
Citation: Wei, J.; Lu, Z.; Yin, Z.; Jing,

Z. Multiagent Reinforcement

Learning for Active Guidance Control

of Railway Vehicles with

Independently Rotating Wheels. Appl.

Sci. 2024, 14, 1677. https://doi.org/

10.3390/app14041677

Academic Editor: Sakdirat

Kaewunruen

Received: 2 January 2024

Revised: 16 February 2024

Accepted: 18 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Multiagent Reinforcement Learning for Active Guidance Control
of Railway Vehicles with Independently Rotating Wheels
Juyao Wei * , Zhenggang Lu, Zheng Yin and Zhipeng Jing

Institute of Rail Transit, Tongji University, Shanghai 201804, China
* Correspondence: 1810988@tongji.edu.cn

Abstract: This paper presents a novel data-driven multiagent reinforcement learning (MARL) con-
troller for enhancing the running stability of independently rotating wheels (IRW) and reducing
wheel–rail wear. We base our active guidance controller on the multiagent deep deterministic policy
gradient (MADDPG) algorithm. In this framework, each IRW controller is treated as an independent
agent, facilitating localized control of individual wheelsets and reducing the complexity of the re-
quired observations. Furthermore, we enhance the MADDPG algorithm with prioritized experience
replay (PER), resulting in the PER-MADDPG algorithm, which optimizes training convergence
and stability by prioritizing informative experience samples. In this paper, we compare the PER-
MADDPG algorithm against existing controllers, demonstrating the superior simulation performance
of the proposed algorithm, particularly in terms of self-centering capability and curve-negotiation
behavior, effectively reducing the wear number. We also develop a scaled IRW vehicle for active
guidance experiments. The experimental results validate the enhanced running performance of IRW
vehicles using our proposed controller.

Keywords: active guidance control; independently rotating wheels (IRW); prioritized experience
replay (PER); multiagent deep deterministic policy gradient (MADDPG)

1. Introduction

Independently rotating wheels (IRW) are increasingly utilized in rail transit systems.
Compared with solid-axle wheelsets, the unique structure of IRWs allows individual wheels
on the same axle to rotate independently, eliminating the longitudinal creep forces gener-
ated from the wheel–rail contact interface and suppressing hunting motion [1–4]. However,
IRWs no longer exhibit restoring torque in the yaw direction due to the decoupling of
the wheels, which leads to dynamical instability and significantly increased wheel–rail
wear [5].

Scholars have proposed various active solutions to restore the steering ability of
IRWs. The basic steering strategy mimics the dynamic behavior of solid-axle wheelsets [6].
Controllers based on the proportional–integral–derivative (PID) have been extensively
studied [7,8], but adjusting the gain parameters under varying vehicle operating conditions
is difficult. The robust H∞ algorithm is applied by representing nonlinear characteristics
with uncertain parameters [9]. However, a trade-off between robustness and performance
leads to a conservative controller. Other model-based controllers, such as sliding mode con-
trol [10], linear parameter-varying (LPV) control [11], and gain scheduling techniques [12],
often rely on simplified mathematical models that have difficulty capturing the intricate
dynamics of railway vehicles, especially the nonlinear interactions at the wheel–rail in-
terface and changing operating conditions. This results in a significant gap between the
reference model and the actual dynamics, leading to a lack of robustness in real applications.
Recognizing the limitations of traditional control strategies, there is a growing interest in
data-driven methods. Our previous research explored the application of deep reinforce-
ment learning (DRL)-based controllers, including the deep deterministic policy gradient

Appl. Sci. 2024, 14, 1677. https://doi.org/10.3390/app14041677 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041677
https://doi.org/10.3390/app14041677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0008-9766-0940
https://doi.org/10.3390/app14041677
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041677?type=check_update&version=2

Appl. Sci. 2024, 14, 1677 2 of 21

(DDPG) and Ape-X DDPG [13,14], leveraging deep neural networks’ ability to fit nonlinear
systems. Nevertheless, several limitations are encountered: (a) the existing DRL-based con-
trollers require multiple dynamic parameters from all IRWs, and the high dimensionality of
observation spaces leads to slow convergence during training; (b) current strategies mainly
focus on the centralized control of the entire vehicle without achieving local control for an
individual IRW, potentially affecting computational efficiency in practical applications.

To overcome the limitations of current DRL controllers for IRWs, exploring multiagent
reinforcement learning (MARL) algorithms is a promising area. MARL-based controllers
can simultaneously enhance the adaptability advantages of DRL for complex systems and
achieve local control of each IRW via the distributed control method [15,16]. Based on
the centralized training and decentralized execution (CTDE) framework of the MARL
algorithm, the multiagent deep deterministic policy gradient (MADDPG) algorithm was
introduced [17]. The MADDPG equips each agent with individual actor and critic networks,
enabling the consideration of other agents’ influences while independently evaluating
actions. This approach facilitates coordinated learning during training and independent
decision making during execution. Thus, MADDPG enhances the global performance
in multiagent scenarios, as evidenced in different MAS control issues [18–20]. In this
study, we utilize the MARL algorithm to develop a novel distributed active guidance
controller for IRW vehicles. Our decentralized approach assigns modular controllers to
each independently rotating wheelset, enabling local control within a sensor–controller–
motor subsystem. We adopt the MADDPG algorithm and integrate it with the prioritized
experience replay (PER) mechanism, which we refer to as the PER-MADDPG algorithm.
This approach efficiently optimizes the behavior policy of each agent by interacting with
the vehicle’s operating environment, aiming to maximize the IRWs’ performance and the
overall reward of the MARL model.

Our research contributions are summarized as follows: (a) We propose applying the
MARL algorithm for distributed active guidance control of IRW vehicles and establishing
a fully cooperative MARL framework for training each agent’s local controllers. (b) Our
research develops an MADDPG-based control algorithm founded on the CTDE framework,
enhancing training stability by enabling each agent’s critic network to access and optimize
behavior strategies based on the global state and action information. (c) The proposed
PER-MADDPG algorithm employs the PER mechanism to improve sample efficiency, prior-
itizing high-value experiences based on their temporal difference (TD) error for accelerated
learning and training convergence.

2. System Modeling
2.1. Dynamic Model of Railway Vehicles with IRWs

In this paper, we consider a two-axle prototype IRW vehicle, as shown in Figure 1.
This vehicle comprises a car body and two sets of independently rotating wheelsets, and the
corresponding parameters are detailed in Table A1. It has ten degrees of freedom, including
the rotational dynamics of each IRW and the lateral position and yaw movements of both
the car body and the wheelsets. Each IRW is driven by a motor providing guidance torque,
typically using a permanent magnet synchronous motor (PMSM) in engineering practice.
The wheel profile of each IRW is LMA, and the corresponding rail profile is UIC60.

The dynamic equations of lateral and yaw movements for the car body are shown in
Equations (1) and (2), respectively.

mb
..
yb + 2Cy(2

.
yb −

.
yw1 −

.
yw2) + 2Ky(2yb − yw1 − yw2) =

mbV2
0

2 (1
Rc1

+ 1
Rc2

)− mbg
2 (θ1 + θ2)

(1)

Ib
..
ψb + 4(L2

bCy + L2
aCx)

.
ψb + 4(L2

bKy + L2
aKx)ψb−

2LbCy(
.
yw1 −

.
yw2)− 2LbKy(yw1 − yw2)− 2L2

aKx(ψw1 + ψw2)− 2L2
aCx(

.
ψw1 +

.
ψw2) = 0

(2)

Appl. Sci. 2024, 14, 1677 3 of 21

where La is half of the lateral length of the primary suspension, Lb is half of the wheelbase,
mb is the mass of the car body, and Ib is the rotational inertia of the car body around the
z-axis. Kx and Ky are the longitudinal and lateral stiffnesses of the primary suspension,
respectively. Cx and Cy are the longitudinal and lateral damping of the primary suspension,
respectively. Rci is the radius of the curved track, and θi is the cant angle of the curve. yb
and ψb are the lateral displacement and yaw angle of the car body, respectively. ywi and ψwi
are the lateral displacement and yaw angle of each wheelset, respectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 22

Figure 1. The railway vehicle model with independently rotating wheels (IRW).

The dynamic equations of lateral and yaw movements for the car body are shown in
Equations (1) and (2), respectively.

+ − − + − − =

+ − +

&& & & &
1 2 1 2

2
0

1 2
1 2

2 (2) 2 (2)

1 1() ()
2 2

b b y b w w y b w w

b b

c c

m y C y y y K y y y

m V m g
θ θ

R R
 (1)

b b

+ + + + −

− − − − + − + =

&& &

& && &

2 2 2 2

2 2
1 2 1 2 1 2 1 2

4() 4()

2 () 2 () 2 () 2 () 0
b b b y a x b b y a x b

y w w y w w a x w w a x w w

I ψ L C L C ψ L K L K ψ

L C y y L K y y L K ψ ψ L C ψ ψ
 (2)

where La is half of the lateral length of the primary suspension, Lb is half of the wheelbase,
mb is the mass of the car body, and Ib is the rotational inertia of the car body around the z-
axis. Kx and Ky are the longitudinal and lateral stiffnesses of the primary suspension, re-
spectively. Cx and Cy are the longitudinal and lateral damping of the primary suspension,
respectively. Rci is the radius of the curved track, and θi is the cant angle of the curve. yb
and ψb are the lateral displacement and yaw angle of the car body, respectively. ywi and
ψwi are the lateral displacement and yaw angle of each wheelset, respectively.

The dynamic equations of the IRWs are shown in Equations (3)–(5), where i = 1 and
2 represent the front and rear, respectively, of the independently rotating wheelsets.

+ + − + − +

 
− + − + − = −⋅ ⋅  

 

&& & & &

&

22

0
2

0
22

2
2 () 2 ()

2 (1) 2 (1) 2

w wi wi y wi b y wi b

i i
g wi wi b y b b y b w i

ci

f
m y y C y y K y y

V

V
K y f ψ L C ψ L K ψ m gθ

R

 (3)

+ + + − +

− − − = +

&& & & &

&

2
211 11

0 0
2

2 0 11 11 11

0 0

2 2
2 ()

2 2 2
2 ()

l l
wz wi wi wi a x wi b

l l l
a x wi b ψ wi wi ti

ci

f L f λL
I ψ ψ y L C ψ ψ

V r
r f L f L f λL

L K ψ ψ K ψ β y
V R r

 (4)

+ + + = + +&&& &
2

0 11 0 11 0 11
11 11

0 0

l l
wy wi wi wi wi ti wi

ci

r f r f L r f L
I β β f λy ψ f λy T

V V R
 (5)

where Ll is half of the lateral distance between the rolling circles and mw is the mass of the
wheelset. Iwz and Iwy are the wheelset yaw and pitch moments of inertia, respectively. V0 is

Figure 1. The railway vehicle model with independently rotating wheels (IRW).

The dynamic equations of the IRWs are shown in Equations (3)–(5), where i = 1 and 2
represent the front and rear, respectively, of the independently rotating wheelsets.

mw
..
ywi +

2 f22
V0

.
ywi + 2Cy(

.
ywi −

.
yb) + 2Ky(ywi − yb)+

Kgywi − 2 f22ψwi + (−1)i · 2LbCy
.
ψb + (−1)i · 2LbKyψb = mw

(
V2

0
Rci
− gθi

)
(3)

Iwz
..
ψwi +

2 f11L2
l

V0

.
ψwi +

2 f11λLl
r0

ywi + 2L2
aCx(

.
ψwi −

.
ψb)+

2L2
aKx(ψwi − ψb)− Kψψwi −

2r0 f11Ll
V0

.
βwi =

2 f11L2
l

Rci
+ 2 f11λLl

r0
yti

(4)

Iwy
..
βwi +

r0 f11

V0

.
βwi + f11λywi +

r0 f11L2
l

V0

.
ψwi =

r0 f11Ll
Rci

+ f11λyti + Twi (5)

where Ll is half of the lateral distance between the rolling circles and mw is the mass of
the wheelset. Iwz and Iwy are the wheelset yaw and pitch moments of inertia, respectively.
V0 is the longitudinal running speed of the vehicle, λ denotes the wheel conicity of the
IRWs, and r0 is the nominal rolling radius of each IRW. Kg and Kψ are the gravity stiffness
and angular stiffness of the wheelset, respectively. f 11 and f 22 are the creep coefficients
in the longitudinal and lateral directions, respectively. yti is the irregularity of the track.
.
βwi represents the speed difference of each wheelset, and Twi is half of the steering torque
difference between the wheels, as defined in Equations (6) and (7).

.
βwi =

.
βwLi −

.
βwRi

2
(6)

Twi =
TwLi − TwRi

2
(7)

Appl. Sci. 2024, 14, 1677 4 of 21

where the subscripts L and R represent the speeds of the left and right wheels, respectively,
or the differential torque control of the IRWs.

2.2. Closed-Loop Controller for IRWs Based on the MARL Algorithm

The nonlinear model of this IRW vehicle is built in the multibody simulation (MBS)
software SIMPACK 2021, and the closed-loop controllers are shown in Figure 2. For the col-
laborative control system of the vehicle, two IRW controllers are set up for active control of
the front and rear wheelsets. The state observation of the vehicle is transferred to the MARL-
based controller via SIMPACK real-time input/output interfaces for agent–environment
interactions. Based on sensor measurements, including the lateral displacement, yaw angle,
and rotational speeds of the wheels, the controller computes the control output using the
policy neural network. The torque command applied to the left and right wheels compen-
sates for the longitudinal creep force between the IRW and the track, restoring straight-line
stability and facilitating curve negotiation of the IRWs.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 22

the longitudinal running speed of the vehicle, λ denotes the wheel conicity of the IRWs,
and r0 is the nominal rolling radius of each IRW. Kg and Kψ are the gravity stiffness and
angular stiffness of the wheelset, respectively. f11 and f22 are the creep coefficients in the
longitudinal and lateral directions, respectively. yti is the irregularity of the track. &

w iβ rep-
resents the speed difference of each wheelset, and Twi is half of the steering torque differ-
ence between the wheels, as defined in Equations (6) and (7).

−
=
& &

&
2

wLi wRi
wi

β β
β (6)

−
=

2
wLi wRi

wi

T T
T (7)

where the subscripts L and R represent the speeds of the left and right wheels, respec-
tively, or the differential torque control of the IRWs.

2.2. Closed-Loop Controller for IRWs Based on the MARL Algorithm
The nonlinear model of this IRW vehicle is built in the multibody simulation (MBS)

software SIMPACK 2021, and the closed-loop controllers are shown in Figure 2. For the
collaborative control system of the vehicle, two IRW controllers are set up for active con-
trol of the front and rear wheelsets. The state observation of the vehicle is transferred to
the MARL-based controller via SIMPACK real-time input/output interfaces for agent–en-
vironment interactions. Based on sensor measurements, including the lateral displace-
ment, yaw angle, and rotational speeds of the wheels, the controller computes the control
output using the policy neural network. The torque command applied to the left and right
wheels compensates for the longitudinal creep force between the IRW and the track, re-
storing straight-line stability and facilitating curve negotiation of the IRWs.

Figure 2. Closed-loop control via SIMPACK cosimulation.

3. Active Guidance Controller Design for IRWs Based on MARL
In this section, we explore the theoretical framework of MARL and describe the con-

trol objectives using the decentralized partially observable Markov decision process (Dec-

Figure 2. Closed-loop control via SIMPACK cosimulation.

3. Active Guidance Controller Design for IRWs Based on MARL

In this section, we explore the theoretical framework of MARL and describe the
control objectives using the decentralized partially observable Markov decision process
(Dec-POMDP) model. Based on this, we apply the MADDPG algorithm for the active
guidance control of IRW vehicles and detail the implementation process of the algorithm.

3.1. Cooperative Markov Games

In the context of MARL, the single-agent MDP approach is expanded to cooperative
Markov games, where each agent’s actions influence their outcomes and those of others,
creating a dynamic environment of interdependent decision making. This process can be
represented by the {N, S, {Ai}, {Oi}, T, {Ri}, γ} tuples, where N is the number of agents,
S is the state space of the environment, Ai is the action space of the i-th agent, Oi is the
observation space of agent i, T: S × A1 × . . . × AN × S→ [0, 1] is the transition function,
defining the probability of the environment changing to the next state after all agents act,
Ri: S × A1 × . . . × AN → R denotes the reward function of agent i, providing instant
rewards for each agent, and γ is the discount factor used to calculate the present value of
future rewards.

Appl. Sci. 2024, 14, 1677 5 of 21

Given the localized observation and independent decision-making characteristics of
IRW collaborative controllers, we use the Dec-POMDP model for modeling, as shown in
Figure 3. Each agent receives a local observation oi,t ∈ Oi from the environment at time step
t and selects action ai,t ∈ Ai based on the behavior strategy µi (·|oi,t). After the joint action
at = (a1,t, . . ., aN,t) ∈ A is executed, the rewards ri,t ∈ Ri are received by the agents. The
environment then transitions to the next state St+1 determined by the transition function T.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 22

POMDP) model. Based on this, we apply the MADDPG algorithm for the active guidance
control of IRW vehicles and detail the implementation process of the algorithm.

3.1. Cooperative Markov Games
In the context of MARL, the single-agent MDP approach is expanded to cooperative

Markov games, where each agent’s actions influence their outcomes and those of others,
creating a dynamic environment of interdependent decision making. This process can be
represented by the {N, S, {Ai}, {Oi}, T, {Ri}, γ} tuples, where N is the number of agents, S is
the state space of the environment, Ai is the action space of the i-th agent, Oi is the obser-
vation space of agent i, T: S × A1 × … × AN × S → [0, 1] is the transition function, defining
the probability of the environment changing to the next state after all agents act, Ri: S × A1

× … × AN → R denotes the reward function of agent i, providing instant rewards for each
agent, and γ is the discount factor used to calculate the present value of future rewards.

Given the localized observation and independent decision-making characteristics of
IRW collaborative controllers, we use the Dec-POMDP model for modeling, as shown in
Figure 3. Each agent receives a local observation oi,t ∈ Oi from the environment at time step
t and selects action ai,t ∈ Ai based on the behavior strategy µi (·|oi,t). After the joint action at

= (a1,t, …, aN,t) ∈ A is executed, the rewards ri,t ∈ Ri are received by the agents. The environ-
ment then transitions to the next state St+1 determined by the transition function T.

Figure 3. Block diagram of the decentralized partially observable Markov decision process (Dec-
POMDP).

In this study, we consider a fully cooperative environment in which all agents work
together to achieve a common goal rather than only promoting individual rewards. The
policy parameters of the i-th agent are denoted as θi, with the policy set of all agents as µ
= {µ1, …, µN} and the policy parameter set as θ = {θ1, …, θN}. The target function for optimal
control is shown in Equation (8). Each agent updates its behavior strategy to maximize its
cumulative discounted reward, and the optimization target for each agent is expressed by
Equation (9).

∞

= =

 
=  

 
 ~

0 1
() E (,)

N
t

τ µ i t t
t i

J θ γ R s a (8)

() ()− − −

∞

−⋅ ⋅
=

 
=  

 
 , ,~ , ~ | , ~ |

0
() E (, ,)

i i i i i i

t
i i i t i t i ts T a µ o a µ o

t
J θ γ R s a a (9)

Figure 3. Block diagram of the decentralized partially observable Markov decision process (Dec-POMDP).

In this study, we consider a fully cooperative environment in which all agents work
together to achieve a common goal rather than only promoting individual rewards. The
policy parameters of the i-th agent are denoted as θi, with the policy set of all agents as
µ = {µ1, . . ., µN} and the policy parameter set as θ = {θ1, . . ., θN}. The target function for
optimal control is shown in Equation (8). Each agent updates its behavior strategy to
maximize its cumulative discounted reward, and the optimization target for each agent is
expressed by Equation (9).

J(θ) = Eτ∼µ

[
∞

∑
t=0

γt
N

∑
i=1

Ri(st, at)

]
(8)

Ji(θi) = Es∼T,ai∼µi(·|oi),a−i∼µ−i(·|o−i)

[
∞

∑
t=0

γtRi(st, ai,t, a−i,t)

]
(9)

where τ = (o1,0, a1,0, . . ., oN,0, aN,0, o1,1, a1,1, . . .) is the sequence of observations and actions,
µi is the policy of agent i, µ−i is the policy set of all agents except agent i, o−i is the collection
of local observations of all other agents, and a−i is the action set of all other agents.

3.2. MADDPG Algorithm

The MADDPG conforming to the Dec-POMDP is an extension of the DDPG algorithm
and comprises critic and actor networks for each agent [15,17]. By operating as an off-policy
algorithm, MADDPG employs a replay buffer, which is denoted D, archiving all agents’
historical interactions with the environment, including global states, actions, subsequent
states, and rewards, formatted as (st, a1,t, . . ., aN,t, st+1, r1,t, . . ., rN,t) tuples. To optimize the
critic network Qi(st, a1,t, . . ., aN,t) and its parameters ωi, the loss function L(ωi) is defined in
Equation (10).

L(ωi) =
1
|Ds| ∑

j∈Ds

(yj
i −Qi(sj, aj

1, . . . , aj
N))

2 (10)

Appl. Sci. 2024, 14, 1677 6 of 21

where Ds is a small batch from the replay buffer, j is the index of the samples, and yj
i is the

TD target, computed as per Equation (11).

yj
i = rj

i + γQ′i(s
j+1, aj+1

1 , . . . , aj+1
N)

∣∣∣
aj+1

k =µ′k(o
j+1
k)

(11)

where Q′i and µ′i are the critic and actor networks defined in the target network, respectively.
The actor network’s update considers the gradient of Qi with respect to ai, and the

policy gradient for agent i is shown in Equation (12).

∇θi J(θi) ≈
1
|Ds| ∑

j∈Ds

∇θi µi(o
j
i)∇ai Qi(sj, aj

1, . . . , aj
N) (12)

where aj
k = µk

(
oj

k

)
, k = 1, . . ., N, and Qi(·) is agent i’s action value function under policy

µi. The gradients ∇θi (·) and ∇ai (·) correspond to the policy parameter gradient and the
action gradient, respectively.

3.3. Improved MADDPG with PER

The standard experience replay mechanism randomly resamples the stored experi-
ences without considering sample quality. In our case, the quality of the stored data is
influenced by variations in wheel–rail contact and system noise in IRWs under different
control strategies. For example, during the early training stages, experiences restoring IRWs
from large yaw angles or lateral displacements are more informative. These experiences,
which could have been utilized more efficiently to improve the controller, have fewer
chances of being chosen because of uniform random sampling.

To address this issue, we introduce the PER mechanism, a method widely used in
single-agent off-policy reinforcement learning [21]. PER assigns priorities to experience
samples based on the absolute value of the TD error, enhancing the probability of selecting
high-value experiences for training. This prioritization ensures a more frequent selection of
samples poorly predicted under the current policy.

In addition, we use a centralized replay buffer based on a SumTree structure to store
experience and its TD-based prioritization. SumTree is a complete binary tree in which each
leaf node contains an individual sample state transition tuple and its corresponding priority
value. Each nonleaf node holds the cumulative sum of the priorities of its child nodes.
When new experiences are added or the priorities of existing experiences are updated, only
the specific path from the relevant leaf node to the root requires adjustment rather than
continuously sorting samples according to priority in the experience buffer.

An illustrative representation of the PER-MADDPG algorithm framework is shown in
Figure 4.

The TD error calculated by the critic network determines the deviation between the
estimated and target Q values derived from samples. For a given experience tuple j, agent
i calculates the current Q value dependent on the sj and the collective actions, while the
target critic network determines the Q value for sj+1. The TD error can be formulated using
Equation (13).

δ
j
i = rj

i + γQ′i
(

sj+1, aj+1
1 , . . . , aj+1

N

)
−Qi(sj, aj

1, . . . , aj
N) (13)

where δ
j
i denotes the TD error of experience sample j used by agent i and Q′i

(
sj+1, aj+1

1 , . . . , aj+1
N

)
represents the Q value predicted by the target-critic network for the subsequent state sj+1.

Appl. Sci. 2024, 14, 1677 7 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 22

Figure 4. PER-MADDPG algorithm framework.

The TD error calculated by the critic network determines the deviation between the
estimated and target Q values derived from samples. For a given experience tuple j, agent
i calculates the current Q value dependent on the sj and the collective actions, while the
target critic network determines the Q value for sj+1. The TD error can be formulated using
Equation (13).

()+ + +′= + −1 1 1
1 1, ,..., (, ,...,)j j j j j j j j

i i i N i Nδ r γQ s a a Q s a a (13)

where j
iδ denotes the TD error of experience sample j used by agent i and

()+ + +′ 1 1 1
1, ,...,j j j

i NQ s a a represents the Q value predicted by the target-critic network for the

subsequent state sj+1.
When employing the PER method, the priority pj of each experience based on the TD

error is defined as = + j
jp δ . Here, ϵ is a tiny positive constant that ensures a nonzero

probability of selection for all experiences. The sampling probability Pj for the j-th experi-
ence is calculated based on the priority pj relative to the weighted sum of all experience

priorities using the formula: , with α ∈ [0,1] balancing random and

greedy sampling.
Moreover, we apply importance sampling (IS) to rectify the introduced sampling bias

via nonuniform sampling in the PER, and the IS weight wj is calculated using the formula
−= ⋅() β

j jw D P , where |D| is the capacity of the experience replay buffer and β is an ad-
justment parameter that controls the bias correction, with β ∈ [0, 1]. The IS weights should
also be normalized to ensure that no sample weight dominates the update step

, where k is the index of the sample with the maximum weight and
max wk is the highest weight among all the experience data.

The training phase of the PER-MADDPG is shown in Algorithm 1. In the centralized
training of the MADDPG framework, each agent trains value and policy networks, in
which the value network of each agent can access information from all other agents when

Figure 4. PER-MADDPG algorithm framework.

When employing the PER method, the priority pj of each experience based on the
TD error is defined as pj =

∣∣δj
∣∣ + ϵ. Here, ϵ is a tiny positive constant that ensures a

nonzero probability of selection for all experiences. The sampling probability Pj for the
j-th experience is calculated based on the priority pj relative to the weighted sum of all
experience priorities using the formula: Pj =

(
pj
)α/ ∑

k∈D
(pk)

α, with α ∈ [0, 1] balancing

random and greedy sampling.
Moreover, we apply importance sampling (IS) to rectify the introduced sampling bias

via nonuniform sampling in the PER, and the IS weight wj is calculated using the formula

wj = (|D| · Pj)
−β, where |D| is the capacity of the experience replay buffer and β is an

adjustment parameter that controls the bias correction, with β ∈ [0, 1]. The IS weights
should also be normalized to ensure that no sample weight dominates the update step
wj ← wj/maxk∈Dwk , where k is the index of the sample with the maximum weight and
max wk is the highest weight among all the experience data.

The training phase of the PER-MADDPG is shown in Algorithm 1. In the centralized
training of the MADDPG framework, each agent trains value and policy networks, in
which the value network of each agent can access information from all other agents when
evaluating the potential benefits of actions. Once the training is complete, the policy
network alone is sufficient to guide the independent execution of each agent, and the value
network is no longer needed.

Appl. Sci. 2024, 14, 1677 8 of 21

Algorithm 1: Training pseudocode of PER-MADDPG algorithm with N agents

Input: Maximum time steps Nsteps; maximum learning episodes Em; discount factor γ; priority parameters α, β for PER sampling;
soft update rate ξ; experience replay buffer D; mini-batch size |Ds|.
Output: Trained actor networks {µ1, . . ., µN} and critic networks {Q1, . . ., QN}.

01: Initialize the online actor networks {µ1(θ1), . . ., µN(θN)} with random parameters {θ1, . . ., θN}.
02: Initialize the online critic networks {Q1(ω1), . . ., QN(ωN)} with random parameters {ω1, . . ., ωN}.
03: Initialize the weights of target actor and critic networks with ω′i ← ωi and θ′i ← θi (i = 1, . . ., N).
04: Initialize the SumTree structure for the experience replay buffer.
05: for episode = 1 to Em do
06: Initialize the Ornstein–Uhlenbeck noise process NOU.
07: Initialize the environment and obtain initial state observation s = (o1,0, . . ., oN,0).
08: for each time step do
09: for each agent i = 1 to N do
10: Select action ai,t = µi,t(oi,t; θi) + NOU(t) for exploration.
11: end for
12: Execute at = {a1,t, . . ., aN,t}.
13: Observe the individual reward rt = {r1,t, . . ., rN,t}, new state st+1 = {o1,t+1, . . ., oN,t+1} and done flag.
14: Store (st, at, st+1, rt) with initial high priority in D using SumTree.
15: Update state: st ← st+1.
16: for each agent i = 1 to N do
17: Sample a mini-batch of |Ds| from D using PER.
18: for each sampled tuple do
19: Compute the TD error: δ

j
i = rj

i + γQ′i
(

sj+1, µ′i(s
j+1; θ′i); ω′i

)
−Qi(sj, aj; ωi).

20: Update the sample priority pj in SumTree based on
∣∣∣δj

i

∣∣∣.
21: Compute the sampling probability Pj using priority pj.
22: Compute the normalized IS weight wj based on Pj.
23: end for
24: Compute the TD target yj for each sample using TD error.
25: Update Qi by minimizing the loss function via wj weighting:

L(ωi) =
1
|Ds | ∑

j∈Ds

wj · (y
j
i −Qi(sj, aj; ωi))

2.

26: Update µi by optimizing with the wj-weighted policy gradient:

∇θi J(θi) ≈ 1
|Ds | ∑

j∈Ds

wj · ∇θi µi(o
j
i ; θi)∇ai=µi(o

j
i)

Qi(sj, aj; ωi).

27: end for
28: Update ω′i and θ′i for each agent i using a soft update:
ω′i ← ξ ·ωi + (1− ξ) ·ω′i for target critic network; θ′i ← ξ · θi + (1− ξ) · θ′i for target actor network.
29: if done flag is true, then
30: break
31: end if
32: end for
33: end for

3.4. MARL-Based Controller Design

In the prototype vehicle shown in Figure 2, separate controllers are deployed for
the IRWs located at the front and rear. As a two-axle vehicle travels on a track, both
agents acquire dynamic state information about their respective IRWs through sensors.
The controller’s actions involve half of the torque differential exerted on the wheels on
the same axle. Action outputs are augmented with Ornstein–Uhlenbeck (OU) noise to
encourage the exploration of policies. The OU noise process, characterized by temporal
correlation, mitigates the risk of extreme or sudden action changes and maintains a balance
between exploration and exploitation [22]. The state feedback from the IRWs determines
the expected reward, which the MARL algorithm attempts to maximize. The design of the
MARL controller involves specifying critical elements such as the observation space, action
space, reward function, and actor and critic networks, which are defined in this subsection.

Appl. Sci. 2024, 14, 1677 9 of 21

3.4.1. Local and Global Observation Space

Each IRW observes only its local state without considering the dynamic states of the
entire vehicle or other IRWs, which reduces the observation dimensionality of each agent,
achieving local controllers and reducing communication costs. The observation state vector,
based on the active guidance control objectives and vehicle dynamics model shown in
Equations (1)–(7), is defined in Equation (14).

Oi =
[
ywi ψwi

.
ywi

.
ψwi ωLi ωRi

..
βwi

]
(14)

where the subscript i = 1 denotes the dynamic variables of the front IRW and i = 2 denotes
those of the rear IRW. ωLi and ωRi represent the angular velocities of the left and right
wheels of each IRW, respectively.

When using the PER-MADDPG algorithm, the local observation for each agent in-
cludes the lateral displacement and attack angle of the wheelset with respect to the center-
line of the track, which are the primary control objectives. Since the rotational speeds of
each IRW can derive both the speed difference between the wheels and the longitudinal
running speed, they are also considered observation states. Additionally, the time deriva-
tive of the difference in speed between wheels is part of the state vector. Therefore, in the
centralized training process, the global state is S = [O1 O2].

3.4.2. Action Space Definition

During the operation of the IRW vehicle with two independently rotating wheelsets, each
agent’s output equals half of the torque differential exerted on the left and right IRWs. The
input torque of each IRW is subjected to a torque of magnitude |Twi|, and the input torque
directions are opposite for the left and right IRWs on the same axle. Each agent’s action is a
one-dimensional vector, and the resulting joint action space is demonstrated in Equation (15).

A =
[

Tw1 Tw2
]

s.t.− Tmax ⩽ Twi ⩽ Tmax(i = 1, 2)
(15)

where Tmax is the peak output of the controller, with the control torque to each wheel
restricted between −Tmax and Tmax.

3.4.3. Reward Shaping

The design of the reward function is essential for guiding agents to optimize toward
the control objective efficiently. For an IRW vehicle, the MARL-based controller aims to
improve straight-line stability and curve-negotiation capabilities, which can be achieved
by implementing control methodologies, including zero lateral clearance [23] and radial
control [24]. Specifically, zero lateral clearance aims to maintain the geometric center
alignment of the IRW with the track centerline, minimizing lateral displacement. Radial
control ensures that each wheelset achieves a radial position in a curved line with a
minimized attack angle. Thus, the reward function should reward agents more when
wheelsets exhibit less lateral displacement and yaw angles. Moreover, considering the
impact of actuator output on the energy efficiency of guidance control, the reward decreases
as the control torque increases, promoting environmentally friendly control actions.

Based on the above discussion, the definition of the reward function is constructed
using the weighted sum of the lateral displacement, yaw angle, and motor torque of the
wheelsets for the IRW vehicles. Since the control torque and wheelset dynamics state are
not of the same order of magnitude, normalization is needed between the parameters. In
the fully cooperative multiagent environment of our proposed MARL-based controller, all
agents share a global reward function R, and R is formulated as (16).

R = κ2
N=2

∑
i=1

[
ηi1(ymax − |ywi|)2 + ηi2(ψmax − |ψwi|)2

]
+

N=2

∑
i=1

ηi3(Tmax − |Twi|)2 (16)

Appl. Sci. 2024, 14, 1677 10 of 21

where ymax and ψmax are the set upper bounds for the lateral position and attack angle of
the wheelsets, respectively. The lateral displacement reward coefficients are denoted by
η11 and η21, those for the yaw angle by η12 and η22, and those for the control output by η13
and η23. κ denotes the conversion factor from meters to millimeters, and κ = 1000. Tmax
denotes the maximum torque output for the actuators.

The first term of R represents the reward associated with the lateral displacement
and attack angle, aiming to ensure that under active guidance control, the IRW vehicle
maintains optimal steering performance while avoiding wheel flange contact on various
tracks, which implies that the lateral movement and yaw angle of the wheelsets should
remain within the predefined limits. The second term of the reward function concerning
the control torque indicates that the controller should constrain the output torque of the
motors without compromising the guidance performance. Furthermore, the front wheelset,
which typically encounters larger yaw angles during curve negotiation, has higher reward
weights than does the rear wheelset. Therefore, this approach prioritizes the improvement
of the dynamic performance of the front wheelset, taking into account its more severe
wheel–rail contact conditions in curved lines.

3.4.4. Policy and Value Networks

Each agent in our MADDPG algorithm is equipped with two different neural networks:
a policy network and a value network. The policy network is responsible for mapping the
dynamically observed state to deterministic actions, while the value network assesses the
quality of these actions given the current policy. As Equation (14) defines, the actor (policy)
network’s input layer corresponds to each agent’s local observation vector, comprising
seven neurons to match the dimensionality of the observation. Conversely, the input layer
of the critic (value) network integrates the global state with all collective actions, resulting
in an input dimension of 16.

The neural network architectures consist of three fully connected internal layers for both the
policy and value networks, achieving a balance between capturing the dynamic characteristics
of vehicles and computational demands, as detailed in Figure 5. The policy network features
128, 256, and 128 neurons across its three hidden layers and is designed to extract complex
dynamic features for generating torque commands. The value network, with hidden layers
of 256, 512, and 256 neurons, evaluates the state–action pairs. For both networks, the rectified
linear unit (ReLU) activation function is utilized in the hidden layer to introduce nonlinearity
and alleviate vanishing gradients. Moreover, the output layers employ the tanh function for
normalization. Training is conducted using the adaptive moment estimation (Adam) optimizer,
with learning rates of 10−3 for the value network and 10−4 for the policy network.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 22

(a) (b)

Figure 5. Definitions of the policy and value networks of the MADDPG. (a) Policy network, (b)
Value network.

4. Training and Simulation
4.1. Training Process of the MARL-Based Controller

The learning process of the collaborative control strategy for IRW vehicles is detailed
in Figure 6. The random selections of the operating conditions of the vehicle include dif-
ferent speeds, curve radii, and cant, in addition to lateral and vertical random excitations
based on AAR5 track spectra, as shown in Table 1. In each episode, agents utilize virtual
sensors installed on the wheelsets to measure the lateral displacement, yaw angle, and
speed differential of the IRWs, thereby obtaining the necessary local observations for con-
trol decisions. The front and rear IRW active controllers then execute actions based on
their current policies and these observed states, managing the torque differential applied
to the IRWs. The dynamic response of the vehicle, as defined by the model described in
Section 2, is computed along with the corresponding reward functions. The environment
then transitions to the next state, during which the experience tuples are stored in the PER
buffer.

Table 1. Simulation conditions.

Track
No. Type Speed [km/h] Curve Radius [m] Cant [mm]

Track
Irregularities

1 Straight track 120 — — AAR5
2 Straight track 200 — — AAR5
3 Curved track 100 600 80 AAR5
4 Curved track 150 1500 60 AAR5

During the centralized training phase, each agent updates its network parameters:
the critic network parameters are refined by minimizing the loss function, reflecting the
action–value function’s estimation error, while the actor network parameters are opti-
mized using the policy gradient method to maximize the expected reward. The training
process involves continuous interaction with the environment, with networks being up-
dated according to the PER-MADDPG mechanism until a terminal state is encountered,
signaling the end of the current episode and the initialization of a new episode.

Figure 5. Definitions of the policy and value networks of the MADDPG. (a) Policy network, (b) Value
network.

Appl. Sci. 2024, 14, 1677 11 of 21

4. Training and Simulation
4.1. Training Process of the MARL-Based Controller

The learning process of the collaborative control strategy for IRW vehicles is detailed in
Figure 6. The random selections of the operating conditions of the vehicle include different
speeds, curve radii, and cant, in addition to lateral and vertical random excitations based
on AAR5 track spectra, as shown in Table 1. In each episode, agents utilize virtual sensors
installed on the wheelsets to measure the lateral displacement, yaw angle, and speed
differential of the IRWs, thereby obtaining the necessary local observations for control
decisions. The front and rear IRW active controllers then execute actions based on their
current policies and these observed states, managing the torque differential applied to
the IRWs. The dynamic response of the vehicle, as defined by the model described in
Section 2, is computed along with the corresponding reward functions. The environment
then transitions to the next state, during which the experience tuples are stored in the
PER buffer.

Table 1. Simulation conditions.

Track
No. Type Speed

[km/h]
Curve

Radius [m] Cant [mm] Track
Irregularities

1 Straight track 120 — — AAR5
2 Straight track 200 — — AAR5
3 Curved track 100 600 80 AAR5
4 Curved track 150 1500 60 AAR5

During the centralized training phase, each agent updates its network parameters: the
critic network parameters are refined by minimizing the loss function, reflecting the action–
value function’s estimation error, while the actor network parameters are optimized using
the policy gradient method to maximize the expected reward. The training process involves
continuous interaction with the environment, with networks being updated according to
the PER-MADDPG mechanism until a terminal state is encountered, signaling the end of
the current episode and the initialization of a new episode.

The reward function quantifies the steering capability of the IRWs, where higher rewards
indicate more effective active steering control. Early termination of agent–environment
interactions occurs if the lateral displacement or yaw angle exceeds the predefined thresholds
in Table 2, prompting an environmental reset and agent penalization. This mechanism can
guide agents toward more effective control strategies. If controlled IRWs do not exceed
the state threshold or wheel flange contact occurs within the maximum time step Nsteps, the
centering and curve guidance abilities of the IRWs are successfully restored, thereby validating
the effectiveness of the MARL controller.

Table 2. MARL training parameters.

Parameter Value Description

α 0.5 Balance coefficient for prioritized sampling in PER

β 0.5 Bias correction coefficient for importance sampling

γ 0.99 Discount factor for future rewards

ξ 0.005 Soft update coefficient for target networks

ϵ 10−4 Small positive constant ensuring nonzero sampling probability

Em 5 × 105 Total number of training episodes

|D| 1 × 106 Capacity of the experience replay buffer

|Ds| 512 Default batch size for gradient descent

N 2 Number of agents, including front and rear wheelsets

Appl. Sci. 2024, 14, 1677 12 of 21

Table 2. Cont.

Parameter Value Description

Nsteps 2000 Maximum time steps per episode

ymax 10 mm Threshold for lateral displacement termination

ψmax 10 mrad Threshold for yaw angle termination

Tmax 2000 N·m Maximum torque output for actuators

η11 2 Front IRW lateral displacement reward weight

η12 1 Front IRW yaw angle reward weight

η21 0.5 Rear IRW lateral displacement reward weight

η22 0.2 Rear IRW yaw angle reward weight

η13 0.05 Front IRW torque control reward weight

η23 0.02 Rear IRW torque control reward weight
Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 22

Figure 6. Flowchart of the training process.

The reward function quantifies the steering capability of the IRWs, where higher re-
wards indicate more effective active steering control. Early termination of agent–environ-
ment interactions occurs if the lateral displacement or yaw angle exceeds the predefined
thresholds in Table 2, prompting an environmental reset and agent penalization. This
mechanism can guide agents toward more effective control strategies. If controlled IRWs
do not exceed the state threshold or wheel flange contact occurs within the maximum time
step Nsteps, the centering and curve guidance abilities of the IRWs are successfully restored,
thereby validating the effectiveness of the MARL controller.

The PER-MADDPG algorithm was implemented using Python 3.8 and the PyTorch
1.12 framework. We conducted the training on a workstation powered by an Intel Gold
6132 CPU and equipped with a GPU accelerator. The control frequency for the agents was
set at 100 Hz, and each episode was set to last a maximum duration of 20 s, with a time
step of 0.01 s. The size of the experience buffer was set at 1 × 106, utilizing the PER scheme,
where experiences are retained or discarded based on their TD priorities. The hyperpa-
rameters for the MARL algorithm training are detailed in Table 2.

Table 2. MARL training parameters.

Parameter Value Description
α 0.5 Balance coefficient for prioritized sampling in PER
β 0.5 Bias correction coefficient for importance sampling

Figure 6. Flowchart of the training process.

The PER-MADDPG algorithm was implemented using Python 3.8 and the PyTorch
1.12 framework. We conducted the training on a workstation powered by an Intel Gold
6132 CPU and equipped with a GPU accelerator. The control frequency for the agents
was set at 100 Hz, and each episode was set to last a maximum duration of 20 s, with a
time step of 0.01 s. The size of the experience buffer was set at 1 × 106, utilizing the PER

Appl. Sci. 2024, 14, 1677 13 of 21

scheme, where experiences are retained or discarded based on their TD priorities. The
hyperparameters for the MARL algorithm training are detailed in Table 2.

4.2. Training Results
4.2.1. Reward Comparison

Our study comprehensively evaluated the PER-MADDPG algorithm against existing
MARL algorithms to verify its performance in active guidance control for IRW vehicles. The
selected algorithms for reward analysis include the basic MADDPG and single-agent (SA)-
based DDPG algorithms. We also introduce the multiagent proximal policy optimization
(MAPPO), which is based on on-policy learning strategies, into the comparison. MAPPO,
an extension of the proximal policy optimization (PPO) algorithm, employs a centralized
value function method to optimize each agent’s strategy; this method performs well in
many cooperative Markov games and is often used as a benchmark for evaluating MARL
performance [25,26]. Like the MADDPG algorithm, MAPPO uses a combination of value
function and policy gradient methods based on the CTDE framework for implementing
collaborative controllers.

To ensure the robustness of the evaluation, we used five random seeds to train the MARL
agents. As the number of time steps in the training process increases, when the reward per
episode becomes stable, the training of the MARL-based controller converges. We ensured
uniformity in the main parameter settings across all algorithms for a fair comparison.

Table 3 and Figure 7a display the differences in the performance of the reward values
among the different algorithms. The training results highlight the superior performance of
the PER-enhanced MADDPG algorithm, which achieved the highest reward values and
demonstrated convergence after approximately 4.5 × 105 training episodes. In contrast,
the basic MADDPG algorithm lags in convergence speed and final reward achievement
due to its inefficient use of high-value samples. The DDPG controller, limited by its
high-dimensional observation requirements, failed to converge within the predetermined
maximum number of episodes, with reward values significantly lower than those of both
MADDPG and PER-MADDPG. Our analysis also indicates that when applying MARL
algorithms to IRW guidance control, on-policy DRL algorithms lag in sample efficiency
compared to off-policy algorithms. The MAPPO algorithm showed a decrease in perfor-
mance when frequently reusing low-value samples, potentially leading to their final reward
values falling into local optima.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 22

(a) (b)

Figure 7. Reward comparison during training episodes. (a) Comparison of different DRL and MARL
algorithms, (b) Comparison with different mini-batch sizes. The solid line shows the average return
from five random initializations, and the shaded area indicates the standard deviation.

Table 3. Comprehensive evaluation of the trained MARL and DRL algorithms.

Algorithm Final Mean
Reward

Standard Deviation
of Final Reward

Training
Episodes

Sampling
Policy

Training
Framework

PER-MADDPG 8.05 × 105 2.96 × 104 5 × 105 Off-policy with PER CTDE
MADDPG 7.31 × 105 4.92 × 104 5 × 105 Off-policy CTDE
MAPPO 6.48 × 105 2.02 × 104 5 × 105 On-policy CTDE
DDPG 5.76 × 105 6.64 × 104 5 × 105 Off-policy SA

The above comparison results demonstrate the performance of the PER-MADDPG
algorithm, which can obtain higher reward values and exhibit faster convergence, demon-
strating its high sampling efficiency.

4.2.2. Different Mini-Batch Sizes
The choice of mini-batch size in the MADDPG algorithm plays a critical role in bal-

ancing exploration capabilities with training stability, influencing both the convergence
speed and reward values of the algorithm. Figure 7b shows the convergence performance
of the PER-MADDPG algorithm under various mini-batch sizes, specifically for configu-
rations of 256, 512, and 1024. We observed smoother gradient updates and more robust
convergence results with greater mini-batch sizes, particularly 512 and 1024. In contrast,
a mini-batch size of 256 was associated with less accurate gradient estimation, resulting in
diminished reward values and a slow convergence speed. Considering the balance be-
tween computational resource demands and algorithmic efficiency, we adopted a mini-
batch size of 512 for subsequent analyses of the PER-MADDPG algorithm.

4.3. Comparative Analysis of the Control Effects in the MBS Simulations
To validate the effectiveness of the proposed control strategy, a cosimulation involv-

ing the integration of SIMPACK and Python was conducted on the prototype vehicle. The
H∞ control algorithm and the PER-MADDPG controller were tested for use in evaluating
the dynamic response of the IRWs. The H∞ algorithm involved in the comparison is a
model-based state feedback controller based on the µ-synthesis theory. This algorithm de-
signs the controller KHinf to minimize the robust H∞ performance established on IRW dy-
namic equations that include structural uncertainties, particularly at the wheel–rail

Figure 7. Reward comparison during training episodes. (a) Comparison of different DRL and MARL
algorithms, (b) Comparison with different mini-batch sizes. The solid line shows the average return
from five random initializations, and the shaded area indicates the standard deviation.

Appl. Sci. 2024, 14, 1677 14 of 21

Table 3. Comprehensive evaluation of the trained MARL and DRL algorithms.

Algorithm Final Mean
Reward

Standard Deviation
of Final Reward

Training
Episodes

Sampling
Policy

Training
Framework

PER-MADDPG 8.05 × 105 2.96 × 104 5 × 105 Off-policy with
PER CTDE

MADDPG 7.31 × 105 4.92 × 104 5 × 105 Off-policy CTDE
MAPPO 6.48 × 105 2.02 × 104 5 × 105 On-policy CTDE
DDPG 5.76 × 105 6.64 × 104 5 × 105 Off-policy SA

The above comparison results demonstrate the performance of the PER-MADDPG
algorithm, which can obtain higher reward values and exhibit faster convergence, demon-
strating its high sampling efficiency.

4.2.2. Different Mini-Batch Sizes

The choice of mini-batch size in the MADDPG algorithm plays a critical role in
balancing exploration capabilities with training stability, influencing both the convergence
speed and reward values of the algorithm. Figure 7b shows the convergence performance of
the PER-MADDPG algorithm under various mini-batch sizes, specifically for configurations
of 256, 512, and 1024. We observed smoother gradient updates and more robust convergence
results with greater mini-batch sizes, particularly 512 and 1024. In contrast, a mini-batch size
of 256 was associated with less accurate gradient estimation, resulting in diminished reward
values and a slow convergence speed. Considering the balance between computational
resource demands and algorithmic efficiency, we adopted a mini-batch size of 512 for
subsequent analyses of the PER-MADDPG algorithm.

4.3. Comparative Analysis of the Control Effects in the MBS Simulations

To validate the effectiveness of the proposed control strategy, a cosimulation involving
the integration of SIMPACK and Python was conducted on the prototype vehicle. The
H∞ control algorithm and the PER-MADDPG controller were tested for use in evaluating
the dynamic response of the IRWs. The H∞ algorithm involved in the comparison is a
model-based state feedback controller based on the µ-synthesis theory. This algorithm
designs the controller KHinf to minimize the robust H∞ performance established on IRW
dynamic equations that include structural uncertainties, particularly at the wheel–rail
contact interface. The H∞ controller ensures that the closed-loop system remains quadrati-
cally stable for all permissible uncertainties, thus ensuring IRW system stability. Due to
the varying bounds of external disturbances in different tracks, the robust H∞ algorithm
requires particular optimization for each condition. In contrast, the proposed algorithm
does not require parameter adjustments for specific operating conditions.

We focused on two specific operating conditions for our analysis: the straight-line
condition at 120 km/h and the 1500 m radius curve at 150 km/h, as detailed in cases 1 and 4
of Table 2.

4.3.1. Running Stability on a Straight Track

Figure 8 presents the simulation results for the active guidance performed in the
straight line at 120 km/h. Under the control of the H∞ algorithm, the maximum lateral
displacements observed in the front and rear wheelsets were 2.21 mm and 1.93 mm,
respectively. In contrast, the PER-MADDPG controller demonstrated superior performance,
reducing the maximum lateral displacement to 1.15 mm for the front wheelsets and 1.05 mm
for the rear wheelsets. This considerable improvement signifies enhanced straight-line
centering capabilities. Similarly, marked reductions were observed in the yaw angles;
the maximum yaw angles of the front and rear wheelsets decreased from 3.47 mrad and
1.45 mrad, respectively, under H∞ control to 1.23 mrad and 0.95 mrad, respectively, when
controlled by PER-MADDPG. This reduction in both lateral displacement and yaw angle

Appl. Sci. 2024, 14, 1677 15 of 21

also led to a noticeable decrease in wheel–rail wear numbers. The maximum wear numbers
for the front and rear wheelsets decreased from 83.93 N and 77.21 N under H∞ control
to 59.44 N and 56.16 N under PER-MADDPG control, with the average values decreasing
from 15.8 N and 10.9 N to 7.7 N and 5.9 N, respectively. Thus, the proposed active
control algorithm effectively reduced wheel–rail wear by more than 40%. Furthermore,
the PER-MADDPG controller maintained maximum control torques of 467.1 N·m and
408.2 N·m for the front and rear wheelsets, respectively, and the average control torques
were 183.9 N·m and 164.1 N·m, respectively, well within the controller’s design capacity
of 2 kN·m. The comparative results of the cosimulation show that the PER-MADDPG
controller significantly improves the straight-line stability of IRWs relative to the model-
based controller, as evidenced by the reductions in lateral displacement and attack angle,
as well as in wheel–rail wear, thus validating the performance of the proposed algorithm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 22

contact interface. The H∞ controller ensures that the closed-loop system remains quadrat-
ically stable for all permissible uncertainties, thus ensuring IRW system stability. Due to
the varying bounds of external disturbances in different tracks, the robust H∞ algorithm
requires particular optimization for each condition. In contrast, the proposed algorithm
does not require parameter adjustments for specific operating conditions.

We focused on two specific operating conditions for our analysis: the straight-line
condition at 120 km/h and the 1500 m radius curve at 150 km/h, as detailed in cases 1 and
4 of Table 2.

4.3.1. Running Stability on a Straight Track
Figure 8 presents the simulation results for the active guidance performed in the

straight line at 120 km/h. Under the control of the H∞ algorithm, the maximum lateral
displacements observed in the front and rear wheelsets were 2.21 mm and 1.93 mm, re-
spectively. In contrast, the PER-MADDPG controller demonstrated superior performance,
reducing the maximum lateral displacement to 1.15 mm for the front wheelsets and 1.05
mm for the rear wheelsets. This considerable improvement signifies enhanced straight-
line centering capabilities. Similarly, marked reductions were observed in the yaw angles;
the maximum yaw angles of the front and rear wheelsets decreased from 3.47 mrad and
1.45 mrad, respectively, under H∞ control to 1.23 mrad and 0.95 mrad, respectively, when
controlled by PER-MADDPG. This reduction in both lateral displacement and yaw angle
also led to a noticeable decrease in wheel–rail wear numbers. The maximum wear num-
bers for the front and rear wheelsets decreased from 83.93 N and 77.21 N under H∞ control
to 59.44 N and 56.16 N under PER-MADDPG control, with the average values decreasing
from 15.8 N and 10.9 N to 7.7 N and 5.9 N, respectively. Thus, the proposed active control
algorithm effectively reduced wheel–rail wear by more than 40%. Furthermore, the PER-
MADDPG controller maintained maximum control torques of 467.1 N·m and 408.2 N·m
for the front and rear wheelsets, respectively, and the average control torques were 183.9
N·m and 164.1 N·m, respectively, well within the controller’s design capacity of 2 kN·m.
The comparative results of the cosimulation show that the PER-MADDPG controller sig-
nificantly improves the straight-line stability of IRWs relative to the model-based control-
ler, as evidenced by the reductions in lateral displacement and attack angle, as well as in
wheel–rail wear, thus validating the performance of the proposed algorithm.

(a) (b)

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 22

(c) (d)

Figure 8. Straight line cosimulation results (V0 = 120 km/h). (a) Lateral displacement of the wheelsets,
(b) Yaw angle of the wheelsets, (c) Wear number of the wheelsets, (d) Controller output.

4.3.2. Curve-Negotiation Performance
Figure 9 shows the simulation results for the IRW vehicle running on a 1500 m radius

curve at 150 km/h. The curved line includes a circular arc track between short, straight
lines and transition curves. Compared with the H∞ robust controller, the PER-MADDPG
controller effectively reduced the maximum lateral displacement of the front IRW from
2.61 mm to 2.39 mm and the maximum lateral displacement of the rear IRW from 0.91 mm
to 0.64 mm. The yaw angles of both independently rotating wheelsets also decreased sig-
nificantly, from 1.62/0.79 mrad to 1.05/0.73 mrad. This reduction in yaw angle, resulting
in diminished wheel–rail forces, led to a notable decrease in the maximum wear number
of the wheelsets on the curve, from 644.4 N and 113.54 N under H∞ control to 458.7 N and
65.4 N under PER-MADDPG control, representing reductions of 28.8% and 42.4%, respec-
tively. The peak torques for both the front and rear wheelsets remained below the 2 kN·m
maximum threshold. Additionally, the wheelset dynamic response indicated that upon
exiting the curve, the active control swiftly reestablished straight-line centering.

(a) (b)

Figure 8. Straight line cosimulation results (V0 = 120 km/h). (a) Lateral displacement of the wheelsets,
(b) Yaw angle of the wheelsets, (c) Wear number of the wheelsets, (d) Controller output.

4.3.2. Curve-Negotiation Performance

Figure 9 shows the simulation results for the IRW vehicle running on a 1500 m radius
curve at 150 km/h. The curved line includes a circular arc track between short, straight
lines and transition curves. Compared with the H∞ robust controller, the PER-MADDPG
controller effectively reduced the maximum lateral displacement of the front IRW from
2.61 mm to 2.39 mm and the maximum lateral displacement of the rear IRW from 0.91 mm
to 0.64 mm. The yaw angles of both independently rotating wheelsets also decreased
significantly, from 1.62/0.79 mrad to 1.05/0.73 mrad. This reduction in yaw angle, resulting
in diminished wheel–rail forces, led to a notable decrease in the maximum wear number
of the wheelsets on the curve, from 644.4 N and 113.54 N under H∞ control to 458.7 N
and 65.4 N under PER-MADDPG control, representing reductions of 28.8% and 42.4%,
respectively. The peak torques for both the front and rear wheelsets remained below the

Appl. Sci. 2024, 14, 1677 16 of 21

2 kN·m maximum threshold. Additionally, the wheelset dynamic response indicated that
upon exiting the curve, the active control swiftly reestablished straight-line centering.

Through this comparative analysis of the running performance of the front and rear
IRWs under various straight and curved conditions, it is evident that the PER-MADDPG
controller significantly enhances the dynamic performance of the IRWs. This improvement
is revealed by better stability on straight tracks, improved curve-negotiation capabilities,
and reduced wheel–rail wear, all while ensuring that the controller’s outputs remained
within the design limit.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 22

(c) (d)

Figure 8. Straight line cosimulation results (V0 = 120 km/h). (a) Lateral displacement of the wheelsets,
(b) Yaw angle of the wheelsets, (c) Wear number of the wheelsets, (d) Controller output.

4.3.2. Curve-Negotiation Performance
Figure 9 shows the simulation results for the IRW vehicle running on a 1500 m radius

curve at 150 km/h. The curved line includes a circular arc track between short, straight
lines and transition curves. Compared with the H∞ robust controller, the PER-MADDPG
controller effectively reduced the maximum lateral displacement of the front IRW from
2.61 mm to 2.39 mm and the maximum lateral displacement of the rear IRW from 0.91 mm
to 0.64 mm. The yaw angles of both independently rotating wheelsets also decreased sig-
nificantly, from 1.62/0.79 mrad to 1.05/0.73 mrad. This reduction in yaw angle, resulting
in diminished wheel–rail forces, led to a notable decrease in the maximum wear number
of the wheelsets on the curve, from 644.4 N and 113.54 N under H∞ control to 458.7 N and
65.4 N under PER-MADDPG control, representing reductions of 28.8% and 42.4%, respec-
tively. The peak torques for both the front and rear wheelsets remained below the 2 kN·m
maximum threshold. Additionally, the wheelset dynamic response indicated that upon
exiting the curve, the active control swiftly reestablished straight-line centering.

(a) (b)

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 22

(c) (d)

Figure 9. Curved line cosimulation results (V0 = 150 km/h, Rc = 1500 m). (a) Lateral displacement of
the wheelsets, (b) Yaw angle of the wheelsets, (c) Wear number of the wheelsets, (d) Controller out-
put.

Through this comparative analysis of the running performance of the front and rear
IRWs under various straight and curved conditions, it is evident that the PER-MADDPG
controller significantly enhances the dynamic performance of the IRWs. This improve-
ment is revealed by better stability on straight tracks, improved curve-negotiation capa-
bilities, and reduced wheel–rail wear, all while ensuring that the controller’s outputs re-
mained within the design limit.

5. Experimental Validation
5.1. Scale Model of the IRW Vehicle

Experimental validation is crucial for verifying the efficacy of the active steering con-
trol strategy in real-world deployments. We designed a scale model of an IRW vehicle
according to Iwnicki’s similarity laws [27] at a scale factor of 1:5, as shown in Figure 10a.
The electromechanical structure of the scale vehicle comprises two sets of independently
rotating wheelsets and subframes, 600 W PMSMs as drive motors, right-angle gear reduc-
ers, and primary and secondary suspension systems. Each IRW, mounted on a subframe
through axle boxes, connects to the subframe via primary suspension. The drive motors
exert control torque through gear reducers, combing traction and steering. The car body
is connected to the subframe through secondary suspension and equipped with onboard
devices such as controllers, a data acquisition PC, motor drives, and power inverters.

Each subframe of the scale model is equipped with two laser displacement sensors
that track the movement of the IRW. The sensors measure the wheelset’s lateral displace-
ment and yaw angle, defined as the lateral position and angular deviation of the wheel-
set’s geometric center from the track’s centerline, consistent with the approach used in [2].
Wheel rotation is captured by 12-bit incremental encoders. The differentials of displace-
ment, yaw angle, and speed difference are essential for the controller and are determined
by applying backward difference calculations to the measured values. This method ap-
proximates the derivatives of these variables in discrete-time signals. The MARL algo-
rithm is deployed on an NVIDIA Jetson Nano embedded computer. The policy networks
for the two collaborating agents are trained using the PER-MADDPG algorithm within
the simulated environment of the scale IRW model, as illustrated in Figure 10b. The infer-
ence applications of deep neural network models are optimized using TensorRT to enable
real-time control of the GPU during scaled vehicle operation.

Figure 9. Curved line cosimulation results (V0 = 150 km/h, Rc = 1500 m). (a) Lateral displacement of
the wheelsets, (b) Yaw angle of the wheelsets, (c) Wear number of the wheelsets, (d) Controller output.

5. Experimental Validation
5.1. Scale Model of the IRW Vehicle

Experimental validation is crucial for verifying the efficacy of the active steering
control strategy in real-world deployments. We designed a scale model of an IRW vehicle
according to Iwnicki’s similarity laws [27] at a scale factor of 1:5, as shown in Figure 10a.
The electromechanical structure of the scale vehicle comprises two sets of independently
rotating wheelsets and subframes, 600 W PMSMs as drive motors, right-angle gear reducers,
and primary and secondary suspension systems. Each IRW, mounted on a subframe
through axle boxes, connects to the subframe via primary suspension. The drive motors
exert control torque through gear reducers, combing traction and steering. The car body
is connected to the subframe through secondary suspension and equipped with onboard
devices such as controllers, a data acquisition PC, motor drives, and power inverters.

Appl. Sci. 2024, 14, 1677 17 of 21
Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22

(a) (b)

(c)

Figure 10. Schematic of the scale model experiment. (a) Scale model vehicle, (b) Digital model for
MARL training, (c) Layout of the scale track.

5.2. Experimental Results
The active steering control was tested on a 1:5 scale test railway track, the layout of

which is illustrated in Figure 10c. The operation followed a “straight–curve–straight” ar-
rangement, including 10 m straight sections and a 10 m curve with a 15 m radius. During
the experiment, the control effect of the PER-MADDPG controller was evaluated. The
scaled vehicle ran at 1 m/s, and the test lasted for 20 s.

The experimental data are shown in Figure 11, which shows the lateral displacement,
attack angle, and active guidance torque of each wheelset. In the absence of active control,
the maximum lateral displacement reached 8.02 mm on straight tracks and increased to
10.09 mm on curved tracks, indicating poor steering behavior. Conversely, with the pro-
posed controller, the vehicle exhibited effective centering on straight tracks, limiting the
maximum lateral displacement to 2.05 mm. Flange guidance was avoided on the curved
tracks, leading to strong curve-negotiation performance, with a maximum lateral dis-
placement of 2.51 mm. The yaw angles were markedly reduced for both the front and rear
IRWs and were maintained within 7.8 mrad. The control torques applied to the left and
right wheels, which are equal in magnitude but in opposite directions, peaked at less than
2.5 N·m, satisfying the motor’s rated maximum output. With each time step, the front and
rear IRW agents independently make decisions on the control command, demonstrating
the optimized dynamic performance of the scale vehicle for various operation tracks and
underscoring the controller’s real-time operational efficiency.

Figure 10. Schematic of the scale model experiment. (a) Scale model vehicle, (b) Digital model for
MARL training, (c) Layout of the scale track.

Each subframe of the scale model is equipped with two laser displacement sensors that
track the movement of the IRW. The sensors measure the wheelset’s lateral displacement
and yaw angle, defined as the lateral position and angular deviation of the wheelset’s geo-
metric center from the track’s centerline, consistent with the approach used in [2]. Wheel
rotation is captured by 12-bit incremental encoders. The differentials of displacement, yaw
angle, and speed difference are essential for the controller and are determined by applying
backward difference calculations to the measured values. This method approximates the
derivatives of these variables in discrete-time signals. The MARL algorithm is deployed
on an NVIDIA Jetson Nano embedded computer. The policy networks for the two col-
laborating agents are trained using the PER-MADDPG algorithm within the simulated
environment of the scale IRW model, as illustrated in Figure 10b. The inference applications
of deep neural network models are optimized using TensorRT to enable real-time control
of the GPU during scaled vehicle operation.

5.2. Experimental Results

The active steering control was tested on a 1:5 scale test railway track, the layout
of which is illustrated in Figure 10c. The operation followed a “straight–curve–straight”
arrangement, including 10 m straight sections and a 10 m curve with a 15 m radius. During
the experiment, the control effect of the PER-MADDPG controller was evaluated. The
scaled vehicle ran at 1 m/s, and the test lasted for 20 s.

The experimental data are shown in Figure 11, which shows the lateral displacement,
attack angle, and active guidance torque of each wheelset. In the absence of active control,
the maximum lateral displacement reached 8.02 mm on straight tracks and increased
to 10.09 mm on curved tracks, indicating poor steering behavior. Conversely, with the
proposed controller, the vehicle exhibited effective centering on straight tracks, limiting

Appl. Sci. 2024, 14, 1677 18 of 21

the maximum lateral displacement to 2.05 mm. Flange guidance was avoided on the
curved tracks, leading to strong curve-negotiation performance, with a maximum lateral
displacement of 2.51 mm. The yaw angles were markedly reduced for both the front and
rear IRWs and were maintained within 7.8 mrad. The control torques applied to the left and
right wheels, which are equal in magnitude but in opposite directions, peaked at less than
2.5 N·m, satisfying the motor’s rated maximum output. With each time step, the front and
rear IRW agents independently make decisions on the control command, demonstrating
the optimized dynamic performance of the scale vehicle for various operation tracks and
underscoring the controller’s real-time operational efficiency.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 22

(a) (b)

(c)

Figure 11. Test results for the scaled IRW vehicle. (a) Lateral displacement of the wheelsets, (b) Yaw
angle of the wheelsets, (c) Control torque of the PMSMs.

6. Conclusions
In this study, we developed and validated an innovative active guidance control al-

gorithm for IRW vehicles, leveraging the advantages of the MARL algorithm. We con-
structed a nonlinear dynamic model of a two-axle prototype IRW vehicle utilizing SIM-
PACK MBS software and established a feedback control loop based on the MARL. Within
this framework, each independently rotating wheelset is assigned an independent deci-
sion-making agent to achieve local control, enabling distributed control strategies through
collaboration with all other agents. We modeled the control of IRW vehicles as cooperative
Markov games. We propose the PER-MADDPG algorithm based on CTDE, in which the
MADDPG allows each agent to optimize its behavior strategy based on the global state
through centralized training, and the PER mechanism is used to improve sample effi-
ciency by sorting experiences stored in a SumTree structure according to their TD error.
We also designed a reward function and corresponding observation and action spaces to
guide the MARL model toward enhancing the running stability and curve-negotiation
ability of IRWs. Our proposed algorithm demonstrates convergence efficiency and higher
final performance during reinforcement training, achieving a stable MARL learning pro-
cess and surpassing the existing DRL and MARL algorithms. In MBS simulations, the
PER-MADDPG algorithm improved the straight-line centering and curve-negotiation ca-
pabilities of IRWs while reducing wheel–rail wear compared to the classical model-based
control strategy. Furthermore, we constructed a 1:5 scale vehicle based on Iwnicki’s simi-
larity laws to test the controller in actual operation and deployed our proposed method
on a GPU-based development board for real-time inference. The results of the experiments
showed that our method significantly reduced the lateral displacement and yaw angle of

Figure 11. Test results for the scaled IRW vehicle. (a) Lateral displacement of the wheelsets, (b) Yaw
angle of the wheelsets, (c) Control torque of the PMSMs.

6. Conclusions

In this study, we developed and validated an innovative active guidance control algo-
rithm for IRW vehicles, leveraging the advantages of the MARL algorithm. We constructed
a nonlinear dynamic model of a two-axle prototype IRW vehicle utilizing SIMPACK MBS
software and established a feedback control loop based on the MARL. Within this frame-
work, each independently rotating wheelset is assigned an independent decision-making
agent to achieve local control, enabling distributed control strategies through collaboration
with all other agents. We modeled the control of IRW vehicles as cooperative Markov
games. We propose the PER-MADDPG algorithm based on CTDE, in which the MADDPG
allows each agent to optimize its behavior strategy based on the global state through cen-
tralized training, and the PER mechanism is used to improve sample efficiency by sorting
experiences stored in a SumTree structure according to their TD error. We also designed
a reward function and corresponding observation and action spaces to guide the MARL
model toward enhancing the running stability and curve-negotiation ability of IRWs. Our

Appl. Sci. 2024, 14, 1677 19 of 21

proposed algorithm demonstrates convergence efficiency and higher final performance
during reinforcement training, achieving a stable MARL learning process and surpass-
ing the existing DRL and MARL algorithms. In MBS simulations, the PER-MADDPG
algorithm improved the straight-line centering and curve-negotiation capabilities of IRWs
while reducing wheel–rail wear compared to the classical model-based control strategy.
Furthermore, we constructed a 1:5 scale vehicle based on Iwnicki’s similarity laws to test
the controller in actual operation and deployed our proposed method on a GPU-based
development board for real-time inference. The results of the experiments showed that
our method significantly reduced the lateral displacement and yaw angle of the IRWs,
with control outputs simultaneously meeting design requirements and avoiding flange–
rail collisions, confirming its effectiveness. For the first time, we emphasize the ability
of the MARL-based algorithm to adaptively learn railway vehicle dynamics, enhancing
the overall steering performance through collaborative interactions among multiple IRW
controllers and overcoming challenges in traditional controller designs that consider the
nonlinear characteristics of vehicle models and homogenized treatment of IRWs. In addi-
tion, the proposed method eliminates the need to observe the entire vehicle’s dynamic state,
reducing the observation dimensions and communication cost to accelerate the control
response speed in practical applications.

Nevertheless, our study has several limitations that deserve further investigation.
While we established various typical operational scenarios to train MARL agents for IRW
guidance control, real-world applications involve additional complexities, such as vary-
ing wear levels on wheel tread profiles, deviations in suspension parameters, and track
irregularities that could impact controller performance. Further investigations may fo-
cus on encompassing a more extensive range of operational scenarios in the learning
environment and incorporating advanced machine learning strategies such as domain
randomization [28], meta-learning [29], and cross-modal large models [30–32] to enhance
controller robustness. Additionally, this research has focused mainly on lateral dynamic
stability; however, an integrated approach that includes MARL with longitudinal character-
istics from traction and braking systems is vital for comprehensive control optimization. In
the future, we will extend our method to more widely used railway vehicle configurations
with two bogies and four wheelsets or other wheelset types, such as the actuated solid-axle
wheelset (ASW), instead of confining it to single-bogie vehicles primarily used in urban
trams. Also, extensive experiments with MARL-based algorithms on full-size vehicles will
be essential for deploying theoretical advancements in practical and scalable solutions for
future railway vehicle control systems.

Author Contributions: Conceptualization, J.W. and Z.L.; methodology, J.W. and Z.L.; software, J.W.
and Z.Y.; validation, J.W., Z.Y. and Z.J.; formal analysis, J.W. and Z.J.; investigation, J.W.; resources,
J.W. and Z.J.; data curation, J.W. and Z.Y.; writing—original draft preparation, J.W.; writing—review
and editing, Z.L. and Z.Y.; visualization, J.W.; supervision, Z.L.; project administration, Z.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We appreciate the comprehensive feedback and constructive recommendations
provided by the peer reviewers, which have markedly improved the overall quality and clarity of
the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2024, 14, 1677 20 of 21

Appendix A

Table A1. Vehicle parameters for Python-SIMPACK cosimulation.

Structural Components Parameters Value Unit

Car Body

Mass 10,000 kg
Roll inertia 10,000 kg·m2

Pitch inertia 60,000 kg·m2

Yaw inertia 60,000 kg·m2

Bogie Frame

Mass 1700 kg
Roll inertia 1200 kg·m2

Pitch inertia 900 kg·m2

Yaw inertia 1300 kg·m2

Primary suspension

Longitudinal stiffness (per axle box) 500 kN·m−1

Lateral stiffness (per axle box) 5000 kN·m−1

Vertical stiffness (per axle box) 12,000 kN·m−1

Longitudinal damping (per axle box) 50 kN·s·m−1

Lateral damping (per axle box) 500 kN·s·m−1

Vertical damping (per axle box) 500 kN·s·m−1

Lateral span 1.1 m
Longitudinal span 0.4 m

Secondary suspension

Longitudinal stiffness (per side) 150 kN·m−1

Lateral stiffness (per side) 150 kN·m−1

Vertical stiffness (per side) 600 kN·m−1

Longitudinal damping (per side) 20 kN·s·m−1

Lateral damping (per side) 20 kN·s·m−1

Vertical damping (per side) 50 kN·s·m−1

Lateral span 1.8 m
Longitudinal span 0.5 m

IRW
Wheelbase 2.5 m

IRW rolling radius 0.40 m

References
1. Fu, B.; Giossi, R.L.; Persson, R.; Stichel, S.; Bruni, S.; Goodall, R. Active suspension in railway vehicles: A literature survey. Railw.

Eng. Sci. 2020, 28, 3–35. [CrossRef]
2. Lu, Z.; Yang, Z.; Huang, Q.; Wang, X. Robust active guidance control using the µ-synthesis method for a tramcar with indepen-

dently rotating wheelsets. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2019, 233, 33–48. [CrossRef]
3. Heckmann, A.; Keck, A.; Grether, G. Active Guidance of a Railway Running Gear with Independently Rotating Wheels. In

Proceedings of the IEEE Vehicle Power and Propulsion Conference, Gijon, Spain, 18 November–16 December 2020. [CrossRef]
4. Keck, A.; Schwarz, C.; Meurer, T.; Heckmann, A.; Grether, G. Estimating the wheel lateral position of a mechatronic railway

running gear with nonlinear wheel–rail geometry. Mechatronics 2021, 73, 102457. [CrossRef]
5. Perez, J.; Mauer, L.; Busturia, J.M. Design of active steering systems for bogie-based railway vehicles with independently rotating

wheels. Veh. Syst. Dyn. 2002, 37 (Suppl. S1), 209–220. [CrossRef]
6. Ji, Y.; Ren, L.; Zhou, J. Boundary Conditions of Active Steering Control of Independent Rotating Wheelset Based on Hub Motor

and Wheel Rotating Speed Difference Feedback. Veh. Syst. Dyn. 2018, 56, 1883–1898. [CrossRef]
7. Ahn, H.; Lee, H.; Go, S.; Cho, Y.; Lee, J. Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving. J.

Electr. Eng. Technol. 2016, 11, 1042–1048. [CrossRef]
8. Liu, X.; Goodall, R.; Iwnicki, S. Active control of independently rotating wheels with gyroscopes and tachometers–simple

solutions for perfect curving and high stability performance. Veh. Syst. Dyn. 2021, 59, 1719–1734. [CrossRef]
9. Mei, T.X.; Goodall, R.M. Robust control for independently rotating wheelsets on a railway vehicle using practical sensors. IEEE

Trans. Control Syst. Technol. 2001, 9, 599–607. [CrossRef] [PubMed]
10. Lu, Z.; Sun, X.; Yang, J. Integrated Active Control of Independently Rotating Wheels on Rail Vehicles via Observers. Proc. Inst.

Mech. Eng. Part F J. Rail Rapid Transit. 2017, 231, 295–305. [CrossRef]
11. Yang, Z.; Lu, Z.; Sun, X.; Zou, J.; Wan, H.; Yang, M.; Zhang, H. Robust LPV-H∞ Control for Active Steering of Tram with

Independently Rotating Wheels. Adv. Mech. Eng. 2022, 14, 11. [CrossRef]

https://doi.org/10.1007/s40534-020-00207-w
https://doi.org/10.1177/0954409718777374
https://doi.org/10.1109/VPPC49601.2020.9330922
https://doi.org/10.1016/j.mechatronics.2020.102457
https://doi.org/10.1080/00423114.2002.11666233
https://doi.org/10.1080/00423114.2018.1437273
https://doi.org/10.5370/JEET.2016.11.4.1042
https://doi.org/10.1080/00423114.2020.1780455
https://doi.org/10.1109/87.930970
https://www.ncbi.nlm.nih.gov/pubmed/35837382
https://doi.org/10.1177/0954409716629705
https://doi.org/10.1177/16878132221130574

Appl. Sci. 2024, 14, 1677 21 of 21

12. Grether, G.; Heckmann, A.; Looye, G. Lateral Guidance Control Using Information of Preceding Wheel Pairs. In Advances in
Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics,
IAVSD 2019, Gothenburg, Sweden, 12–16 August 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2020.

13. Lu, Z.; Wei, J.; Wang, Z. Active Steering Controller for Driven Independently Rotating Wheelset Vehicles Based on Deep
Reinforcement Learning. Processes 2023, 11, 2677. [CrossRef]

14. Wei, J.; Lu, Z.; Yang, Z.; He, Y.; Wang, X. Data-Driven Robust Control for Railway Driven Independently Rotating Wheelsets
Using Deep Deterministic Policy Gradient. In The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks;
Springer International Publishing: Cham, Switzerland, 2021.

15. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A Survey and Critique of Multiagent Deep Reinforcement Learning. Auton Agent
Multi-Agent Syst. 2019, 33, 750–797. [CrossRef]

16. Su, J.; Adams, S.; Beling, P. Value-Decomposition Multi-Agent Actor-Critics. In Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI 21, Virtual Conference, 2–9 February 2021; AAAI Press: Palo Alto, CA, USA, 2021.

17. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6382–6393.

18. Lu, K.; Li, R.; Li, M. MADDPG-Based Joint Optimization of Task Partitioning and Computation Resource Allocation in Mobile
Edge Computing. Neural Comput. Appl. 2023, 35, 16559–16576. [CrossRef]

19. Xu, D.; Chen, G. Autonomous and Cooperative Control of UAV Cluster with Multi-Agent Reinforcement Learning. Aeronaut. J.
2022, 126, 932–951. [CrossRef]

20. Duan, W.; Tang, Z.; Liu, W.; Zhou, H. Autonomous Driving Planning and Decision Making Based on Game Theory and
Reinforcement Learning. Expert Syst. 2023, 40, e13191. [CrossRef]

21. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2015, arXiv:1511.05952. [CrossRef]
22. Plappert, M. Parameter Space Noise for Exploration in Deep Reinforcement Learning. arXiv 2017, arXiv:1706.01905. [CrossRef]
23. Grether, G. Dynamics of a running gear with IRWs on curved tracks for a robust control development. PAMM 2017, 17, 797–798.

[CrossRef]
24. Hur, H.; Shin, Y.; Ahn, D.; Ham, Y. Steering Performance Evaluation of Active Steering Bogie to Reduce Wheel Wear on Test Line.

Int. J. Precis. Eng. Manuf. 2019, 20, 1591–1600. [CrossRef]
25. Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.; Wu, Y. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent

Games. arXiv 2021, arXiv:2103.01955. [CrossRef]
26. Schroeder de Witt, C.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.S.; Sun, M.; Whiteson, S. Is Independent Learning

All You Need in the StarCraft Multi-Agent Challenge? arXiv 2020, arXiv:2011.09533. [CrossRef]
27. Iwnicki, S.; Spiryagin, M.; Cole, C.; McSweeney, T. Handbook of Railway Vehicle Dynamics, 2nd ed.; CRC Press: Boca Raton, FL,

USA, 2019; pp. 826–864.
28. Chen, S.; Liu, G.; Zhou, Z.; Zhang, K.; Wang, J. Robust multi-agent reinforcement learning method based on adversarial domain

randomization for real-world dual-uav cooperation. IEEE Trans. Intell. Veh. 2023, early access. [CrossRef]
29. Wang, H.; Liu, Z.; Han, Z.; Wu, Y.; Liu, D. Rapid Adaptation for Active Pantograph Control in High-Speed Railway via Deep

Meta Reinforcement Learning. IEEE Trans. Cybern. 2023, early access. [CrossRef]
30. Qu, X.; Lin, H.; Liu, Y. Envisioning the future of transportation: Inspiration of ChatGPT and large models. Commun. Transp. Res.

2023, 3, 100103. [CrossRef]
31. Zheng, C.; Yan, Y.; Liu, Y. Prospects of eVTOL and modular flying cars in China urban settings. J. Intell. Connect. Veh. 2023, 6,

187–189. [CrossRef]
32. Liu, Y.; Wu, F.Y.; Liu, Z.Y.; Wang, K.; Wang, F.Y.; Qu, X.B. Can language models be used for real-world urban-delivery route

optimization? Innovation 2023, 4, 100520. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/pr11092677
https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1007/s00521-023-08527-8
https://doi.org/10.1017/aer.2021.112
https://doi.org/10.1111/exsy.13191
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1706.01905
https://doi.org/10.1002/pamm.201710366
https://doi.org/10.1007/s12541-019-00167-0
https://doi.org/10.48550/arXiv.2103.01955
https://doi.org/10.48550/arXiv.2011.09533
https://doi.org/10.1109/TIV.2023.3307134
https://doi.org/10.1109/TCYB.2023.3271900
https://doi.org/10.1016/j.commtr.2023.100103
https://doi.org/10.26599/JICV.2023.9210029
https://doi.org/10.1016/j.xinn.2023.100520

	Introduction
	System Modeling
	Dynamic Model of Railway Vehicles with IRWs
	Closed-Loop Controller for IRWs Based on the MARL Algorithm

	Active Guidance Controller Design for IRWs Based on MARL
	Cooperative Markov Games
	MADDPG Algorithm
	Improved MADDPG with PER
	MARL-Based Controller Design
	Local and Global Observation Space
	Action Space Definition
	Reward Shaping
	Policy and Value Networks

	Training and Simulation
	Training Process of the MARL-Based Controller
	Training Results
	Reward Comparison
	Different Mini-Batch Sizes

	Comparative Analysis of the Control Effects in the MBS Simulations
	Running Stability on a Straight Track
	Curve-Negotiation Performance

	Experimental Validation
	Scale Model of the IRW Vehicle
	Experimental Results

	Conclusions
	Appendix A
	References

