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Abstract: Due to issues with sample quality, there is an increasing interest in deep learning models
that can handle noisy labels. Currently, the optimal way to deal with noisy labels is by combining
robust active and passive loss functions. However, the weighting parameters for these functions are
typically determined manually or through a large number of experimental iterations, and even the
weighting parameters change as the dataset and the noisy rate change. This can lead to suboptimal
results and be time-consuming. Therefore, we propose an adaptively weighted method for the
combined active passive loss (APL) in remote sensing image retrieval with noisy labels. First, two
metrics are selected to measure the noisy samples: the ratio of the entropy to the standard deviation
and the difference of the predicted probabilities. Then, an adaptive weighted learning network with a
hidden layer is designed to dynamically learn the weighting parameters. The network takes the above
two metrics as inputs and is trained concurrently with the feature extraction network in each batch,
without significantly increasing the computational complexity. Extensive experiments demonstrate
that our improved APL method outperforms the original manually weighted APL method and other
state-of-the-art robust loss methods while saving the time on manual parameter selection.

Keywords: noisy labels; robust loss; remote sensing image retrieval; deep learning

1. Introduction

The demand for the fast and efficient retrieval of images from large remote sensing
databases has become increasingly urgent due to military and civilian needs in geospatial
information science [1]. Content-based remote sensing image retrieval (CBRSIR) is an
effective method to solve meet this demand [2] and has attracted an increasing amount of
research interest.

In recent years, various methods based on deep learning models, which can auto-
matically learn the high-level semantic features of remote sensing images, have become
the mainstream method for CBRSIR [3–5]. These deep learning model-based methods
are data-driven and require large amounts of sample data. Therefore, to reduce the cost
of labelling large datasets, many researchers have proposed clustering, semi-automatic
labelling and crowdsourcing methods in real-world application scenarios [6–8]. However,
these methods can introduce noisy labels into the sample datasets. According to the lit-
erature [9], existing datasets contain between 8.0% and 38.5% noisy labels. Such noisy
labels may lead to overfitting of the deep learning-based methods [10], which can reduce
the performance of remote sensing image retrieval. For example, Li et al. [11] found that
noisy labels significantly affect the accuracy of deep learning-based classifiers, which can
also negatively impact retrieval results. Kang et al. [12] also confirmed that deep learning
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models are not robust enough in benchmarking datasets with noisy labels. Therefore, it is
crucial to consider the effect of noisy labels during deep learning model training.

To reduce the effect of noisy labels, several robust loss functions have been proposed.
For example, Ghosh et al. [13] proposed a mean absolute error (MAE) loss, which is more
robust than cross-entropy (CE). However, it converges slowly due to gradient saturation. By
combining the MAE with the faster converging CE, Zhang et al. [14] proposed a generalised
cross-entropy (GCE). Inspired by the symmetry of Kullback–Leibler divergence, a robust
symmetric cross-entropy (SCE) [15] is proposed by combining the robust reverse cross-
entropy (RCE) and CE with two weighting hyperparameters. Additionally, Chen et al. [16]
proposed an adaptive cross-entropy (ACE) by replacing the two weighting parameters
of the SCE with the output probability of the deep learning network. This approach can
eliminate the need to manually select the weighting parameters for the SCE. Furthermore,
Ma et al. [17] categorised existing robust losses into active and passive losses and introduced
an active passive loss (APL) by combining the two different types of robust losses with
two weighting hyperparameters. This method provides a theoretical explanation for the
effectiveness of the combination losses in combating noisy labels. Compared with other
robust methods, the APL method has the best results. However, the APL method is time-
consuming, and it may not always achieve optimal performance, as the two weighting
parameters are typically determined manually or through a large number of experimental
iterations. More unfortunately, the two weighting parameters vary with the dataset and the
noise rate. This limitation restricts its widespread use in real-world applications, especially
in contexts where noise levels in datasets are unknown. In addition, the ACE parameter
replacement method is not applicable to APL.

To solve this problem, we propose an adaptive weighted method for the robust
APL method in remote sensing image retrieval. Specifically, a new metric based on the
entropy and standard deviation of the predicted probabilities of the samples is developed
to represent the complexity of the sample. Additionally, the predicted probability difference
is chosen as a second metric of whether the sample has a noisy label. Then, an adaptive
weighted learning network (AWNet) with one hidden layer is designed to dynamically
learn the weighting parameters in each training batch using the above two metrics as
inputs. Our code is available at https://github.com/GeoRSAI/APL_AWNet (accessed on
24 January 2024).

The rest of this paper is organised as follows. Section 2 reviews related works on
CBRSIR based on deep learning, robust loss functions and multilayer perceptron for remote
sensing. Section 3 details our proposed method, including the framework, two metrics and
AWNet. The experimental results and analysis are presented in Section 4, while Section 5
provides the conclusion of this paper.

2. Related Works
2.1. CBRSIR Based on Deep Learning

Deep learning has been extensively applied in CBRSIR and has achieved excellent
performance. It has gradually replaced the low- and mid-level feature-based methods. This
is due to the ability of deep neural networks to extract high-level semantic features, which
can better represent the content of remote sensing images. For instance, Zhou et al. [18]
trained a mainstream convolutional neural network model on a remote sensing dataset, and
the performance of the model was significantly better than that of the low- and mid-level
feature-based methods. Other research has attempted to enhance feature extraction by
using more complex network structures, such as the contrastive self-supervised learning
network [19] and attention mechanisms [20,21]. On clean datasets, many of the current
methods have achieved near-saturation retrieval accuracy. However, when the training
data contains noisy labels, the model tends to overfit to noisy samples. This significantly
reduces the accuracy of the classification model and, subsequently, the retrieval accuracy.
To solve the above problem, Li et al. [22] proposed a fault-tolerant deep learning method
for remote sensing scene classification. The method utilises ensemble learning to enhance
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the accuracy of the error correction of noisy labels, with data cleaning as the underlying
concept. However, the method fuses several large networks and iterates many times in
the training process, so the number of parameters and computations is large. Damodaran
et al. [23] proposed a loss with entropic optimal transport (CLEOT), which designed a
robust loss by exploring the joint publication of images and labels, and achieved good
results, but the method performed poorly at low proportion noise. Overall, there is a need
to complement the research on remote sensing image retrieval with noisy labels.

2.2. Noise Robust Loss Functions

A loss function is considered noise-robust if the classifier achieves the same classifica-
tion accuracy on both noisy and noise-free data [24]. Compared to other robust methods
such as relabelling [25] and sample importance weighting [26], robust loss is a simpler
and more general method. Currently, symmetric loss is one of the mainstream robust loss
functions [27,28], such as MAE [13], RCE [15] and so on. To make any loss symmetric, Ma
et al. [17] proposed normalised loss functions using a simple normalisation operation. How-
ever, this operation actually changes the form of loss functions, which leads to difficulties
in optimisation. Consequently, the fitting ability of the symmetric loss function is limited
by the symmetry condition [29], and the model underfitting problem is prone to occur.
Inspired by the advantages of symmetric [15] or complementary learning [30], the APL [17]
framework was proposed for robust and sufficient learning, which is combined with active
loss and passive loss to mutually reinforces each other and solve the model underfitting
problem. Although APL has shown excellent performance among many robust loss func-
tions, it has two hyperparameters (α and β), which cannot maintain optimal performance
on any dataset without tuning. Recently, asymmetric loss functions have been proposed as
a new class of robust loss functions by Zhou et al. [31]. Meanwhile, several asymmetric
loss functions such as asymmetric unhinged loss (AUL) and asymmetric exponential loss
(AEL) have also been proposed by Zhou et al. [31]. However, this type of asymmetric loss
function requires that each sample in the training dataset has a higher probability of being
labelled with a true semantic label than any other class of labels during image classification.
This means that it is ineffective for noisy label types that are easily confused. Therefore, in
this paper, the active passive loss function (APL) is still chosen as an improved benchmark
for remote sensing image retrieval with noisy labels.

2.3. Multilayer Perceptron for Remote Sensing

As a representative neural network structure, multilayer perceptron (MLP) is widely
used in remote sensing tasks such as remote sensing image classification [32–34], object
detection [35] and change detection [36,37]. The MLP can have multiple hidden layers be-
tween the input and output layers, but the simplest MLP has only one hidden layer. Despite
its simple structure, numerous computer vision experiments [38] have demonstrated that
the MLP still has the same feature representation capabilities as traditional convolution and
transformers, even under complex network and large dataset conditions. In addition, the
MLP has excellent compatibility with CNNs [39]. For example, by combining the spectral
features extracted by MLP with the spatial features represented by a CNN, Zhang et al. [40]
used a rule-based decision fusion method to integrate the MLP with the CNN and achieved
excellent classification accuracy of very fine spatial resolution remote sensing images. It
is also inspired by meta-learning [41] and makes it possible to use MLP for the automatic
determination of hyperparameters such as weights. Therefore, we adopt the MLP as the
main structure of our AWNet to automatically acquire active and passive loss weights,
which, in turn, improves its generalisation.

3. Methodology

In this section, we first introduce the APL and analyse its limitations. Then, we present
the framework of our method, which consists of feature extraction, AWNet and image
retrieval components. Next, we explain the meaning and role of the two metrics required
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for the adaptive determination of the APL weights, namely the ratio of entropy to standard
deviation (abbreviated as RES) and δ. Finally, we introduce our core method of the AWNet
and describe the algorithm in detail, showing the connection between the AWNet, APL
weights and classification.

3.1. The Active Passive Loss (APL)

To address the model underfitting problem caused by noisy labels, Ma et al. [17]
proposed a framework to construct robust loss functions called APL, which combines the
active loss (i.e., CE, normalised CE, focal loss and normalised focal loss) and the passive
loss (i.e., MAE, normalised MAE, RCE and normalised RCE). The APL lAPL can be defined
as follows.

lAPL= α·lActive + β·lPassive (1)

where variables α and β are used to compensate for robust losses and α, β > 0. The term
lActive represents active losses that explicitly maximise the network’s output probability at
the class position specified by the label. The term lPassive represents passive losses, which
explicitly minimise the probability at least one other class position. Therefore, for noisy
samples, more passive learning can preserve the effective information of the samples and
avoid misguiding the model. Conversely, more active learning can speed up the learning
of the model and avoid underfitting. However, we found that, for different datasets, the
weights of active and passive losses need to be manually adjusted to achieve the best
performance, which increases the training cost and limits the generalisation performance of
the model. The aim of our method is to automatically adjust the weighting hyperparameters
α and β in remote sensing image retrieval.

3.2. Framework of Our Method

The framework of our method is shown in Figure 1. Our method mainly consists of
feature extraction module, the AWNet module and a querying module.
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The feature extraction module can use any type of convolutional neural network model
(e.g., ResNet, DenseNet, MobileNet, etc.) with the APL method to learn image features from
training samples with noisy labels. The AWNet module aims to dynamically adjust the
weighting hyperparameters of the APL method according to the predicted probability of
the feature extraction module. In the training stage, two different metrics for the complexity
and noise level of each sample image in a batch can be computed based on the predicted
probability of the feature extraction module. The metric values of all images within the
batch are used together as inputs to the AWNet module. With the AWNet, a different set
of weighting hyperparameters, α and β, is obtained for each sampled image. To mitigate
the negative effects of noisy labels in training samples, it is recommended to use more
passive losses, which require a large β. Conversely, for clean training samples with correct
labels, it is advisable to use more active losses to facilitate quick convergence of the model,
which requires a large α. The active passive loss can then be calculated for each image. The
average APL of all images within a batch is used to update the classifier parameters of the
image feature extraction module. In turn, the average value of the APL within the same
batch is recalculated using the newly updated classifier and used to update the AWNet.
Details of the two metrics and the adaptive weighted learning network are described in the
following section.

In the query stage, we first use the optimal model obtained in the training stage to
extract the features of the query image. Then, we calculate the similarity between the
feature vector of the query image and the feature vector of each image in the database. In
this paper, the Euclidean distance is selected as the similarity metric. Finally, based on the
descending order of image feature similarity, the top-ranked images are selected as the final
retrieval results.

3.3. Two Metrics

The weighting hyperparameters of the combined robust loss are closely related to
the training sample. For example, complex datasets require more active learning (such
as large α) and less passive learning (such as small β) to achieve good performance [17].
Furthermore, the weighting parameters are correlated with the noise rate in the trained
samples, because noisy samples require more passive learning. Therefore, two metrics are
designed to reflect the sample complexity and noise level.

In the field of digital image processing, the complexity of an image is reflected by
its information entropy E(.) which is defined as Equation (2). Furthermore, Equation (3)
defines the standard deviation of the output layer of the classifier S(.). This indirectly
reflects the complexity of the sample, because a more complex image is more difficult for
the classifier, resulting in a greater difference in the predicted probability of each category
in the output layer and a lower value of S(.).

E(pi) = −
C

∑
i=1

(pilogpi) (2)

S(pi) =

√√√√ 1
C

C

∑
i=1

( p̂i − pi)
2 (3)

where C represents the total number of labels, pi represents the predicted probability of
each class from the output layer of the classifier, and p̂i means the average value of pi.

It is important to note that the value of E(.) increases and the value of S(.) decreases
as the image complexity increases. Therefore, as shown in Equation (4), the first metric is
defined as the ratio of entropy to standard deviation (abbreviated as RES). The higher the
RES, the higher the complexity of the sample.

RES =
E(pi)

S(pi)
(4)
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In addition, the probability difference δ [42] is selected as the second metric, which
can be used to determine the noise level of the sample. It is defined as follows:

δ = py − pn (5)

where py denotes the probability of being predicted as a correct category by the classifier,
pn denotes the maximum probability of being predicted as other incorrect categories, and
δϵ[−1, 1]. The smaller the δ value of a sample when δ < 0, the more likely it is to be a
noisy sample.

3.4. Adaptive Weighted Learning Network

Inspired by meta-learning [41], we expect the model to be able to learn the relationship
between training samples and weighting hyperparameters automatically. At the same time,
we aim to achieve this without incurring high computational costs. To accomplish this, we
construct an adaptive weight learning network (AWNet) based on a multilayer perceptron.
The network consists of an input layer, a hidden layer (with 100 neurons) and an output
layer. The hidden and output layers consist of a linear model and an activation function.
To avoid the issues of gradient explosion and gradient disappearance, ReLU converts the
input gradient into 1 and 0. Therefore, the activation function of the hidden layer is ReLU,
and the activation function of the output layer is Sigmoid. Full connectivity is used between
the different layers. Specifically, the complexity and noise level of the training samples are
expressed quantitatively by two metrics: RES and δ. The two metrics are then used as the
input of AWNet to fit their relationship with α and β, which can automatically weigh each
sample. The forward computation procedure of AWNet can be written as

(α, β) = µ
(
Wt

2
(
ReLU

(
Wt

1(RES, δ)
)

(6)

where µ and ReLU are the Sigmoid and ReLU activation functions, respectively. WT
1 and

WT
2 are the feature weights between the input layer and the hidden layer and between the

hidden layer and the output layer, respectively.
Algorithm 1 describes the process for updating parameters of our proposed AWNet

and the classifier during the training stage. To ensure the reliability of the classifier’s output
probability, we employ a fixed-weight APL (α = 1, β = 1) for pretraining the classifier in
the first tp epochs. In our experiments, we set the number of pretraining epochs tp to
3. Detailed information about the setting of tp will be introduced in Section 4.5. Once
the pretraining is completed, the classifier proceeds to the formal training stage. In this
stage, we calculate the RES and δ for each sample by using the output probabilities of
the classifier. These two metrics are then input into AWNet to obtain α and β for each
sample. Subsequently, we update the parameters of the classifier by Equation (1) and then
input the same samples into the updated classifier to update the AWNet parameters with
the new loss. The classifier and AWNet parameters are iteratively updated until training
is complete. Our method can be trained directly on noisy data Dn without the need for
additional clean data as a guide.
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Algorithm 1: Training Process of AWNet and classifier

Input:
Data: training dataset with noisy labels Dn;
Component: classifier f (·) and AWNet w(·);
Parameter: α, β pretraining epochs tp, max epochs tmax and iteration per-epoch e;
Output: Well-trained f (·) and w(·).
1. i = 1;
2. while i < tmax + 1 do:
3. if i < tp + 1, then:
4. j = 1, α = 1, β = 1;
5. while j < e + 1 do:
6. Train the classifier f (·) by Dn;
7. Update f (·) according to Equation (1);
8. j = j + 1
9. end while
10. else:
11. k = 1
12. while k < e + 1 do:
13. Train the classifier f (·) by Dn;
14. Calculate RES by Equation (4) and δ by Equation (5);
15. Get α and β by Equation (6)
16. Update f (·) according to (1);
17. Train the classifier f (·) by Dn;
18. Update w(·) according to (1);
19. k = k + 1
20. end while
21. i = i + 1
22. end while

4. Experiments and Analysis
4.1. Datasets and Experimental Setup

Three widely used public remote sensing image datasets: UC-Merced dataset
(UCMD) [43], aerial image dataset (AID) [44] and Northwestern Polytechnical Univer-
sity dataset (NWPU) [45] are used to evaluate the effectiveness of our proposed method.
The UCMD dataset [43] consists of 21 categories, and each category contains 100 images
with a size of 256 × 256 pixels. The AID dataset [44] contains 30 categories and a total
of 10,000 images, with 220–420 images per category. The image size is 600 × 600 pixels.
The NWPU dataset [45] contains 31,500 images and 45 categories. There are 700 images
per category, and each image is 256 × 256 pixels in size. These three datasets can be used
to validate the robustness of the method, as they have different levels of complexity and
intra-class diversity. Examples of all categories in the three datasets are shown in Figures 2–4.

In the experiments, we randomly select 60% of the images as the training set, 20%
of the images as the validation set and 20% of the images as the test set. To evaluate the
effectiveness of the methods against noisy labels, we add different proportions of symmetric
noise (e.g., 5%, 10%, 20% and 30%) to simulate noisy labels in the training and validation
sets. Specifically, the label is flipped uniformly across all the classes with probability p,
regardless of the similarity between the classes. In this case, the label transition matrix E
has the entries 1 − p in the diagonal and p in the off-diagonal elements.

To comprehensively evaluate the effectiveness of our method, we compare it with man-
ual weighting methods on different backbone models, including ResNet [46], DenseNet [47]
and MobileNet [48]. The compared methods are MAE [13]; GCE [14]; SCE [15]; RCE [15];
ACE [16]; AUL [31]; AEL [28] and four APL combinations, namely αNCE (normalised
cross-entropy loss) + βMAE, αNCE + βRCE, αNFL (normalised focal loss) + βMAE and
αNFL + βMAE with 12 different combinations of the weighting hyperparameters α and
β [17]. These 12 weights are recommended in the literature [17]. In addition, mAP (mean
average precision) is used as a metric to evaluate the retrieval performance.
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All experiments are repeated three times to ensure the reliability of the results. All
methods are performed with ImageNet pretrained classifiers and the Adam optimiser. The
initial learning rate and weight decay are both set to 0.00015. To avoid unreliable noisy
sample evaluation results at the beginning of training, α and β are set to 1 for the first three
epochs. Our method’s feature extraction module uses ResNet50 as the basic backbone.
AWNet also uses Adam as the optimiser, with an initial learning rate of 0.001 and a weight
decay of 0.0001. All models are trained using PyTorch 1.8.2 on a single NVIDIA GeForce
RTX 3090 GPU with a batch size of 128 for 20 epochs.
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Figure 3. Examples of the AID dataset: (1) airport; (2) bare land; (3) baseball field; (4) beach;
(5) bridge; (6) centre; (7) church; (8) commercial; (9) dense residential; (10) desert; (11) farmland;
(12) forest; (13) industrial; (14) meadow; (15) medium residential; (16) mountain; (17) park; (18) park-
ing; (19) playground; (20) pond; (21) port; (22) railway station; (23) resort; (24) river; (25) school;
(26) sparse residential; (27) square; (28) stadium; (29) storage tanks; (30) viaduct.
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Figure 4. Examples of the NWPU dataset: (1) airplane; (2) airport; (3) baseball diamond; (4) basketball
court; (5) beach; (6) bridge; (7) chaparral; (8) church; (9) circular farmland; (10) cloud; (11) commer-
cial area; (12) dense residential; (13) desert; (14) forest; (15) freeway; (16) golf course; (17) ground
track field; (18) harbour; (19) industrial area; (20) intersection; (21) island; (22) lake; (23) meadow;
(24) medium residential; (25) mobile home park; (26) mountain; (27) overpass; (28) palace; (29) park-
ing lot; (30) railway; (31) railway station; (32) rectangular farmland; (33) river; (34) roundabout;
(35) runway; (36) sea ice; (37) ship; (38) snowberg; (39) sparse residential; (40) stadium; (41) storage
tank; (42) tennis court; (43) terrace; (44) thermal power station; (45) wetland.

4.2. Experiments on Adaptive Weights versus Manual Weights

In these experiments, we chose α NCE + β RCE as a representative of the APL. Tables 1
and 2 display the retrieval performance of the CE, APL with 12 manual weights and
our method on three different datasets with varying noise rates. The green and red
fonts represent the lowest and highest retrieval performance of the 12 manually weighted
combinations of α NCE + β RCE, respectively.

Table 1. mAPs (%) (mean ± standard deviation) on the UCMD dataset for adaptive weights versus
manual weights.

Loss
The Noise Rate of UCMD

Clean (0%) 5.0% 10.0% 20.0% 30%

CE 97.09 ± 0.37 94.37 ± 0.02 89.81 ± 0.40 78.89 ± 0.87 74.58 ± 2.99

0.1 NCE + 0.1 RCE 95.82 ± 0.24 95.49 ± 0.85 94.16 ± 0.64 90.81 ± 0.66 84.91 ± 1.45
0.1 NCE + 1 RCE 96.63 ± 0.24 95.12 ± 1.02 93.59 ± 1.00 91.01 ± 0.66 85.79 ± 0.91

0.1 NCE + 10 RCE 96.64 ± 0.48 95.01 ± 0.74 93.54 ± 0.15 92.33 ± 0.67 87.48 ± 0.52
0.1 NCE + 100 RCE 96.66 ± 0.39 94.01 ± 0.73 2 94.13 ± 0.96 89.91 ± 0.67 2 84.14 ± 1.04 2

1 NCE + 0.1 RCE 95.44 ± 0.50 2 95.46 ± 0.66 94.61 ± 0.60 92.56 ± 0.31 1 88.25 ± 0.74
1 NCE + 1 RCE 95.95 ± 0.37 95.63 ± 0.17 94.18 ± 0.39 90.12 ± 0.50 86.17 ± 0.90

1 NCE + 10 RCE 96.64 ± 0.49 95.58 ± 0.39 94.50 ± 0.84 91.67 ± 0.93 86.39 ± 0.59
1 NCE + 100 RCE 96.80 ± 0.45 95.33 ± 0.98 94.56 ± 0.45 91.74 ± 0.29 87.90 ± 0.68
10 NCE + 0.1 RCE 96.77 ± 0.70 95.74 ± 0.29 1 93.28 ± 0.71 2 91.10 ± 1.67 89.19 ± 0.67 1

10 NCE + 1 RCE 96.82 ± 0.59 1 95.65 ± 0.42 94.79 ± 0.71 1 92.43 ± 1.26 89.15 ± 0.68
10 NCE + 10 RCE 96.54 ± 0.57 95.73 ± 0.93 94.63 ± 0.79 91.23 ± 1.19 87.42 ± 1.69

10 NCE + 100 RCE 96.47 ± 0.57 94.78 ± 0.61 94.33 ± 0.72 91.28 ± 1.45 86.44 ± 0.99

A-NCE + RCE (ours) 97.00 ± 0.87 * 96.51 ± 0.40 * 95.02 ± 0.51 * 93.00 ± 0.32 * 90.01 ± 0.88 *

* Represents the highest retrieval precision at the same noise rate, and superscripts 1 and 2 represent the highest
and lowest retrieval performance of the 12 manually weighted combinations of α NCE + β RCE, respectively.
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Table 2. mAPs (%) (mean ± standard deviation) on the AID dataset for adaptive weights versus
manual weights.

Loss
The Noise Rate of AID

Clean (0%) 5.0% 10.0% 20.0% 30%

CE 93.17 ± 0.94 90.07 ± 0.39 84.15 ± 0.46 71.95 ± 0.15 69.45 ± 3.41

0.1 NCE + 0.1 RCE 92.58 ± 0.62 92.06 ± 0.40 90.90 ± 0.48 88.38 ± 0.18 85.99 ± 0.61
0.1 NCE + 1 RCE 92.89 ± 0.48 92.13 ± 0.27 91.30 ± 0.22 1 88.06 ± 0.47 85.71 ± 0.32

0.1 NCE + 10 RCE 92.34 ± 0.44 91.69 ± 0.22 90.82 ± 0.28 88.63 ± 0.30 84.79 ± 0.82
0.1 NCE + 100 RCE 92.93 ± 0.42 91.91 ± 0.21 89.80 ± 0.46 2 88.34 ± 0.63 84.28 ± 0.20 2

1 NCE + 0.1 RCE 92.55 ± 0.27 92.43 ± 0.11 1 91.01 ± 0.44 89.74 ± 0.43 86.94 ± 0.37 1

1 NCE + 1 RCE 92.39 ± 0.32 91.98 ± 0.48 91.05 ± 0.53 89.37 ± 0.36 86.53 ± 0.11
1 NCE + 10 RCE 91.95 ± 0.30 2 92.36 ± 0.32 91.25 ± 0.33 89.06 ± 0.75 85.50 ± 0.32
1 NCE + 100 RCE 92.60 ± 0.26 92.38 ± 0.57 90.93 ± 0.54 87.85 ± 0.88 2 85.51 ± 0.63
10 NCE + 0.1 RCE 93.25 ± 0.17 1 92.41 ± 0.75 90.26 ± 0.30 89.30 ± 0.99 86.78 ± 1.57
10 NCE + 1 RCE 92.76 ± 0.31 92.27 ± 0.12 90.89 ± 0.13 89.79 ± 0.68 1 86.53 ± 0.35
10 NCE + 10 RCE 92.94 ± 0.32 92.40 ± 0.11 91.08 ± 0.12 89.66 ± 0.30 86.63 ± 0.30

10 NCE + 100 RCE 92.89 ± 0.33 91.58 ± 0.13 2 91.15 ± 0.35 88.48 ± 0.40 85.14 ± 0.98

A-NCE + RCE (ours) 93.68 ± 0.38 * 92.74 ± 0.05 * 92.37 ± 0.22 * 90.22 ± 0.70 * 87.17 ± 0.54 *

* Represents the highest retrieval precision at the same noise rate, and superscripts 1 and 2 represent the highest
and lowest retrieval performance of the 12 manually weighted combinations of α NCE + β RCE, respectively.

It can be seen from Tables 1–3 that the original APL method outperforms the traditional
CE method in the presence of noisy labels. However, the weighting hyperparameters
required for optimal performance vary across the three datasets and noise rates. This means
that, as the dataset and noise rate change, the original APL method must be repeatedly
tuned. This is a time-consuming process with uncertain results. Furthermore, it can also
be seen that our method achieves the best performance in the three datasets at different
noise rates. This indicates that our adaptive weighted method is effective for the robust
APL method.

Table 3. mAPs (%) (mean ± standard deviation) on the NWPU dataset for adaptive weights versus
manual weights.

Loss
The Noise Rate of NWPU

Clean (0%) 5.0% 10.0% 20.0% 30%

CE 90.99 ± 0.75 85.96 ± 0.82 81.57 ± 1.84 80.41 ± 0.52 77.07 ± 0.03

0.1 NCE + 0.1 RCE 89.55 ± 0.42 89.47 ± 0.53 87.92 ± 0.63 86.41 ± 0.26 84.15 ± 0.26
0.1 NCE + 1 RCE 89.33 ± 0.28 89.47 ± 0.12 88.04 ± 0.54 86.99 ± 0.42 84.16 ± 0.59

0.1 NCE + 10 RCE 89.58 ± 0.36 88.68 ± 0.38 87.86 ± 0.29 2 86.73 ± 0.57 84.33 ± 0.31
0.1 NCE + 100 RCE 88.92 ± 0.61 88.67 ± 0.73 88.34 ± 0.28 85.80 ± 0.16 2 84.90 ± 0.62

1 NCE + 0.1 RCE 90.13 ± 0.27 88.96 ± 0.75 88.91 ± 0.41 87.32 ± 0.42 85.27 ± 0.36
1 NCE + 1 RCE 89.89 ± 0.14 89.04 ± 0.47 88.32 ± 0.26 87.11 ± 0.11 83.82 ± 0.45 2

1 NCE + 10 RCE 89.46 ± 0.61 88.84 ± 0.40 88.53 ± 0.15 85.93 ± 0.09 84.18 ± 0.52
1 NCE + 100 RCE 88.89 ± 0.12 2 88.74 ± 0.39 88.02 ± 0.55 86.38 ± 0.33 85.02 ± 0.40
10 NCE + 0.1 RCE 90.17 ± 0.83 1 89.68 ± 0.19 1 89.62 ± 0.35 1 87.70 ± 0.11 1 85.51 ± 0.78 1

10 NCE + 1 RCE 89.62 ± 0.31 88.69 ± 0.19 88.60 ± 0.64 87.01 ± 0.50 84.69 ± 0.58
10 NCE + 10 RCE 89.17 ± 0.25 88.60 ± 0.44 2 88.11 ± 0.10 86.38 ± 0.35 84.74 ± 0.36

10 NCE + 100 RCE 89.76 ± 0.10 88.96 ± 0.24 88.19 ± 0.87 86.79 ± 0.34 84.26 ± 0.40

A-NCE + RCE (ours) 90.60 ± 0.52 * 90.12 ± 0.53 * 90.04 ± 0.55 * 88.37 ± 0.29 * 86.88 ± 0.45 *

* Represents the highest retrieval precision at the same noise rate, and superscripts 1 and 2 represent the highest
and lowest retrieval performance of the 12 manually weighted combinations of α NCE + β RCE, respectively.

In Table 4, we compare the image classification accuracy between adaptive weights and
manual weights. It is evident that our method is more conducive to improving the feature
extraction ability of the model and achieves higher image classification accuracy compared
to manual weights. Therefore, our method is also suitable for image-level computer vision
tasks based on high-level features such as image classification.
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Table 4. Comparison of image classification accuracy between manual and automatic weighting
methods on the UCMD dataset with 20% noise.

Loss
Noise Rates

Clean (0%) 5.0% 10.0% 20.0% 30%

NCE + RCE 98.05 ± 0.16 97.58 ± 0.44 96.58 ± 0.24 95.92 ± 0.52 95.27 ± 0.31
A-NCE + RCE (ours) 98.57 ± 0.40 98.70 ± 0.49 * 97.72 ± 0.09 * 96.97 ± 0.68 * 96.68 ± 0.42 *

* Represents the highest retrieval precision.

4.3. Comparison with Various SOTA Losses

In these experiments, we apply our method to four types of APLs on the UCMD
dataset with 20% noise rate (results in Table 5) and compare them with seven state-of-
the-art robust losses on the NWPU dataset with 20% noise rate (results in Table 6). These
methods are described below.

(1) MAE [13]: It is a passive and symmetric loss, as described in Section 1. Although it
can maintain gradient stability for different input values, its training is limited due to
slow convergence.

(2) GCE [14]: It is also a passive and symmetric loss, as described in Section 1. Its
robustness is achieved by combining the MAE with the CE, and it is only robust when
reduced to the MAE loss.

(3) RCE [15]: It can be seen as the reverse version of the CE, as it exchanges the positions
of the predicted probability and the one-hot coding in the formula of the cross-entropy
loss function. However, it also converges slowly.

(4) SCE [15]: It combines the CE loss with the RCE. Its robustness and convergence stabil-
ity are guaranteed by RCE and CE, respectively. However, it requires the adjustment
of two hyperparameters.

(5) ACE [16]: It uses the predicted probabilities pt of the true labels of the samples to
adaptively de-termine the two weights in SCE. As the pt of the sample tends toward
zero, it gradually transforms into RCE.

(6) AUL [31]: It is a noise robust function that is an asymmetric version of the unhinged
loss [27].

(7) AEL [31]: It is an asymmetric noise-robust function, which assumes that the noise
distribution in the data satisfies the clean label domination assumption.

Table 5. mAPs (%) (mean ± standard deviation) on the UCMD dataset with 20% noise using 4 types
of APLs.

The Weight of APL
The Type of APL

NCE + RCE NCE + MAE NFL + RCE NFL + MAE

α = 0.1, β = 0.1 90.81 ± 0.66 90.75 ± 1.36 91.10 ± 0.62 90.05 ± 0.18 2

α = 0.1, β = 1 91.01 ± 0.66 91.67 ± 0.79 91.86 ± 1.07 92.07 ± 0.54 1

α = 0.1, β = 10 92.33 ± 0.67 90.70 ± 0.42 91.52 ± 1.10 90.87 ± 0.59
α = 0.1, β = 100 89.91 ± 0.67 2 91.59 ± 1.48 91.24 ± 0.13 90.77 ± 0.39

α = 1, β = 0.1 92.56 ± 0.31 1 91.34 ± 2.49 91.39 ± 0.13 91.15 ± 1.94
α = 1, β = 1 90.12 ± 0.50 91.29 ± 0.23 90.57 ± 0.51 91.61 ± 0.68

α = 1, β = 10 91.67 ± 0.93 91.76 ± 1.31 1 90.00 ± 0.71 2 91.33 ± 1.08
α = 1, β = 100 91.74 ± 0.29 90.48 ± 0.95 91.43 ± 0.98 90.76 ± 0.64
α = 10, β = 0.1 91.10 ± 1.67 88.73 ± 1.84 2 90.88 ± 2.83 90.23 ± 0.26
α = 10, β = 1 92.43 ± 1.26 91.68 ± 0.51 91.88 ± 0.41 1 91.95 ± 0.62

α = 10, β = 10 91.23 ± 1.19 91.64 ± 1.04 91.82 ± 0.74 90.42 ± 1.41
α = 10, β = 100 91.28 ± 1.45 90.51 ± 1.54 90.94 ± 1.37 91.12 ± 0.85

A-APL (ours) 93.00 ± 0.32 * 92.28 ± 0.88 * 92.03 ± 0.79 * 92.54 ± 0.29 *

* Represents the highest retrieval precision, and superscripts 1 and 2 represent the highest and lowest retrieval
performance of the 12 manually weighted combinations of α NCE + β RCE, respectively.
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Table 6. mAPs (%) (mean ± standard deviation) of comparison with robust losses on the NWPU
dataset with 20% noise.

Methods mAP Methods mAP

CE 80.41 ± 0.52 NCE + RCE [17] 87.70 ± 0.11
MAE [13] 86.53 ± 0.13 NCE + MAE [17] 85.82 ± 0.53
GCE [14] 87.97 ± 0.48 NFL + RCE [17] 88.04 ± 0.32
RCE [15] 86.39 ± 0.37 NFL + MAE [17] 84.07 ± 1.20
SCE [15] 86.51 ± 0.19 A-NCE + RCE (ours) 88.37 ± 0.29 *
ACE [16] 86.52 ± 0.33 A-NCE + MAE (ours) 88.95 ± 0.45 *
AUL [31] 86.74 ± 0.82 A-NFL + RCE (ours) 88.76 ± 0.25 *
AEL [31] 85.79 ± 0.08 A-NFL + MAE (ours) 88.49 ± 0.26 *

* Represents the highest retrieval precision.

As shown in Table 5, the four APL combinations also have different weighting param-
eters to achieve optimality, and our method still outperforms their 12 manually weighted
combinations. Additionally, our method outperforms the best manually weighted methods
by 0.67–4.42% and other robust loss methods by 0.4–2.56%.

It can be seen from Table 6 that our improved APL methods only yield a slight
improvement by 0.4–0.98% over the GCE method. However, it is important to note that
the GCE method requires manual determination of a hyperparameter in the (0, 1] interval,
and unfortunately, the literature [14] does not provide a method for parameter selection.
Compared to the ACE method, which also adaptively determines the hyperparameter, our
improved APL methods show a more significant improvement of 1.85–2.43%. Moreover,
our method is also superior to asymmetric loss functions such as AUL and AEL. The above
results indicate that our weighted learning method is suitable for all types of APL methods
and yields superior retrieval outcomes compared to other robust methods.

4.4. Efficiency and Backbone Analysis

The training time and floating point of operations (FLOPs) are used to evaluate the
efficiency on the UCMD dataset with a 20% noise rate using different backbones. The
experimental results are presented in Table 7. On the one hand, it is evident that the FLOPs
of our improved APL method do not increase significantly. This is because AWNet is a
shallow neural network with significantly fewer parameters than deep learning models.
As a result, the training time of our improved APL method does not increase significantly
compared to the original APL. Considering that the original APL method has to try at least
12 different weighting parameters, it actually takes longer to train than our improved APL.
On the other hand, it can be seen that our improved APL method achieves better retrieval
results than the original APL method under different deep learning models. This indicates
that our method has better generalisation.

4.5. Ablation Experiment of Two Metrics

To verify the validity of the two metrics (RES and δ) of the AWNet, we perform an
ablation experiment on the UCMD dataset with noise rates of 20% and 30%, respectively.
In the ablation experiments, the retrieval effects of the metrics RES and δ alone as inputs
of the AWNet are investigated. In addition, the retrieval effects of the three parameters
prediction probability, entropy and standard deviation S, which make up RES and δ, are
also examined alone as the input of the AWNet. Specifically, the prediction probability
denotes the predicted probability of the model classifier (i.e., the output of the softmax
output layer).

Table 8 displays the retrieval performance of the above experiments. The results
indicate that using both RES and δ as inputs to AWNet can help the AWNet to better
predict α and β, resulting in the highest retrieval accuracy. This finding confirms the
validity of the two metrics.



Appl. Sci. 2024, 14, 1756 13 of 16

Table 7. mAPs (%) (mean ± standard deviation) of different backbones on the UCMD dataset with
20% noise.

Backbone Loss mAP Training Time (min) FLOPs (G)

ResNet18
CE 69.48 ± 1.54 1.05 2.375

NCE + RCE 87.21 ± 1.15 1.07 × 12 2.375
A-NCE + RCE 87.78 ± 0.78 * 1.40 2.375

ResNet50
CE 78.89 ± 0.87 1.83 5.368

NCE + RCE 92.56 ± 0.31 1.88 × 12 5.368
A-NCE + RCE 93.00 ± 0.32 * 2.98 5.368

ResNet101
CE 79.55 ± 0.79 2.73 10.230

NCE + RCE 89.72 ± 1.34 3.33 × 12 10.230
A-NCE + RCE 91.94 ± 0.67 * 4.75 10.230

DenseNet169
CE 87.46 ± 0.17 2.40 4.436

NCE + RCE 94.93 ± 0.55 2.40 × 12 4.436
A-NCE + RCE 95.45 ± 0.50 * 4.1 4.436

MobileNetV3_large
CE 81.18 ± 0.86 0.95 0.292

NCE + RCE 89.63 ± 0.86 0.97 × 12 0.292
A-NCE + RCE 90.99 ± 0.33 * 1.37 0.292

MobileNetV3_small
CE 75.43 ± 1.13 0.68 0.076

NCE + RCE 84.59 ± 0.27 0.68 × 12 0.076
A-NCE + RCE 87.80 ± 0.15 * 0.88 0.076

* Represents the highest retrieval precision.

Table 8. mAPs (%) (mean ± standard deviation) of different inputs of AWNet on the UCMD dataset
with 20% and 30% noise.

Metrics 20% 30%

Prediction probability 91.17 ± 0.58 88.52 ± 0.05
Entropy 91.83 ± 0.37 86.82 ± 1.95

S 91.39 ± 0.74 87.38 ± 1.50
δ 91.14 ± 0.59 87.94 ± 0.78

RES 92.44 ± 0.36 86.47 ± 1.42
RES + δ 93.00 ± 0.32 * 90.01 ± 0.88 *

* Represents the highest retrieval precision.

Additionally, to assess the rationality of the pretraining epochs tp in this paper, we
conduct ablation experiments on the UCMD dataset with 20% noise. The pretraining
epochs tp are set to 1, 2, 3, 4 and 5, respectively. The experimental results are shown in
Table 9. The results show that the retrieval performance achieved the best when tp = 3.
Too few pretraining epochs (e.g., 1) may lead to underfitting of the model and affect the
reliability of RES and δ. Therefore, in other experiments, the pretraining epoch is set to 3.

Table 9. mAPs (%) (mean ± standard deviation) of different pretraining epochs tp on the UCMD
dataset with 20% noise.

tp = 1 tp = 2 tp = 3 tp = 4 tp = 5

91.48 ± 1.05 92.25 ± 0.77 93.00 ± 0.32 * 92.88 ± 0.47 92.55 ± 0.68
* Represents the highest retrieval precision.

To determine the optimal structure for the AWNet, we evaluate the model performance
with varying numbers of hidden layers and neurons per layer on the UCMD dataset with
20% noise. Specifically, we test the model’s performance with one, two and three hidden
layers and with 50 and 100 neurons per layer, respectively. The experimental results are
presented in Table 10. The results indicate that using one hidden layer yields a better
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retrieval accuracy compared to using two or three hidden layers while also requiring
fewer parameters and thus reducing calculation costs. In addition, a hidden layer with
100 neurons is better suited for fitting the relationship between training samples and
weighting hyperparameters, resulting in a higher retrieval accuracy.

Table 10. mAPs (%) (mean ± standard deviation) of different numbers of hidden layers on the UCMD
dataset with 20% noise.

The Number of Hidden Layers

The Number of Neurons in Each
Hidden Layer 1 2 3

50 90.65 ± 0.72 91.99 ± 0.75 91.37 ± 0.97
100 93.00 ± 0.32 * 91.41 ± 0.27 92.06 ± 0.18

* Represents the highest retrieval precision.

5. Conclusions

In this paper, we propose an adaptively weighted method based on active passive
loss (APL) for remote sensing image retrieval. To automatically determine the weight
hyperparameters of active losses and passive losses of different samples, we first design
or select two metrics to measure the sample complexity and noise level based on entropy,
standard deviation and predicted probability difference. Then, an adaptive weighted
learning network (AWNet) based on the multilayer perceptron is designed to automatically
predict the weighting parameters.

In order to verify the effectiveness and portability of our method, four groups of
experiments are designed. First of all, the experimental results show that the retrieval
accuracy of our method is better than that of 12 manual weighting combinations on three
datasets: UCMD, AID and NWPU with five noise rates. Secondly, compared with seven
other state-of-the-art robust losses, our method achieves the best performance, and the
mAPs are improved by 0.4% to 2.56%. In the third group of experiments, we compare
the retrieval accuracy and model complexity of our method using six different backbones.
The results show that our method has excellent performance and good portability without
increasing the computational cost too much. Finally, we proved the rationality of the
AWNet’s input metrics and structure through several groups of ablation experiments. In
addition, the results show that our method achieves better image classification accuracy
than manual weighting. Therefore, our process of adaptively learning the weighting
parameters can benefit other areas such as image classification and segmentation with
noisy labels.

Although the existing retrieval models have achieved excellent retrieval performance
on single-domain datasets, they are difficult to generalise to test datasets in other domains.
To address this issue, many scholars have proposed remote sensing image retrieval methods
that enhance the generalisation performance of models on different data sources. For
example, Wang et al. [4] implemented unsupervised cross-domain remote sensing image
retrieval by using pseudo-label self-training and consistency regulation. However, those
domain adaptation methods lack research on noise labels. Therefore, our future work
will be concentrated on the effect of noise samples on domain adaptation remote sensing
image retrieval.
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