contrasting
methods. Our method successfully stains the unpaired single-channel FPM input image
into a three-channel color FPM target domain image through image translation. The method
proposed in this article can preserve the structure and content of the input image to the
maximum extent while performing good virtual coloring on the input image, achieving the
highest color image quality.

Specifically, CUT cannot accurately identify the unstained part of the image. Cy-
cleGAN and UNIT can recognize the white part of pathological sections well, but lose
the texture details inside. DCLGAN introduces artifacts and has low image quality. In
addition, all baselines have a certain difference in color compared to the ground truth value.
Our proposed method has the highest visual similarity, which proves the effectiveness of
the network.

4.3.2. Quantitative Examinations

We mainly choose frechet inception distance (FID) [40], LPIPS [41], structural similarity
(SSIM), and peak signal-to-noise ratio (PSNR) as the evaluation indicators in this paper to
measure the quality of the generated color images. It is worth noting that FID and LPIPS
show high correspondence with human visual perception. Lower FID and LPIPS mean
generated images are more realistic. On the contrary, larger values of SSIM and PSNR
indicate better image quality.
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Table 1 shows the evaluation metrics for the different comparison experiments. It can
be observed that our method significantly outperforms the other baselines in the FID, LPIPS,
SSIM, and PSNR metrics. The specific indicators strongly demonstrate the effectiveness of
our proposed method.

Table 1. Quantitative results of different approaches.

Method FID↓ LPIPS↓ SSIM↑ PSNR↑
CUT [14] 58.7077 0.1832 0.9078 20.1739

CycleGAN [10] 63.1189 0.1688 0.9095 19.4760
UNIT [21] 81.0382 0.1709 0.8884 19.1821

GCGAN [22] 76.1018 0.1649 0.8934 18.3975
DCLGAN [23] 95.7042 0.2131 0.8722 17.5598

Ours 49.3686 0.1334 0.9241 20.4459

4.4. Comparative Experiments under Noisy Conditions

In the process of actual data acquisition by FPM, it is easy to be affected by the
equipment, light source, dust, and other environments producing a certain degree of noise,
and thus affecting the color image quality of the FPM acquisition and reconstruction. We
added Gaussian noise with mean 0 and standard deviation 6 × 10−4 as the main interference
condition for the single-channel input data of the network to simulate the potential noise
effects during the actual acquisition process, thus further verifying the effectiveness of our
proposed algorithm.

A qualitative comparison and quantitative analysis under the same noise condition
are shown in Figure 7 and Table 2, respectively. With the same noise added, our method
has an optimal visual performance compared to contrast experiments. Our method also
performs the best on the four indicators in Table 2.
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Table 2. Quantitative results under the same noise condition.

Method FID↓ LPIPS↓ SSIM↑ PSNR↑
CUT [14] 67.6780 0.1832 0.9066 20.0794

CycleGAN [10] 72.8258 0.1649 0.9093 19.4901
UNIT [21] 90.3650 0.1699 0.8884 19.3234

GCGAN [22] 83.3363 0.1692 0.8875 18.2488
DCLGAN [23] 104.5146 0.2109 0.8716 17.6097

Ours 56.4709 0.1327 0.9220 20.3231

Different degrees of noise may be generated during the actual acquisition process,
and to further verify the robustness and generalization ability of our proposed method,
we conducted three sets of experiments. Gaussian noise with a mean of 0 and standard
deviation of 6 × 10−4, 6 × 10−3, and 6 × 10−2 was added to the input images of the
network. Figure 8 shows the visual analysis results of our method under different noise
conditions, and Table 3 shows the evaluation index of stained images under three kinds
of noise interference. As can be seen from the specific metrics in Table 3, the PSNR metric
performs well as the Gaussian noise increases, and the FID, LPIPS, and SSIM metrics
produce some degree of deterioration, but the degree of change is small and essentially flat.
The visual analysis and quantitative results demonstrate the effectiveness of our proposed
method against noise.
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Table 3. Quantitative results of our method under the different noise conditions.

Noise FID↓ LPIPS↓ SSIM↑ PSNR↑

6 × 10−4 56.4709 0.1327 0.9220 20.3231
6 × 10−3 56.4854 0.1343 0.9214 20.3286
6 × 10−2 56.5298 0.1378 0.9203 20.4288

4.5. Ablation Experiment

To analyze the validity of our approach in depth, we conducted several experiments to
study each of our contributions individually. The first ablation experiment removed content-
consistency loss and identity loss while using the patchNCE loss in CUT as a learnable and
domain-specific identity loss to prevent unnecessary changes by the generator. Another
ablation experiment replaced the proposed ECR block with the residue block from CUT in
the generator.

The experiments are summarized as described in Figure 9 and Table 4. The removal of
content-consistency loss and identity loss results in the loss of high-frequency information
in the output image, and the visual effect of coloring deteriorates. The ability of our method
to accurately recognize the blank portion of a pathology section is diminished with the
removal of the ECR block, resulting in poor image quality. Our proposed method shows
superior performance in all metrics and visual comparisons.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 16 
 

(a) (b) (c) (d) (e)
 

Figure 9. The qualitative comparison results between the two ablation experiments and the pro-

posed method. (a) Input, (b) Ours w/o Loss, (c) Ours w/o ECR, (d) Ours, (e) Ground Truth. 

Table 4. Quantitative results for ablations. 

Method FID↓ LPIPS↓ SSIM↑ PSNR↑ 

Ours w/o Loss 67.8005 0.1866 0.9086 20.3208 

Ours w/o ECR 57.3747 0.1372 0.9180 19.8297 

Ours 49.3686 0.1334 0.9241 20.4459 

4.6. Comparison Results with Classical Virtual Staining Methods 

We compared our model with four other classical and recent virtual coloring meth-

ods to further validate the effectiveness and time efficiency of the network in grayscale 

image coloring. Reinhard [42] and Macenko [43] are classic methods for image color trans-

fer, while CFPM [16] and CFFPM [44] are recently proposed methods for FPM virtual 

staining based on color transfer. The above method was applied to our dataset for training 

to achieve virtual coloring of FPM single-channel grayscale images. The experimental re-

sults show that the proposed method has advantages in terms of color and time. 

We randomly selected three images for display in Figure 10, and through visual anal-

ysis, it can be seen that the method proposed in this article has achieved the best results 

in terms of color and content. In our data, the Reinhard and Macenko methods performed 

poorly, with a wide difference in color styles and an inability to accurately stain cells at 

the appropriate locations. CFPM and CFFPM had relatively good results in distinguishing 

and coloring areas with different shades of color, but the overall color was relatively light 

and did not meet the expected goals. Moreover, CFFPM introduced significant artifacts. 

In conclusion, the deep learning method proposed in this paper had the best experimental 

results. 

Figure 9. The qualitative comparison results between the two ablation experiments and the proposed
method. (a) Input, (b) Ours w/o Loss, (c) Ours w/o ECR, (d) Ours, (e) Ground Truth.

Table 4. Quantitative results for ablations.

Method FID↓ LPIPS↓ SSIM↑ PSNR↑
Ours w/o Loss 67.8005 0.1866 0.9086 20.3208
Ours w/o ECR 57.3747 0.1372 0.9180 19.8297

Ours 49.3686 0.1334 0.9241 20.4459

4.6. Comparison Results with Classical Virtual Staining Methods

We compared our model with four other classical and recent virtual coloring methods
to further validate the effectiveness and time efficiency of the network in grayscale image
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coloring. Reinhard [42] and Macenko [43] are classic methods for image color transfer,
while CFPM [16] and CFFPM [44] are recently proposed methods for FPM virtual staining
based on color transfer. The above method was applied to our dataset for training to
achieve virtual coloring of FPM single-channel grayscale images. The experimental results
show that the proposed method has advantages in terms of color and time.

We randomly selected three images for display in Figure 10, and through visual
analysis, it can be seen that the method proposed in this article has achieved the best results
in terms of color and content. In our data, the Reinhard and Macenko methods performed
poorly, with a wide difference in color styles and an inability to accurately stain cells at
the appropriate locations. CFPM and CFFPM had relatively good results in distinguishing
and coloring areas with different shades of color, but the overall color was relatively
light and did not meet the expected goals. Moreover, CFFPM introduced significant
artifacts. In conclusion, the deep learning method proposed in this paper had the best
experimental results.
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Specific evaluation indicators are shown in Table 5. We choose the number of iterations
and the inference time as indicators to measure the time efficiency. Our proposed approach
has the least time cost and the best performance. CFFPM requires iteration and takes the
longest time. The Reinhard method is also fast in time, but ineffective.

Table 5. Comparison of time efficiency between different staining methods.

Virtual Staining Method Iterations↓ Inference Time↓
Reinhard [40] 0 1.354 s
Macenko [41] 0 17.130 s

CFPM [16] 0 50.426 s
CFFPM [42] 5 799.343 s

Ours 0 0.313 s

5. Conclusions

We propose an effective self-supervised deep learning method based on contrastive
learning for virtual staining of single-channel FPM pathological sections. The proposed
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method designs an ECR-based generator and a content-consistency loss for joint training to
obtain efficient cross-channel interaction information and improve the quality of stained
images in an extremely lightweight manner. The experimental results show that this
method maximizes the high-frequency information of the input image while effectively
staining the FPM images with the best visual similarity. This virtual staining method
can avoid the differences in staining results due to the stochasticity of personnel and
technology, which can standardize staining, and it has various potential applications in
digital pathology in the future.
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