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Abstract: This study investigates covert communication in multi-sensor systems employing Intelli-
gent Reflecting Surfaces (IRSs). Different from previous works, we focus on optimizing transmission
amplitudes and phase angles for a 2-BPSK codebook in the presence of asymmetric noise over com-
plex Gaussian channels. We adopt KL divergence as a covertness constraint and mutual information
as a metric for transmission rate. We employ Taylor series expansion to approximate KL divergence
and mutual information. Leveraging these approximations, we derive optimal phase angles through
a proposed gradient descent algorithm. The numerical simulations validate the effectiveness and pre-
cision of our Taylor approximation method. Through validation in different scenarios, our algorithm
demonstrates robust convergence, deriving all optimal phase angles. Comparing initial phase angles
from prior works to those obtained via our algorithm, we observe a higher covert transmission rate.

Keywords: covert communication; intelligent reflecting surfaces; 2-BPSK; asymmetric noise

1. Introduction

In the era of the Internet of Things (IoT), the surge in demand for the transmission
of sensor information is witnessing exponential growth [1,2]. Addressing security con-
cerns pertaining to information transmission in multi-sensor environments emerges as a
pivotal undertaking [3–5]. Traditional encryption methodologies and techniques in phys-
ical layer security primarily concentrate on protecting the communication content [6,7].
Nevertheless, the mere protection of communication content no longer suffices to meet
contemporary information security requisites [8,9]. To hide the communication behaviors,
covert communication, also known as low probability of detection (LPD) communication,
was proposed [10].

Extensive research has been conducted on covert communication techniques in mili-
tary communication, with a focus on methods like spread spectrum and frequency-hopping
communication [9,11–13]. These techniques aim to conceal the existence of communication
from vigilant adversaries. However, the theoretical boundaries of covert communication
were initially explored in [14], where the square root law (SRL) in additive white Gaussian
noise (AWGN) channels was discovered. This seminal discovery was subsequently ex-
panded to various channel models, encompassing binary symmetric channels [15], discrete
memoryless channels [16–18], and multi-user channels [19–23], among others.

In this work, we investigate IRS-enabled covert communication in multi-sensor sys-
tems, comprising a central processing unit (CPU) and a sensor cluster with N independent
sensors, as shown in Figure 1. Alice utilizes IRS-reflected signals to covertly access one of
the sensors, while Willie, as the detecting entity, aims to ascertain the presence of covert
access. To reduce operational complexity and communication costs, Alice employs the
2-BPSK codebook proposed in [8] for covert communication. The main contributions of
this paper are summarized as follows:
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(1) We conducted the first theoretical study on IRS-enabled covert communication in
multi-sensor systems with a 2-BPSK codebook. We provided closed-form solutions
for the KL divergence and mutual information analysis of the target system.

(2) We introduced a gradient descent algorithm, which, when employed, yields optimal
initial phase angles for 2-BPSK. This algorithm both ensures covertness and maximizes
the transmission rate.

(3) We proposed a physical layer optimization method for IRS-enabled covert commu-
nication, transforming the multi-parameter optimization problem of transmission
amplitude and phase angles into a phase-angle optimization problem. Based on the
optimized phase angles, we obtained the optimal transmission amplitude.

(4) Through experimental simulations, we validated the effectiveness of the proposed
gradient descent algorithm. Comparative analysis with traditional phase angle param-
eters demonstrated that our optimization method achieves a better covert transmission
rate under the same covertness constraints.

Alice

Willie

Sensors Cluster

Broadcast Link

Detection Link

Interference Link

Covert Communication
Link

Feedback Link

CPU

Bob

Figure 1. IRS-enabled covert communication in multi-sensor systems.

The subsequent sections of this paper are structured as follows. Section 2 introduces
related works. In Section 3, the system model of IRS covert communication in multi-sensor
systems is introduced. The achievability and the transmission performance analysis of
covert communication are provided in Sections 4 and 5. In Section 6, the optimization
problem is reformulated and a gradient descent optimization algorithm is proposed to
solve the problem. Section 7 provides numerical simulations to verify the effectiveness and
superiority of our method. Finally, Section 8 provides the discussion and conclusions of
this paper.

2. Related Works

In previous works, a myriad of strategies have been presented to enhance the efficacy
of covert communication across diverse scenarios. These approaches span a spectrum, in-
cluding the utilization of relaying networks [24,25], multiple interference networks [26,27],
and multi-user networks [28]. Particularly noteworthy is the observation by Lu et al. [29],
who recognized the potential of the intelligent reflecting surface, also referred to as the
reconfigurable intelligent surface (RIS), in amplifying the received signal at the intended
receiver while concurrently attenuating the signal at potential eavesdroppers. In their
system model, Alice covertly transmits messages by either reflecting her signal to Bob
or introducing additional noise to confuse potential eavesdroppers through IRS devices.
Recent studies [30–32] have built upon this foundation, demonstrating that exploiting
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uncertainty about noise can effectively enhance covert performance in IRS covert commu-
nication. Furthermore, research has delved into the optimization of transmission power
and reflection beamforming in IRS networks [30,33–37]. Additionally, covert communica-
tion within Unmanned-Aerial-Vehicle-mounted IRS (UIRS) communication systems has
garnered attention in recent investigations [38,39].

In [40,41], the spectrum and time resources have been adopted to improve the per-
formance of covert communication. Moreover, in [8], the authors have proved that phase
resources can also be utilized to enhance the performance of covert communication. They
extended IRS covert communication to the complex Gaussian channel and introduced a
novel codebook, i.e., the N-BPSK codebook. This codebook is derived from the traditional
BPSK codebook, and a simple reflect operation allows obtaining the full phase gain. This
gain is crucial as traditional IRS covert communication requires biased reflection opera-
tions for each symbol, imposing high hardware demands and increased complexity on the
IRS [8].

While their work and findings are significant, their analysis of IRS covert communica-
tion is limited to scenarios with symmetric noise, specifically where the noise variances
on the real and imaginary axes are equal. However, in multi-sensor scenarios, channel
noise is typically asymmetric due to the dispersed positions of sensors and varying signal
transmission intervals. The performance boundaries of covert communication under such
conditions merit further investigation.

3. System Model
3.1. Communication Scenario and Equivalent Channel

We examine a discrete-time additive white Gaussian noise channel model with com-
plex values, as depicted in Figure 1. The central processing unit (CPU) broadcasts n
complex-valued symbols SR = {SR,i}n

i=1 to N sensors, and each sensor, denoted as the
k-th sensor, transmits feedback information to the CPU in n complex-valued symbols
SF,k = {SF,k,i}n

i=1. To optimize the transmission rate, both the broadcast and feedback
signals follow Gaussian distributions, where SR,i ∼ CN (0, 2σ2

R) and SF,k,i ∼ CN (0, 2σ2
F,k).

The transmitter, represented by the intelligent reflecting surface (IRS) or Alice, aims to
transmit n complex-valued symbols c = {ci}n

i=1 to reach the target sensor, Bob. Meanwhile,
the detector, Willie, endeavors to detect any access attempts. All transmission and feedback
activities occur within a single time slot. Consequently, the i-th symbol received by Bob
and Willie can be expressed as:

ŶB,i = hRBSR,i + hRAhABSR,ici +
N

∑
k=1

hFB,kSF,k,i + N̂B,i, (1)

ŶW,i = hRWSR,i + hRAhAWSR,ici +
N

∑
k=1

hFW,kSF,k,i + N̂W,i, (2)

where N̂B, i and N̂W, i represent independent and identically distributed (i.i.d.) Gaus-
sian noise components with variances 2σ̂B2 and 2σ̂W2, respectively. Specifically, N̂B, i ∼
CN (0, 2σ̂B2) and N̂W, i ∼ CN (0, 2σ̂W2). The channel coefficients from the central process-
ing unit (CPU) to Alice, Bob, and Willie are denoted by hRA, hRB, and hRW , respectively.
Additionally, the channel coefficients from Alice to Bob and from Alice to Willie are rep-
resented by hAB and hAW , respectively. The channel coefficients from the k-th sensor to
Bob and Willie are denoted by hFB,k and hFW,k, respectively. For simplicity, we assume
that the CPU broadcasts n symbols with a phase angle of zero, and all channel coefficients
are universally known. Given the multitude of sensors, Bob and Willie face challenges in
demodulating all signals. Consequently, the feedback signals from the sensors are treated as
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interference. Considering the composition of feedback signals from N sensors, the channel
can be equivalently expressed as:

YB,i = hRBSR,i + hRAhABSR,ici + NB,i, (3)

YW,i = hRWSR,i + hRAhAWSR,ici + NW,i, (4)

where NB,i ∼ CN (0, 2σ2
B) and NW,i ∼ CN (0, 2σ2

W) with σ2
B = E(|∑N

k=1 hFB,kSF,k,i|2) + σ̂2
B

and σ2
W = E(|∑N

k=1 hFW,kSF,k,i|2) + σ̂2
W .

Based on the scenario and actual situation considerations, we assume that Bob and
Willie can recover the broadcast information SR and perform a subtraction operation on
their observations to improve transmission performance and detection performance. Then,
the i-th symbol received by Bob and Willie can be equivalently rewritten as

YB,i = hRAhABSR,ici + NB,i (5)

YW,i = hRAhAWSR,ici + NW,i. (6)

In the following context, our problem will be analyzed on equivalent channels (5)
and (6).

3.2. Construction of 2-BPSK Codebook

Alice employs a covert communication strategy with Bob by manipulating the re-
flection coefficient of the IRS, adjusting both its amplitude and phase. Alice transmits a
message W uniformly distributed in the range [[1, M]] to Bob by encoding it into a codeword
cn =

[
c1, c2, . . . , cn

]
with a blocklength of n. In this work, we adopt the 2-BPSK codebook,

proposed in [8], instead of the conventional Gaussian codebook or BPSK codebook. To con-
struct the 2-BPSK codebook, we need to construct a BPSK codebook first.

In the BPSK codebook, each symbol ci exhibits a consistent amplitude β and two
potential phases, denoted as θ̃1 and θ̃1 + π. Specifically, the expression for each symbol
ci can be either (β, θ̃1) or (β, θ̃1 + π). The codeword cn is independently and randomly
generated based on the distribution Pn

B(c
n) = ∏n

i=1 PB(ci), where PB(ci = (β, θ̃1)) =
PB(ci = (β, θ̃1 + π)) = 1/2. The 2-BPSK codebook is constructed by reflecting the BPSK
codebook. By introducing a fixed phase angle θ̂ to each symbol ci, Alice can create another
BPSK codebook with varying phase angles. In other words, Alice transmits each codeword
in BPSK with an additional phase angle θ̂, and each symbol ci can be expressed as either
(β, θ̃1 + θ̂) or (β, θ̃1 + θ̂ + π). For the sake of simplicity in notation, we redefine the symbols
(β, θ̃1 + π) and (β, θ̃1 + θ̂ + π) as (−β, θ̃1) and (−β, θ̃1 + θ̂).

Assuming that Alice may optionally append an additional phase angle θ̂ or choose not
to perform this operation, we can obtain two independent BPSK codebooks. By combining
these two codebooks, we can construct a 2-BPSK codebook. In the 2-BPSK codebook, each
codeword can be represented as either (β, θ̃1) and (−β, θ̃1) or (β, θ̃2) and (−β, θ̃2), where
θ̃2 = θ̃1 + θ̂. It is assumed that the codebook is revealed to Willie, including the value of
amplitude gain β and the set of all possible angles, i.e., {θ̃1, θ̃2}.

3.3. Transmission Scheme

By employing random coding generation of the 2-BPSK codebook, Alice encodes a
message W into a codeword cn

1 =
[
c1,1, . . . , c1,n

]
∈ Cn or cn

2 =
[
c2,1, . . . , c2,n

]
∈ Cn, where

c1,i ∈ {(−β, θ̃1), (β, θ̃1)} and c2,i ∈ {(−β, θ̃2), (β, θ̃2)} with i ∈ [1, n]. For the i-th symbol,
its amplitude is independently selected from ±β and its phase angle is independently
selected from {θ̃1, θ̃2} equiprobably [8,42]. The codeword cn is generated independently
and identically distributed according to the following probability distribution:

P(cn) =
1
2

n

∏
i=1

Pc1(c1,i) +
1
2

n

∏
i=1

Pc2(c2,i). (7)
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Then, the mutual information can be expressed as

I(Yn
b ; cn) = I(Yb,1, . . . , Yb,n; c1, . . . , cn). (8)

where cn denotes the discrete input and Yn
b denotes the channel output. Combined with

the construction o the 2-BPSK codebook, the mutual information in (8) can be expressed as

I(Yn
b ; cn) =

1
2
I(Yb,1,1, . . . , Yb,1,n; c1,1, . . . , c1,n) +

1
2
I(Yb,2,1, . . . , Yb,2,n; c2,1, . . . , c2n). (9)

3.4. Hypothesis Test

In the analysis of a quasi-static flat fading channel characterized by coefficients hRA and
hAW , the anticipated amplitude of the complex-value hRAhAWSR,i is denoted as A, and the
expected phase angle is represented as θ0. The determination of Alice’s communication
activity involves Willie conducting a binary hypothesis test [43] based on a sequence of
n observations YW = {YW,i}n

i=1. Specifically, the null hypothesis (H0) and alternative
hypothesis (H1) are formulated as:

H0 : YW,i = NW,i, (10)

H1 : YW,i = hRAhAWSR,ici + NW,i. (11)

Let Qn
0 (resp. Q̄(n)

1 ) denote the probability distribution of Willie’s n observations when

H0 (resp. H1) is true. Willie has knowledge of the distributions Q(n)
1 and Qn

0 and can
conduct an optimal statistical hypothesis test such that the sum of the probability of missed
detection PFA and the probability of false alarm has a lower bound, which is given by

PFA + PMD ≥ 1−
√
D(Q(n)

1 ∥Qn
0 ), (12)

where D(Q(n)
1 ∥Qn

0 ) represents the KL divergence between Q(n)
1 and Qn

0 . The objective of
covert communication is to ensure the KL divergence is negligible, i.e., guaranteeing

D(Q(n)
1 ∥Q

n
0 ) ≤ ϵ, (13)

where ϵ is an arbitrarily small value within the range (0,1).
Given the non-uniform distribution of sensors in the target scenario, the noise gener-

ated in the complex Gaussian channel is asymmetric, i.e., σ2
W = σ2

w,x + σ2
w,y and σ2

w,x ̸= σ2
w,y.

Willie possesses knowledge regarding the construction of the codebook 2-BPSK and channel
coefficient from Alice to Willie. The probability distributions of YW underH0 andH1 are
given by

Qn
0 (x, y) =

n

∏
i=1

1
2πσw,xσw,y

exp
(
− x2

2σ2
w,x
− y2

2σ2
w,y

)
, (14)

Q(n)
1 (x, y) =

1
2

2

∑
t=1

n

∏
i=1

1
2

1
2πσw,xσw,y

[
exp

(
− (xi + Aβ cos θt)2

2σ2
w,x

− (yi + Aβ sin θt)2

2σ2
w,y

)
+ exp

(
− (xi − Aβ cos θt)2

2σ2
w,x

− (yi − Aβ sin θt)2

2σ2
w,y

)]
, (15)

where θt = θ0 + θ̃t, σ2
w,x and σ2

w,y represent the variances of the Gaussian noise at Willie on
the x-axis and y-axis.

3.5. Problem Formulation and Optimization Method Proposed

In this work, we aim to maximize the transmission rate in (9) while satisfying the
covertness constraint in (13). To alleviate the complexity and burden associated with
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IRS covert communication, we employ the 2-BPSK codebook proposed in [8] instead
of the Gaussian codebook or the BPSK codebook. Alice randomly selected either sub-
codebook from the 2-BPSK codebook for communication. To maximize the transmission
rate, optimization is performed on the transmission amplitudes β and phase angles of the
two sub-codebooks, i.e., θ1 and θ2. The problem in this work can be formulated as:

P1 : max
β,{θ}

I(Yn
b ; cn) (16)

s.t. D(Q(n)
1 ∥Q

n
0 ) ≤ ϵ, (17)

0 < β, (18)

0 < θ1 < π, (19)

0 < θ2 < π. (20)

To solve the problem P1, we adopted an optimization approach different from previ-
ous works, as illustrated in Figure 2. In Section 3, we formulated this problem, which is a
two-parameter optimization problem. We decomposed the problem into scaling the opti-
mization objective (16) and constraints (17) and approximated mutual information and KL
divergence in Sections 4 and 5. In Section 4, we approximated KL divergence using a Taylor
series expansion method, transforming the complex integration process for computing KL
divergence into a summation. Similarly, in Section 5, we approximated mutual information
using a Taylor series expansion method, converting the intricate integration process for com-
puting mutual information into a summation. In Section 6, we integrated the approximated
optimization objective mutual information and the constraint KL divergence, reformulating
the problem into P2. Then, we proposed a gradient descent optimization algorithm with
random initialization to solve problem P2. Finally, by combining the optimal results from
P2, the original problem P1 can be completely resolved.

Two-parameter 

optimization problem

Simple summation 

operation

Complex integral 

operations
Mutual information

Taylor Approximated

Mutual information

Section 5

Mutual information

Taylor Approximated

Mutual information

Section 5

KL divergence

Taylor Approximated

KL divergence

Section 4

KL divergence

Taylor Approximated

KL divergence

Section 4

Problem Formulation

Section 3

Problem Formulation

Section 3

Single-parameter 

optimization problem
Problem Reformulation

Section 6

Algorithm Proposed

Problem Solved

Two-parameter 

optimization problem

Simple summation 

operation

Complex integral 

operations
Mutual information

Taylor Approximated

Mutual information

Section 5

KL divergence

Taylor Approximated

KL divergence

Section 4

Problem Formulation

Section 3

Single-parameter 

optimization problem
Problem Reformulation

Section 6

Algorithm Proposed

Problem Solved

Figure 2. Optimization methodology diagram in this work.
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4. Achievability Analysis of 2-BPSK Codebook at Willie

According to the definition of the KL divergence, we have

D(Q(n)
1 ∥Q

n
0 ) =

∫∫
Q(n)

1 log
Q(n)

1
Qn

0
dxdy (21)

=
∫∫ 1

2

2

∑
t=1

Qn
t (x, y) log

1
2

2

∑
p=1

Qn
p(x, y)

Qn
0 (x, y)

dxdy, (22)

where

Qt =
1
2

1
2πσw,xσw,y

[
exp

(
− (xi + Aβ cos θt)2

2σ2
w,x

− (yi + Aβ sin θt)2

2σ2
w,y

)
+ exp

(
− (xi − Aβ cos θt)2

2σ2
w,x

− (yi − Aβ sin θt)2

2σ2
w,y

)]
. (23)

It is worth noting that Q(n)
1 (xn, yn) is the sum of two n-letter product distributions, not

an n-letter product distribution. Thus, we cannot adopt the chain rule like some previous
works [10,42,44,45]. We use a Taylor series expansion of lim

x→1
log(x) to approximate it, which

has been adopted in [8].
Let us define χ ≜ 1

2 ∑2
t=1

Qn
t (x,y)

Qn
0 (x,y) . Following from Taylor series expansion, when χ→ 1,

we have the fact:

log(χ) = (χ− 1)− 1
2
(χ− 1)2 +O((χ− 1)3). (24)

Then, we can rewrite the KL divergence in (22) as

D(Q(n)
1 ∥Q

n
0 ) =

∫∫
Q(n)

1 log(χ)dxdy (25)

=
∫∫

Q(n)
1

[
(χ− 1)− 1

2
(χ− 1)2 +O((χ− 1)3)

]
dxdy. (26)

We can calculate the first term
∫∫

Q(n)
1 (χ− 1)dxdy as∫∫

Q(n)
1 (χ− 1)dxdy

=
1
2

2

∑
t=1

∫∫
Qn

t (x, y)×
( 2

∑
p=1

1
2

Qn
p(x, y)

Qn
0 (x, y)

− 1
)

dxdy (27)

=
1
4

2

∑
t=1

(∫∫
Qn

t (x, y)
2

∑
p=1

Qn
p(x, y)

Qn
0 (x, y)

dxdy− 2
∫∫

Qn
t (x, y)dxdy

)
(28)

=
1
4

2

∑
t=1

( 2

∑
p=1

∫∫
Qn

t (x, y)
Qn

p(x, y)
Qn

0 (x, y)
dxdy

)
− 1 (29)

=
nA4β4

4

(
cos4(θ1)

2σ4
w,x

+
cos4(θ2)

2σ4
w,x

+
sin4(θ1)

2σ4
w,y

+
sin4(θ2)

2σ4
w,y

+
sin2(θ1) sin2(θ2)

σ4
w,y

+
cos2(θ1) sin2(θ1)

σ2
w,xσ2

w,y
+

cos2(θ2) sin2(θ2)

σ2
w,xσ2

w,y

+
cos2(θ1) cos2(θ2)

σ4
w,x

+
2 cos(θ1) cos(θ2) sin(θ1) sin(θ2)

σ2
w,xσ2

w,y

)
+O(β6). (30)
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With some transformation, the term
∫∫

Q(n)
1 (χ− 1)2dxdy can be expressed as∫∫

Q(n)
1 (χ− 1)2dxdy =

∫∫ (
Q(n)

1 χ2 − 2Q(n)
1 χ + Q(n)

1

)
dxdy. (31)

Then, we can calculate the term
∫∫

Q(n)
1 χ2dxdy as∫∫

Q(n)
1 χ2dxdy

=
∫∫

Q(n)
1

(
2

∑
p=1

1
2

Qn
p(x, y)

Qn
0 (x, y)

)(
2

∑
z=1

1
2

Qn
z (x, y)

Qn
0 (x, y)

)
dxdy (32)

=
∫∫ 2

∑
t=1

Qn
t (x)×

2

∑
p=1

1
2

Qn
p(x, y)

Q0(x, y)
×

2

∑
z=1

1
2

Qn
z (x, y)

Q0(x, y)
dxdy (33)

=
1
8

2

∑
t=1

2

∑
p=1

2

∑
z=1

n

∏
i=1

∫∫
Qt(x, y)

Qz(x, y)Qp(x, y)
Q2

0(x, y)
dxdy (34)

= 1 +
nA4β4

2

(
3 cos(θ1)

4

σ4
w,x

+
3 cos(θ2)

4

σ4
w,x

+
3 sin(θ1)

4

σ4
w,y

+
3 sin(θ2)

4

σ4
w,y

+
6 cos(θ1)

2 cos(θ2)
2

σ4
w,x

+
6 sin(θ1)

2 sin(θ2)
2

σ4
w,y

+
6 cos(θ1)

2 sin(θ1)
2

σ2
w,xσ2

w,y

+
6 cos(θ2)

2 sin(θ2)
2

σ2
w,xσ2

w,y
+

12 cos(θ1) cos(θ2) sin(θ1) sin(θ2)

σ2
w,xσ2

w,y

)
+O(β6) (35)

Finally, we re-arrange the third term
∫∫

Q(n)
1 (χ− 1)3 as:∫∫

Q(n)
1 (χ− 1)3dxdy =

∫∫ (
Q(n)

1 χ3 − 3Q(n)
1 χ2 + 3Q(n)

1 χ−Q(n)
1

)
dxdy. (36)

With some calculation, we can obtain
∫

Q(n)
1 χ3dxdy as follows:∫∫

Q(n)
1 χ3dxdy

=
∫∫

Q(n)
1

(
2

∑
p=1

1
2

Qn
p(x, y)

Qn
0 (x, y)

)(
2

∑
z=1

1
2

Qn
z (x, y)

Qn
0 (x, y)

)(
2

∑
s=1

1
2

Qn
s (x, y)

Qn
0 (x, y)

)
dxdy (37)

=
∫∫ 2

∑
t=1

Qn
t (x, y)×

2

∑
p=1

1
2

Qn
p(x, y)

Q0(x, y)
×

2

∑
z=1

1
2

Qn
z (x, y)

Q0(x, y)
×

2

∑
s=1

1
2

Qn
s (x, y)

Q0(x, y)
dxdy (38)

=
1

16

2

∑
t=1

2

∑
p=1

2

∑
z=1

2

∑
s=1

n

∏
i=1

∫∫
Qt(x, y)

Qp(x, y)Qz(x, y)Qs(x, y)
Q3

0(x, y)
dxdy (39)

= 1 +
nA4β4

16

(
12 cos(θ1)

4

σ4
w,x

+
12 cos(θ2)

4

σ4
w,x

+
12 sin(θ1)

4

σ4
w,y

+
12 sin(θ2)

4

σ4
w,y

+
24 cos(θ1)

2 cos(θ2)
2

σ4
w,x

+
24 sin(θ1)

2 sin(θ2)
2

σ4
w,y

+
24 cos(θ1)

2 sin(θ1)
2

σ2
w,xσ2

w,y

+
24 cos(θ2)

2 sin(θ2)
2

σ2
w,xσ2

w,y
+

48 cos(θ1) cos(θ2) sin(θ1) sin(θ2)

σ2
w,xσ2

w,y

)
+O(β6). (40)
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Combined with (25)–(40), we can rewrite the KL divergence D(Q(n)
1 ∥Qn

0 ) as

D(Q(n)
1 ∥Q

n
0 ) (41)

=
∫

x

∫
y

Q(n)
1

[
(χ− 1)− 1

2
(χ− 1)2 +

1
3
(χ− 1)3

]
dxdy (42)

=
A4β4n

16σ4
w,xσ4

w,y

(
σ4

w,x cos(θ1)
4 − 4σ4

w,x cos(θ2)
2 − 4σ4

w,x cos(θ1)
2 + σ4

w,x cos(θ2)
4

+ σ4
w,y cos(θ1)

4 + σ4
w,y cos(θ2)

4 + 4σ4
wx + 2σ2

wx σ2
wy cos(θ1)

2 + 2σ2
wx σ2

wy cos(θ2)
2

− 2σ2
wx σ2

wy cos(θ1)
4 − 2σ2

wx σ2
wy cos(θ2)

4 + 2σ4
wx cos(θ1)

2 cos(θ2)
2

+ 2σ4
wy cos(θ1)

2 cos(θ2)
2 + 4σ2

wx σ2
wy cos(θ1) cos(θ2) sin(θ1) sin(θ2)

)
. (43)

5. Performance Analysis of the Covert Transmission

In (9), we have rewritten the mutual information as

I(Yn
b ; cn) =

1
2
I(Yb,1,1, . . . , Yb,1,n; c1,1, . . . , c1,n) +

1
2
I(Yb,2,1, . . . , Yb,2,n; c2,1, . . . , c2n). (44)

Following from the chain rule, the mutual information I(Yn
b ; cn) can be expressed as

I(Yn
b ; cn) =

n
2
I(Yb,1; c1) +

n
2
I(Yb,2; c2). (45)

For j = 1 or j = 2, we have

I(Yb,j; cj) = H(Yb,j)−H(Yb,j|cj) (46)

= −
∫∫

Qb,j(x, y) log Qb,j(x, y)dxdy +
∫∫ 2

∑
t=1

1
2

Qb,j,t(x, y) log Qb,j,t(x, y)dxdy (47)

= −
∫∫ 2

∑
s=1

1
2

Qb,j,s(x, y) log
[ 2

∑
t=1

1
2

Qb,j,t(x, y)
]
dxdy (48)

+
∫∫ 2

∑
s=1

1
2

Qb,j,s(x, y) log Qb,j,s(x, y)dxdy (49)

= −
∫∫ 2

∑
s=1

1
2

Qb,j,s(x, y) log
[

∑2
t=1

1
2 Qb,j,t(x, y)

Qb,j,s(x, y)

]
dxdy, (50)

with

Qb,j,1(x, y) =
1

2πσ2
b

[
exp

(
−

(x + Bβcos(∆b,w + θj))
2

2σ2
b,x

−
(y + Bβsin(∆b,w + θj))

2

2σ2
b,y

)]
, (51)

Qb,j,2(x, y) =
1

2πσ2
b

[
exp

(
−

(x− Bβcos(∆b,w + θj))
2

2σ2
b,x

−
(y− Bβsin(∆b,w + θj))

2

2σ2
b,y

)]
, (52)

where σ2
b,x and σ2

b,y represent noise variances at Bob on the x-axis and y-axis, and ∆b,w is
the phase difference value between hRAhAWSR,i and hRAhABSR,i.
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Performing Taylor expansion, we have

log
[

∑2
t=1

1
2 Qb,j,t(x, y)

Qb,j,1(x, y)

]
= β

(Bcos(∆b,w + θj)x
σ2

b,x
+

Bsin(∆b,w + θj)y
σ2

b,y

)
+ β2

(B2cos(∆b,w + θj)
2x2

2σ4
b,x

+
B2sin(∆b,w + θj)

2y2

2σ4
b,y

+
B2cos(∆b,w + θj)sin(∆b,w + θj)xy

σ2
b,xσ2

b,y

)
+O(β3), (53)

and

log
[

∑2
i=1

1
2 Qb,i(x, y)

Qb,j,2(x, y)

]
= −β

(Bcos(∆b,w + θj)x
σ2

b,x
+

Bsin(∆b,w + θj)y
σ2

b,y

)
+ β2

(B2cos(∆b,w + θj)
2x2

2σ4
b,x

+
B2sin(∆b,w + θj)

2y2

2σ4
b,y

+
B2cos(∆b,w + θj)sin(∆b,w + θj)xy

σ2
b,xσ2

b,y

)
+O(β3). (54)

With some calculations, we can obtain

∫∫ 2

∑
s=1

1
2

Qb,j,s(x, y) log
[

∑2
t=1

1
2 Qb,j,t(x, y)

Qb,j,s(x, y)

]
dxdy

= −
(B2cos(∆b,w + θj)

2β

σ2
b,x

+
B2sin(∆b,w + θj)

2β

σ2
b,y

)
β

+ (
B2cos(∆b,w + θj)

2

2σ2
b,x

+
B2sin(∆b,w + θj)

2

2σ2
b,y

)β2 +O(β3) (55)

= −
(B2cos(∆b,w + θj)

2

2σ2
b,x

+
B2sin(∆b,w + θj)

2

2σ2
b,y

)
β2 +O(β3). (56)

Combined with (46)–(56), the term I(Yb,j; cj) can be expressed as

I(Yb,j; cj) =
β2

2

(B2cos(∆b,w + θj)
2

σ2
b,x

+
B2sin(∆b,w + θj)

2

σ2
b,y

)
. (57)

Then, we can obtain the mutual information as

I(Yn
b ; cn) =

n
2

2

∑
j=1

I(Yb,j; cj). (58)

6. Problem Reformulation

In Sections 4 and 5, we derive KL divergence and mutual information in our problem.
Combined with (17) and (43), the covertness constraint can be expressed as

A4β4n
16σ4

w,xσ4
w,y
G(θ1, θ2) ≤ ϵ, (59)

where
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G(θ1, θ2) = σ4
w,x cos(θ1)

4 − 4σ4
w,x cos(θ2)

2 − 4σ4
w,x cos(θ1)

2 + σ4
w,x cos(θ2)

4

+ σ4
w,y cos(θ1)

4 + σ4
w,y cos(θ2)

4 + 4σ4
wx + 2σ2

wx σ2
wy cos(θ1)

2 + 2σ2
wx σ2

wy cos(θ2)
2

− 2σ2
wx σ2

wy cos(θ1)
4 − 2σ2

wx σ2
wy cos(θ2)

4 + 2σ4
wx cos(θ1)

2 cos(θ2)
2

+ 2σ4
wy cos(θ1)

2 cos(θ2)
2 + 4σ2

wx σ2
wy cos(θ1) cos(θ2) sin(θ1) sin(θ2). (60)

Then, we can obtain the maximum amplitude gain as

β =
2σw,xσw,y

A

(
ϵ

nG(θ1, θ2)

) 1
4

. (61)

Combined with (57) and (58), the mutual information (16) can be expressed as

I(Yn
b ; cn) =

σ2
w,xσ2

w,yT (θ1, θ2)

A2

(
nϵ

G(θ1, θ2)

) 1
2

, (62)

where

T (θ1, θ2) =
2

∑
j=1

(B2cos(∆b,w + θj)
2

σ2
b,x

+
B2sin(∆b,w + θj)

2

σ2
b,y

)
. (63)

Combined with (59)–(63), we can reformulate the problem as

P2 : max
{θ}

σ2
w,xσ2

w,yT (θ1, θ2)

A2

(
nϵ

G(θ1, θ2)

) 1
2

(64)

s.t. 0 ≤ θ1 ≤ π, (65)

0 ≤ θ2 ≤ π. (66)

Then, we define the objective function asR(θ1, θ2) ≜
σ2

w,xσ2
w,yT (θ1,θ2)

A2

(
nϵ

G(θ1,θ2)

) 1
2
. To solve

the problem (64), we adopted a gradient descent optimization algorithm with random
initialization; the details are summarized in Algorithm 1.

In Algorithm 1, the final output Rt+1 represents the ultimate transmission rate, while
the outputs θt+1

1 and θt+1
2 denote the optimal values for the phase angles. Combined

with the outputs θt+1
1 and θt+1

2 and (61), we can obtain the optimal amplitude gain as

β∗ =
2σw,xσw,y

A

(
ϵ

nG(θt+1
1 ,θt+1

2 )

) 1
4
.
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Algorithm 1 Gradient Descent Optimization Algorithm with Random Initialization

1: Input: Learning rate α, maximum iterations T, convergence threshold ϵ
2: Initialization: Randomly initialize θ0

1 and θ0
2 in interval [0, π]

3: Compute gradients:
4: ▽θ1 ←

∂R(θ1,θ2)
∂θ1

5: ▽θ2 ←
∂R(θ1,θ2)

∂θ2
6: Compute the covert transmission rate:
7: R0 = R(θ0

1 , θ0
2)

8: for t = 0 to T do
9: Update parameters:

10: θt+1
1 ← θt

1 − α ·▽θ1(θ
t
2)

11: θt+1
2 ← θt

2 − α ·▽θ2(θ
t
1)

12: Update the covert transmission rate:
13: Rt+1 = R(θt+1

1 , θt+1
2 )

14: Check for convergence:
15: if ∥(Rt+1,Rt)∥ < ϵ then break
16: end for
17: Output: Rt+1,θt+1

1 and θt+1
2

7. Numerical Results

In this section, we first consider scenarios characterized by noise symmetry along the
x and y axes. Leveraging theoretical results from the referenced paper [8], we validate the
efficacy of our proposed KL divergence and mutual information approximation methods.
After establishing the accuracy of our approximation results, we proceed to validate the
algorithm in two distinct scenarios utilizing our proposed approximation methods. We
assess whether the gradient descent algorithm, as articulated, successfully converges to
optimal angles θ∗1 and θ∗2 . Finally, through a comprehensive exploration of all angles in the
target scenarios, we confirm the efficacy and superiority of our proposed algorithm.

Figure 3 illustrates the simulation results for scenario 1, with specific parameters
detailed in Table 1. As depicted in Figure 3a, under common conditions of noise symmetry
along the x and y axes, the mutual information remains constant at 40 bit/Hz/s as the
phase angles θ1 and θ2 vary. This observation aligns with the theorem in [8], indicating that
altering the initial phase angles does not affect the transmission rate when the variances
of noise along the x-axes and y-axes are equal. This result validates the correctness and
effectiveness of our approximation for mutual information.

Figure 3b,c provide the main view and top view of the KL divergence concerning
the variation of phase angles θ1 and θ2. As illustrated, the KL divergence reaches its
maximum when θ1 equals θ2 (i.e., θ1 = θ2), indicating the poorest covertness performance.
Conversely, the KL divergence achieves its minimum when θ1 and θ2 have a 90-degree
separation (i.e., θ1 − θ2 = 90◦), representing optimal covertness performance. For example,
the simulation reveals that the minimum KL divergence occurs at θ1 = 97◦ and θ2 = 7◦.
This finding aligns with the conclusion in [8] that, under equal x-axis and y-axis noise
variances, the optimal angle for 2-BPSK is 90 degrees. At θ1 = θ2, the KL divergence is
6× 10−4, while at θ1 − θ2 = 90◦, the KL divergence is 3× 10−4, showing a halving of the
KL divergence, consistent with the results in [8]. Therefore, the simulation results validate
the effectiveness and accuracy of our proposed approximation method, serving as a basis
for further validation of our optimization strategy based on this approximation method.
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(a)

(b) (c)

Figure 3. Covert communication performance in scenario 1. (a) Mutual information versus phase
angles. (b) Main view of KL divergence versus phase angles. (c) Top view of KL divergence versus
phase angles.

Table 1. Parameters for comparative experiments.

Scenario A σw,x σw,y B σb,x σb,y ∆b,w n θ∗1 θ∗2

1 0.7 0.5 0.5 0.5 0.5 0.5 0◦ 100,000 null null
2 0.5 0.7 0.3 0.6 0.7 0.3 0◦ 100,000 27◦ 162◦

3 0.5 0.7 0.3 0.6 0.7 0.3 20◦ 100,000 25.2◦ 176.4◦

27.1◦ 0◦

Figure 4 presents the results of covert communication performance versus amplitude
gain β for scenarios 2 and 3, with specific simulation parameters and optimization outcomes
detailed in Table 1. For performance comparison, we conducted experiments using phase
angles adopted in [8,10], specifically, θ1 = 45◦, θ2 = 135◦ and θ1 = 0◦, θ2 = 90◦.

Figure 4a,b depict the KL divergence versus amplitude gain and the transmission rate
versus amplitude gain in scenario 2. As shown, based on our proposed gradient descent
algorithm, the optimal covertness performance can be achieved under the same amplitude
at θ∗1 = 27◦ and θ∗2 = 162◦. However, at θ∗1 = 27◦ and θ∗2 = 162◦, the transmission
rate is lower than the two comparative results. Figure 4c,d illustrate the KL divergence
versus transmission amplitude and the transmission rate versus transmission amplitude in
scenario 3. In scenario 3, the phase angle difference ∆b,w is 20 degrees, and based on our
proposed gradient descent algorithm, optimal covertness performance can be achieved at
θ∗1 = 25.2◦ and θ∗2 = 176.4◦. However, at θ∗1 = 25.2◦, θ∗2 = 176.4◦ or θ∗1 = 27.1◦, θ∗2 = 0◦,
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the transmission rate is lower than the two comparative results. To further compare the
effectiveness of the optimization results, a re-evaluation is needed under the same covert
communication constraint ϵ.
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Figure 4. Covert communication performance in different scenarios. (a) KL divergence versus
amplitude gain in scenario 2. (b) Transmission rate versus amplitude gain in scenario 2. (c) KL
divergence versus amplitude gain in scenario 3. (d) Transmission rate versus amplitude gain in
scenario 3.

Figure 5 illustrates the covert transmission rate versus the covert constraint ϵ in
scenarios 2 and 3. As depicted in Figure 5a, in scenario 1, leveraging our proposed gradient
descent algorithm, the covert transmission rate is maximized at θ∗1 = 27◦ and θ∗2 = 162◦

under the same covert constraint ϵ. In scenario 2, although the transmission rate is not
maximized at θ∗1 = 27◦ and θ∗2 = 162◦ for the same transmission amplitude, considering the
covert constraint, this phase angle pair is optimal. For Scenario 3, our algorithm yields two
optimal phase configurations: θ∗1 = 25.2◦, θ∗2 = 176.4◦ and θ∗1 = 27.1◦, θ∗2 = 0◦. As shown
in Figure 5b, both optimal configurations yield the same covert transmission rate under the
same covert constraint, confirming their optimality in scenario 3. To further validate the
effectiveness of the algorithm, we exhaustively traverse all phase angle options to verify if
the algorithm obtains all optimal results.
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Figure 5. Covert transmission performance in different scenarios. (a) Covert transmission rate versus
covertness constraint in scenario 2. (b) Covert transmission rate versus covertness constraint in
scenario 3.

Figure 6a,b present the main and top views of the maximum covert transmission rate
versus the phase angles θ1 and θ2 variations in scenario 2. In Figure 6, it is evident that
there are two options for achieving the maximum covert transmission rate. Considering the
symmetry of phase angles, our proposed algorithm has successfully identified all optimal
phase angle options, validating the convergence and effectiveness of the algorithm. When
employing conventional phase angles for covert communication, namely, at the moments
when θ1 = 45◦ and θ2 = 135◦, the covert transmission rate is 35 bits/Hz/s. However,
after optimization, the maximum covert rate reaches 45 bits/Hz/s, representing a nearly
30% increase in the transmission rate, which is a substantial improvement.

(a) (b)

Figure 6. Covert communication performance in scenario 2. (a) Main view of covert transmission
rate versus phase angles. (b) Top view of covert transmission rate versus phase angles.

Figure 7a,b depict the main and top views of the maximum covert transmission rate
versus the phase angles θ1 and θ2 variations in scenario 3. It can be observed that there
are four options for achieving the maximum covert transmission rate, reduced to two
when considering the symmetry of phase angles. Through multiple random initializations,
the proposed algorithm effectively converges and identifies all optimal phase angle pairs.
The validity and convergence of the proposed algorithm have been thoroughly validated
through the numerical simulations mentioned above. When employing conventional phase
angles for covert communication, i.e., θ1 = 45◦ and θ2 = 135◦, the covert transmission rate
is 40 bits/Hz/s. After optimization, the maximum covert rate achieves 60 bits/Hz/s, indi-
cating an almost 50% increase in the transmission rate, which is a significant enhancement.
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(a) (b)

Figure 7. Covert communication performance in scenario 3. (a) Main view of covert transmission
rate versus phase angles. (b) Top view of covert transmission rate versus phase angles.

8. Discussion and Conclusions

In this work, we investigated covert communication in multi-sensor systems em-
ploying intelligent reflecting surfaces. Diverging from prior works, we examined the
optimization of transmission amplitudes and optimal phase angles for a 2-BPSK codebook
under the condition of asymmetric noise over complex Gaussian channels. We employed
KL divergence as a metric for the covertness constraint and mutual information as a metric
for the transmission rate. We approximated KL divergence and mutual information with
Taylor series expansion. Leveraging the approximated KL divergence and mutual informa-
tion, we solved for the optimal phase angles. Specifically, we proposed a gradient descent
algorithm to obtain all optimal phase angles. Based on the optimal phase angles, we could
achieve the optimal transmission amplitude gain. With numerical simulations, we verified
the effectiveness and precision of our adopted Taylor approximation method. Validating
our algorithm across two distinct scenarios, we demonstrated its robust convergence and
capability to derive all optimal phase angles. Comparing the initial phase angles from
existing works to the optimal phase angles obtained via the gradient descent algorithm, we
observed a higher covert transmission rate.

In previous covert communication studies, along with the optimization of transmis-
sion power, phase angles change. However, phase angles are rarely considered as an
independent optimization parameter. In this work, we employ a 2-BPSK codebook and
optimize the phase angles. Simulation results demonstrate that by solely optimizing the
phase angles, a significant enhancement in covert transmission rates can be achieved. In sce-
narios 2 and 3, the improvement in covert transmission rates is 30% and 50%, respectively.
Unlike traditional IRS covert communication, the 2-BPSK codebook we utilize offers greater
feasibility, requiring no intricate flipping operations to achieve substantial enhancements
in IRS covert communication rates. In future work, we plan to extend the codebook to an
N-BPSK codebook and optimize all initial phase angles.
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