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Abstract: Doubly fed induction generators (DFIG) find extensive application in variable-speed
wind power plants, providing notable advantages such as cost-effectiveness, operational flexibility
across varying speeds, and enhanced power quality. This research focuses on the control of DFIGs
employed in variable-speed wind turbine configurations. A suitable mathematical model is chosen
for representative systems following a comprehensive review of contemporary research. Subsequent
analysis reveals the instability of the open-loop time response of the system. To address this instability,
the initial approach involves the implementation of the conventional model predictive controller
(MPC). However, the outcomes indicate that this controller falls short of delivering satisfactory
performance despite the enhanced stability. In the subsequent phase, efforts are made to mitigate the
impact of wind input variability by utilizing the Kalman filter, given its effectiveness in handling
high variability. Following this, a novel methodology is introduced, which combines nonlinear MPC
with the Lyapunov function. This method is based on the nonlinear model of the system. By using
the Lyapunov function in the nonlinear MPC structure, the stability of the designed controller is
guaranteed. To validate the proposed control approach, the results are compared with PID based
controller in MATLAB/Simulink. The simulation results showed that the output variables of the
modeled DFIG system achieve stability within a reasonable timeframe applying the input.

Keywords: wind turbine; stability; active and reactive powers DFIG; MPC; Kalman filter; Lya-
punov function

1. Introduction

Given the increasing demand for electrical energy and the environmental challenges
associated with fossil fuels, there is a significant emphasis on utilizing clean and renewable
energy sources [1–3]. Among various renewable energy sources, wind energy is one of the
most convenient and cost-effective options, and in several countries, a significant portion
of the electricity demand is met through the operation of wind power plants. Integrating
these power plants into the electricity transmission and distribution network can introduce
dynamic and static effects on the overall network performance. The variable speed of the
wind, resulting in fluctuations in the input power of the wind turbine, can lead to variations
in the frequency and voltage of the power grid [4]. Hence, it is crucial to comprehensively
examine and evaluate the conditions and consequences of utilizing wind power plant
capacities on the power grid. This includes investigating key aspects such as active power-
frequency requirements, reactive power-voltage requirements, fault protection, power
quality, and controller performance [5].

In recent years, the DFIG has emerged as a prominent component in the global wind
turbine market, serving as an alternative to traditional variable speed generators [6]. A
mechanical shaft system connects the wind turbine to the DFIG. This setup involves a low-
speed turbine shaft connected to a high-speed generator shaft through a gearbox. The DFIG
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comprises a wound rotor induction generator. Its stator windings are directly connected
to the grid, while the rotor windings are connected to the grid through two back-to-back
AC/DC converters. [7–9]. The rotor side converter (RSC) and grid side converter (GSC)
are voltage source converters employing pulse width modulation (PWM). This topology
enables independent control of active and reactive power, and the power rating of the
converters is only one-third of the turbine’s rated power, making it a cost-effective solution.

So far, many studies have been presented regarding the issue investigated in this paper,
some of them are mentioned here. In ref. [10], an evaluation is conducted to compare the
performance of the transfer function-based model and the state space-based model in the
context of MPC design for DFIG. In ref. [11], a novel variable-step model predictive control
strategy is presented with the aim of enhancing the capability of wind turbines to continue
operating without disconnecting from the grid in the event of a fault. The methodology
involves two key steps. Firstly, a predictive-control state-space model of a doubly fed wind
farm is formulated based on its operational principles. Subsequently, model predictive
control is implemented on the rotor side of the DFIG to achieve rapid tracking of the
rotor current to the prescribed reference value during the low-voltage ride-through of
the DFIG. In ref. [12], an updated model predictive control technique is suggested. This
research aims to regulate the generator in two aspects; firstly, to closely track the reference
wind speed with high precision utilizing both the rotor side and grid side converters;
secondly, to mitigate system errors. The suggested approach involves the optimization of a
function, incorporating current magnitude errors derived from the discrete mathematical
model to predict the switching state of the converter. In ref. [13], an innovative Lyapunov-
based model predictive control strategy is introduced for a multi-drive system based
on a nine-switch inverter. This drive system comprises two AC motors and a singular
nine-switch inverter designed to supply power to multiple induction motors. MPC is
chosen as the preferred feedback strategy in AC-drive applications, owing to its rapid
dynamic characteristics and its ability to effectively address multiple control objectives.
In ref. [14], a cascaded fractional MPC, combined with a fractional-order PID controller,
is developed to ensure an efficient response of the power system in the presence of load
disruptions and variations in system parameters. The controller is fine-tuned using a Sooty
Tern Optimization algorithm to identify optimal parameters. Experimental assessments
involve testing the controller under scenarios involving power mixing from renewable
energy sources such as PV and wind, along with varying load conditions in a multi-area
hybrid power system.

Controlling a system that generates power from a non-uniform input, such as wind,
poses a significant challenge. The constantly changing wind speed, influenced by factors
like gusts, adds to the situation’s complexity. Efforts have been undertaken to address the
wind non-uniformity issue in synchronous wind generator systems by maintaining the
rotor speed close to a constant value through blade pitch control. A brushless synchronous
generator with a permanent magnet is employed in certain systems, considering the wind
turbine as the sole power source. Nevertheless, induction generators offer advantages over
synchronous generators, including lower costs, increased reliability, and more straightfor-
ward controls. A new advancement in the control of a reactive static power source opens
up the possibility of exploring the integration of an induction generator with the control of
a reactive static power source as an alternative to the use of synchronous generators. This
paper’s initial step involves selecting an appropriate mathematical model with detailed
considerations for DFIG wind turbines. Selecting an appropriate model is crucial as the
electricity generation process in wind turbines involves inherent noise and uncertainties.
Therefore, an effective model should encompass these uncertainties to a significant extent.
In the subsequent phases of the research, the model predictive control (MPC) controller
is employed. The organization of this paper is as follows: the second section outlines the
formulation of the DFIG model and describes the proposed MPC method. The third section
presents the simulation results of the proposed approach. The concluding part provides an
overview of the general findings of the paper.
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2. Problem Formulation
2.1. Dynamic Modeling of DFIG

In the examination and regulation of the DFIG, the dynamic model of the induction ma-
chine is outlined within an arbitrary and rotating reference frame, denoted by the necessary
angular velocity Ω, as illustrated in the equivalent circuit depicted in Figure 1 [15].

Appl. Sci. 2024, 14, 1818 3 of 16 
 

section outlines the formulation of the DFIG model and describes the proposed MPC 
method. The third section presents the simulation results of the proposed approach. The 
concluding part provides an overview of the general findings of the paper. 

2. Problem Formulation 
2.1. Dynamic Modeling of DFIG 

In the examination and regulation of the DFIG, the dynamic model of the induction 
machine is outlined within an arbitrary and rotating reference frame, denoted by the 
necessary angular velocity Ω, as illustrated in the equivalent circuit depicted in Figure 1 
[15]. 

＋

−

Rs

qsi

＋ −

dsωϕ lsL

mL

lrL r drω ω ϕ 
 
 

− rR

＋−
qrV

qri

 axisq
−

＋

qsV

 

＋

−

Rs

＋ −

dsωϕ lsL

mL

lrL r drω ω ϕ 
 
 

− rR

＋−

−

＋

dsV drV

 axisd

dsi dri

 
Figure 1. Equivalent circuit of DFIG in an arbitrary reference frame [14]. 
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The equations for the stator and rotor voltages vsdq, and vrdq, presented in the arbitrary
frame of reference rotating with angular velocityω and referred to the stator side, can be
expressed in the following equations.

vsdq = Rsisdq + jωψsdq +
1

ωb

dψsdq

dt
(1)

vrdq = Rrirdq + j(ω − ωr)ψrdq +
1

ωb

dψrdq

dt
(2)

ψsdq = Lsisdq + Lmirdq (3)

ψrdq = Lrirdq + Lmisdq (4)

where ψ, v and i represent flux, voltage, and current. The subscripts s and r specify the
stator and rotor values, respectively. Ls and Lr are the inductances of the stator and rotor,
Lm is the mutual inductance, ωr is the rotor speed, ω − ωr is the sliding frequency of the
rotor, ωb is the base angular frequency, ω is the speed of the reference frame d − q, and
Rs and Rr are the resistances of the stator and rotor, respectively.

The general dynamic model of the DFIG can be represented in various reference
frames, such as the stationary rotor or synchronous reference frames, depending on its ap-
plication. This choice involves considering different frame angles and speeds. By utilizing
the aforementioned equations, the dynamics of the rotor can be depicted, incorporating
expressions for rotor current and stator flux, as follows:

vrdq = R′
rirdq +

L′
r

ωb

dirdq

dt
+

1
ωb

Lm

Ls

dφsdq

dt
+ jω2L′

rirdq + jω2
Lm

Ls
φsdq (5)
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vrdq = R′
rirdq +

L′
r

ωb

dirdq

dt
+ jω2L′

rirdq + Edq (6)

In Equations (5) and (6), R′
r and L′

r are the transient resistance and inductance of the
rotor current dynamics and are as follows:

R′
r = Rr +

(
Lm

Ls

)2
Rs (7)

L′
r = Lr −

L2
m

Ls
(8)

Also, Edq in equation 6 is induced back-EMF voltage in the rotor winding and reflects
the effects of the stator dynamics on the rotor current dynamics. This expression plays an
important role on rotor inrush current, DC link overvoltage and torque increase during
voltage drop. Edq is a function of stator flux and voltage, which can be expressed as follows:

Edq =
Lm

Ls

(
vsdq − jωrψsdq −

Rs

Ls
ψsdq

)
(9)

The active and reactive powers of the stator are calculated from the following equa-
tions:

Ps = Re
{

vsdqi∗sdq

}
=

{
vsdisd + vsqisq

}
(10)

Qs = Re
{

vsdqi∗sdq

}
=

{
vsqisd − vsdisq

}
(11)

The active and reactive powers of the stator can be obtained in the steady state as
follows:

Ps = Rs|Is|2 −
Lm

Ls

(
vsdird + vsqirq

)
(12)

Qs =
Lm

Ls

(
vsdirq − vsqirq

)
(13)

As evident from Equations (12) and (13), the active and reactive power of the stator are
influenced by both the d-component and the q-component of the rotor current. In vector
control, it is preferable to employ synchronous reference transformations in a manner that
the active and reactive power of the stator depend solely on either the d or q component of
the rotor current.

2.2. MPC Control Structure

Consider the time-varying linear system, which has multi-faceted uncertainty, as
follows [16]:

∥u(k + i|k)∥2 ≤ umax i.k ≥ 0
∥y(k + i|k)∥2 ≤ ymax i.k ≥ 0

(14)

The cost function in all forms of robust MPC is the square regulator cost function as
follows:

Jp
0 (k) =

P

∑
i=0

[
∥x(k + i|k)∥2

Q + ∥u(k + i|k)∥2
R

]
(15)

where Q ≥ 0 and R ≥ 0 are symmetrical weighting matrices. This paper considers an
infinite predictive horizon and an unlimited control horizon, similar to many research
studies in the MPC field. MPC with a limited horizon exhibits weaker nominal stability
compared to a state with an unlimited horizon. Moreover, by incorporating an unlimited
horizon for the cost function, the conversion of the problem into the linear matrix inequality
(LMI) form becomes more straightforward, requiring fewer computations to derive the
associated conditions.
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In scenarios where the system exhibits uncertainty, optimizing a cost function that
ensures robust performance at each K sampling time rather than relying on a cost function
with nominal efficiency becomes essential. This particular cost function is expressed as:

min
u(k+i|k).i=0.1.....m

( max
[A(k+i)B(k+i)]∈Ω

J∞
0 (k)) (16)

This cost function indicates a min–max optimization problem. Maximizing the pre-
formation within the Ω set involves the selection of the time-varying system [A(k) B(k)]ϵΩ.
i ≥ 0, which, if used for prediction, the largest value is obtained; in other words, the worst
case of the objective function Jp

0(k) is obtained from the systems in Ω. This is the worst-case
scenario for the cost function using the current and future control signals, u(k + i|k).i > 0.

2.2.1. Lyapunov Function-Based MPC

The approach presented herein marks the pioneering use of matrix inequalities in
model predictive control (MPC). Many subsequent MPC methods have drawn inspiration
from the principles outlined in this method, and more detailed information can be found in
the reference [5]. To convert a problem to a convex programming problem, we first find the
upper limit of J∞

0 (k) on the convex set Ω, then lower this limit with a feedback control law
to the following form.

u(k + i|k) = Fx(k + i|k).i ≥ 0 (17)

Consider the following square Lyapunov function:

V(x) = xT Px.p > 0 (18)

Here, x represents the system’s state variable at time k. At each time step k, we assume
that V(x) holds true for all x(k + i|k), u(k + i|k) ,[A(k + i)B(k + i)]ϵΩ, with the condition
stated in Equation (19):

V(x(i + 1|k))− V(x(i|k)) ≤ −∥x(k + i|k)∥2
Q + ∥u(k + i|k)∥2

R
∀[A(k + i)B(k + i)]ϵΩ.i ≥ 1

(19)

To derive Equation (19) at each time step, we directly convert it into a linear matrix
inequality equation and integrate it into the optimization process. Taking into account
Considering Equation (19), we can conclude that to be limited the robust performance
criterion, we must have x(∞|k = 0) and therefore V(x(∞|k)) = 0. By adding two sides of
Equation (19) from zero to ∞, we reach [16]:

−V(x(k|k)) ≤ −J∞(k) (20)

Consequently, (Equation (21)) follows:(
max

[A(k+i) B(k+i)]∈Ω
J∞(k)

)
≥ V(x(k|k)) (21)

Now that we have determined the upper bound of the cost function, the control
objective is to minimize this upper limit by employing state feedback in the form of
Equation (17).

V(x(k|k)) = x(k|k)T Px(k|k) ≤ γ (22)

Consistent with standard MPC methods, at each time step k, matrix F and the initial
control signal, u(k + i|k) = Fx(k + i|k), are applied to the system. The subsequent lemma
provides the conditions for the existence and calculation of the control gain matrix F and
the associated ellipsoidal regions.
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Lemma 1: Consider the system described below. At each time step k, the state feedback matrix
F in the control law u(k + i|k) = Fx(k + i|k), which restricts the upper bound V(x(k|k)), is
determined based on the following equation:

F = YS−1 (23)

In which, S > 0 and Y are obtained by solving the following convex programming
problem:

min
γ.s.γ

γ[
1 x(k|k)T

x(k|k) S

]
≥ 0

S SAT
j + YT BT

J SQ
1
2 YT R

1
2

AjS + BjY S 0 0
Q

1
2 S

R
1
2 YT

0
0

γI
0

0
γI

 ≥ 0

[
u2

max I Y
YT S

]
≥ 0.[

S ∗
C
(

AjS + BjY
)

y2
max

]
≥ 0. j = 1.2. . . . .L.

(24)

Unequal Equation (24) ensures the stability of the state variable in the elliptical area
determined by the S matrix.

2.2.2. Lyapunov Function-Based MPC for DFIG

Since one of the drawbacks of MPC is the absence of stability guarantees in nonlinear
systems, incorporating a Lyapunov function into the controller’s structure can enhance the
controller’s performance while addressing this limitation. The following steps outline the
design of a Lyapunov-based nonlinear controller for the modeled DFIG system. The initial
step in designing a Lyapunov-based MPC involves selecting the desired cost function.
Based on the dynamics of the DFIG system, the following structure for the cost function
was chosen [16]:

J =

tk+Np∫
tk

[
∼
x(τ)

T
Qc

∼
x(τ) + uk(τ)

T Rc uk(τ)

]
dτ (25)

where
∼
x(τ) represents the predictive state variable of the system, Np is the predictive

horizon, and Qc and Rc are the weighted matrices of the cost function. The purpose of the
control strategy in this paper is defined as follows:

u∗
k (t) = min

ukϵ S(Nc)
J (26)

According to Equation (26), the objective is to find a control law in the form of u*
k(t)

that minimizes the cost function defined in Equation (25). In this equation, Nc is the control
horizon, and S is a family of fixed continuous piecewise functions with a sampling period
of Nc.

2.2.3. Utilizing Lyapunov Functions to Ensure System Stability

The first step to solving the optimization problem is to form the following closed-loop
system [16]:

.
x̂(t) = f (x̂(t). h(x̂(t))) (27)
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In Equation (27), the variables x̂(t) represent the system state variables obtained from
the nonlinear DFIG model and the control input u = h(x̂(t)) is determined through the
Lyapunov function-based feedback control law. The aim of employing the Lyapunov
function in the control scheme is to secure the stability of the DFIG system. Incorporating
the Lyapunov function in the control aims to ensure the stability of the DFIG system. For
this purpose, the chosen Lyapunov function is quadratic, and its structure is as follows:

V(x) = XT P X (28)

The Lyapunov function in this framework is represented by the vector X. Additionally,
within the structure of the Lyapunov function, the matrix P is a positive-definite matrix
determined by solving the Riccati equation defined as follows:

AT P A − P − AT P B
(

BT P B + R
)−1

BT P A + Q = 0 (29)

where A and B are the systematic matrices of the linear model of the DFIG system, and Q
and R are the weighted matrices in the cost function structure. Following the establishment
of the Lyapunov function, the next step in shaping a closed-loop system involves computing
the control signal u = h(x̂(t)), defined as follows:

h(x) =

 − L f V+
√
(L f V)

2
+(LgV)

4

LgV i f LgV ̸= 0
0 i f LgV = 0

(30)

where f and g are the nonlinear functions of the DFIG system, and the L operator is defined
as follows:

L f V =
∂V(x)

∂x
f , LgV =

∂V(x)
∂x

g (31)

As a result, the closed-loop system was formed using the nonlinear model data of the
DFIG system.

2.2.4. Forecasting System State Variables with Lyapunov-Based Closed-Loop Control

After establishing a closed-loop system based on the Lyapunov function, the next
step involves determining the vector of future state variables of the system to generate
an MPC signal. This signal’s length is equal to the prediction horizon (Np). To achieve
this, the previously established closed-loop system, a mathematical model with nonlinear
differential equations, is numerically solved. The results obtained from this solution, as per
the following equation, constitute the predicted state variables for the future of the system.

∼
x(tk) = x̂(tk) (32)

where
∼
x(tk) refers to the predicted state variables of the system’s future.

2.2.5. System Stability Assessment Using Lyapunov Function Analysis

In order to ensure the stability of the proposed control method, the Lyapunov function
obtained from the variables of state x̂(t) and

∼
x(t) is placed in the following inequality [17]:

V
(∼

x
)
≤ V(x̂) (33)

Equation (21) asserts that to ensure the stability of the system using the Lyapunov-
based MPC proposed in this paper, the Lyapunov function derived from the predicted state
variables of the system must always be less than or equal to the Lyapunov function derived
from the obtained variables of the system model.
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2.2.6. Establishing the Conclusive Nonlinear MPC Closed-Loop System via
Lyapunov Methodology

At this stage, the cost function defined in Equation (12) is minimized using the pre-
dicted state variables obtained from the Lyapunov function. The control signals u*

k(t) are
then determined through this minimization process. The resulting control signal corre-
sponds to the Lyapunov-based MPC law. In order to determine the optimal control law
for nonlinear predictors based on Lyapunov, the Hamiltonian matrix is defined as the
following relation:

H(x.u.λ) =
(
∼
x

T
Qc

∼
x + uk

T Rc uk

)
+ λT(Ax + Bu) (34)

where λ is the Lagrangian coefficient. The following equation is obtained by applying
Pontryagin’s maximum principle to the Hamiltonian function.

0 =
∂H
∂u

= Rc uk + BTλ (35)

Equation (23) presents the Lyapunov’s MPC law as follows:

uNLMPC = −Rc
−1(t) BT(t) λ (36)

Using the LQR theory, the Lagrangian coefficient is calculated as follows.

λ = P(t) (37)

In which the P matrix is the same matrix obtained from solving the Riccati equation in
Equation (17). Therefore:

u∗
k (t) = uLNMPC = −R−1(t) BT(t) P(t) x (38)

Then, using of this control law and the state variables of the DFIG system, the final
closed loop system is determined according to the following equation.

.
∼
X(t) = f

(∼
X(t). u∗

k (t)
)

(39)

3. Simulation Results

The numerical values of the parameters for the DFIG system can be found in Table 1.

Table 1. Numerical values of DFIG system parameters.

Parameters Value Unit

Rs 0.0 p.u.

Xs 0.1 p.u.

Rr 0.01 p.u.

Xr 0.08 p.u.

Xm 3 p.u.

H 3 p.u.

Te 0.01 s

To accurately model the induction generators within the wind turbine structure, it’s
essential to incorporate a wind model into the system as the primary input applied to the
wind turbine. The wind model significantly influences the system’s output characteristics
and behavior, and a more realistic representation leads to a more reliable output response.
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In a suitable nonlinear approximation, the wind behavior can be represented by a white
noise signal passed through a Kalman filter. The wind speed curve is illustrated in Figure 2.
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Figure 2. Variable wind speed for DFIG system.

The initial step to assess the functional accuracy of the designed nonlinear MPC based
on the Lyapunov function is to examine the curves obtained for the system outputs resulting
from applying the reference inputs. After applying the input of Figure 2 to the system, its
outputs, which include rotor speed (ωm), pitch angle (β), active power (P), and reactive
power (Q), are shown in Figures 3–6.
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In the performed simulations, the steady state values for the system outputs are
considered as follows:[

P Q ωm β
]

re f =
[
2 MW 0 MVar 1 p.u 2 deg

]
As depicted in Figure 3, the rotor’s angular speed experiences minor fluctuations

around the 1 pu speed after surpassing its overshoot. Eventually, it stabilizes at the value
of 1 pu. As the oscillations’ amplitude is extremely small, they can be disregarded, and the
rotor’s angular velocity response can be considered stable.

In Figure 4, it is apparent that the pitch angle curve of the generator exhibits a response
closely mirroring the angular speed of the rotor. Following the overshoot point, the pitch
angle curve undergoes oscillations around a consistent value. Upon the completion of the
transient period, the pitch angle curve stabilizes, fluctuating around 2◦, with negligible
amplitude in these fluctuations. Consequently, it can be asserted that this response is
entirely stable.
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In Figure 5, it can be observed that the reactive power response curve has reached
3 MW during the transient period and then oscillates around 2 MW with a small range
of fluctuations. Similar to the previous curves, the response can be considered stable due
to the minor fluctuation range. Figure 5 depicts the stabilization of the generator’s active
power through the application of a fixed input.

As shown in Figure 6, the reactive power curve does not have an overshoot point.
After reaching zero reactive power, it stabilizes within a numerical range near zero.

Upon careful examination of Figures 3–6, it is evident that the system outputs for
the nonlinear MPC law based on the Lyapunov function are significantly more favorable
compared to the results obtained with conventional control strategies. The comparison of
the obtained results indicates that the curves have exhibited significantly better performance
in terms of convergence speed, amplitude, and the number of oscillations. This serves as
evidence of the superiority of Lyapunov-based nonlinear MPC over conventional control
methods. Additionally, it is evident that the noise in the output curves is significantly
reduced. This reduction can be attributed to the accurate filtering of the wind speed noise
signal used as the input to the system.

In order to thoroughly assess the performance of the nonlinear MPC based on the
designed Lyapunov function, an arbitrary variable input signal is applied to the system,
and the resulting outcomes are depicted in the following Figures 7–10. Evaluation of
Figures 7–10 indicates that the nonlinear MPC strategy based on the designed Lyapunov
function, intended for variable inputs, has also yielded satisfactory results. Although the
stabilization of reactive power fluctuations is not optimal, considering the nonlinear nature
of the wind turbine system and the variable characteristic of the wind speed parameter, it
can be concluded that overall acceptable results have been achieved.
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Figure 9. Stabilization of the generator’s active power by applying a variable input.

To validate the proposed method outlined in this paper, we conducted a performance
comparison with a control mechanism based on the PID controller. The responses in
Figures 11 and 12 demonstrate the active and reactive power of the generator, respectively,
when using the nonlinear MPC and PID control structure.

The study acknowledges the importance of performing a robustness analysis to evalu-
ate the performance of the proposed control strategy under diverse operational conditions,
disturbances. A thorough examination has been conducted, offering insights into the sys-
tem’s resilience and pinpointing potential areas for further improvement. After recognizing
system instability in open-loop mode, the initial deployment of a conventional Model
Predictive Controller (MPC) results in suboptimal performance. Consequently, a robust
methodology is introduced, incorporating a Kalman filter to mitigate wind input noise,
coupled with a nonlinear MPC and Lyapunov function. Rooted in the genuine and nonlin-
ear system model, this approach guarantees controller stability under varying conditions.
Implemented within the MATLAB 2021b environment, widely utilized in scientific and
engineering applications, the robustness analysis unveils the stability of the controlled
doubly fed induction generator (DFIG) system across diverse scenarios.
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The viability of implementing the proposed control strategy for doubly fed induction
generators (DFIGs) in real-time systems is a crucial aspect for its practical application in
wind turbines. A detailed assessment of computational requirements is imperative to
ensure alignment with the processing power, memory, and communication bandwidth con-
straints inherent in real-time environments. Examining the strategy’s practical deployment
entails evaluating its adaptability to hardware limitations, communication protocols, and
integration with existing control systems in operational wind turbines. Real-world imple-
mentation serves as a vital validation step, enabling a comprehensive evaluation of the
strategy’s performance under dynamic and unpredictable conditions. Successfully address-
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ing these considerations not only validates the proposed control strategy but also positions
it as a reliable and efficient solution for enhancing wind turbine control in real-world
scenarios.
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4. Conclusions

This paper’s objective is to model and control a representative wind turbine by stabi-
lizing the characteristics of the doubly fed induction generator (DFIG) integrated into the
turbine’s structure. The research is structured into three primary parts. The first part fo-
cuses on introducing a novel and accurate model for the system. To accomplish this, various
research studies were reviewed to develop a comprehensive and precise model of induction
generator systems. Eventually, a nonlinear model was selected for a variable-speed wind
turbine. Subsequently, the conventional model predictive control (MPC) was selected as
the stabilizing mechanism for the DFIG system, given its widespread use in industrial
control and cost-effectiveness in implementation. Considering that the modeled induction
generator system in this research is nonlinear and subject to noise and disturbances, it is
evident that relying solely on conventional MPC is insufficient. Therefore, there is a need to
integrate it with a suitable controller. The suboptimal performance can be attributed to two
main reasons. Firstly, the wind speed input, characterized by noise and uncertainty, was
not adequately filtered. Secondly, the conventional MPC’s limitations in stabilizing non-
linear systems may have contributed to the observed issues. To address these challenges,
a solution was proposed that involved implementing a Kalman filter to eliminate noise
from the wind speed input. Additionally, a combined control strategy was introduced,
integrating nonlinear MPC based on the Lyapunov function to overcome the limitations
observed in the conventional MPC structure and stabilize the modeled DFIG system. This
choice was made to ensure stability in the system and to deal with unwanted inputs in
the modeled nonlinear system. The results demonstrated that the combined nonlinear
MPC strategy based on the Lyapunov function successfully addressed the limitations of
conventional MPC. Moreover, it exhibited improved performance compared to PID based
control approach, marking a significant advancement in the control of the wind turbine
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system. Among the limitations of this paper is the simultaneous use of several distributed
generation units in the proposed mechanism, as well as the consideration of stochastic
programming to solve the problem.
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7. Chhipą, A.A.; Chakrabarti, P.; Bolshev, V.; Chakrabarti, T.; Samarin, G.; Vasilyev, A.N.; Ghosh, S.; Kudryavtsev, A. Modeling and

Control Strategy of Wind Energy Conversion System with Grid-Connected Doubly-Fed Induction Generator. Energies 2022, 15,
6694. [CrossRef]

8. Huang, J.; Zhang, L.; Sang, S.; Xue, X.; Zhang, X.; Sun, T.; Wu, W.; Gao, N. Optimized series dynamic braking resistor for LVRT of
doubly-fed induction generator with uncertain fault scenarios. IEEE Access 2022, 10, 22533–22546. [CrossRef]

9. Liao, J.; Mastoi, M.S.; Wang, D.; Sheng, S.; Zhou, X.; Haris, M. Research on integrated control strategy of doubly-fed induction
generator-based wind farms on traction power supply system. IET Power Electron. 2022, 15, 1340–1349. [CrossRef]

10. Al-Khamis, O.A.-A.; Gumus, B. Comparison and performance analysis of model predictive control developed by transfer function
based model and state space based model for brushless doubly fed induction generator. J. Electr. Eng. Technol. 2023, 18, 111–121.
[CrossRef]

11. Nie, Y.; Zhang, J.; Liu, T.; Cui, J.; Zhang, L. Low-voltage ride-through handling in wind farm with doubly fed induction generators
based on variable-step model predictive control. IET Renew. Power Gener. 2023, 17, 2101–2112. [CrossRef]

12. El Alami, H.; Bossoufi, B.; El Mahfoud, M.; Bouderbala, M.; Majout, B.; Skruch, P.; Mobayen, S. Robust Finite Control-Set Model
Predictive Control for Power Quality Enhancement of a Wind System Based on the DFIG Generator. Energies 2023, 16, 1422.
[CrossRef]

13. Gulbudak, O.; Gokdag, M.; Komurcugil, H. Lyapunov-based model predictive control of dual-induction motors fed by a
nine-switch inverter to improve the closed-loop stability. Int. J. Electr. Power Energy Syst. 2023, 146, 108718. [CrossRef]

14. Gulzar, M.M.; Sibtain, D.; Khalid, M. Cascaded Fractional Model Predictive Controller for Load Frequency Control in Multiarea
Hybrid Renewable Energy System with Uncertainties. Int. J. Energy Res. 2023, 2023, 5999997. [CrossRef]

15. Aljafari, B.; Stephenraj, J.P.; Vairavasundaram, I.; Rassiah, R.S. Steady state modeling and performance analysis of a wind
turbine-based doubly fed induction generator system with rotor control. Energies 2022, 15, 3327. [CrossRef]

https://doi.org/10.1016/j.renene.2018.11.049
https://doi.org/10.1016/j.scs.2020.102052
https://doi.org/10.1016/j.spc.2023.04.006
https://doi.org/10.35833/MPCE.2019.000240
https://doi.org/10.1109/TPWRS.2019.2943520
https://doi.org/10.1016/j.compeleceng.2020.106727
https://doi.org/10.3390/en15186694
https://doi.org/10.1109/ACCESS.2022.3154042
https://doi.org/10.1049/pel2.12308
https://doi.org/10.1007/s42835-022-01179-z
https://doi.org/10.1049/rpg2.12752
https://doi.org/10.3390/en16031422
https://doi.org/10.1016/j.ijepes.2022.108718
https://doi.org/10.1155/2023/5999997
https://doi.org/10.3390/en15093327


Appl. Sci. 2024, 14, 1818 16 of 16

16. Younesi, A.; Tohidi, S.; Feyzi, M.R. An improved long-horizon model predictive control for DFIG in WECS with variable
sampling-time. IET Renew. Power Gener. 2022, 16, 517–531. [CrossRef]

17. Rodrigues, L.L.; Velasquez, O.C.; Duque, E.R.C.; Vilcanqui, O.A.C.; Filho, A.J.S. Fake algebraic Riccati equation applied to model
predictive control for doubly fed induction generator direct power control. IET Electr. Power Appl. 2023, 17, 1390–1400. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1049/rpg2.12357
https://doi.org/10.1049/elp2.12349

	Introduction 
	Problem Formulation 
	Dynamic Modeling of DFIG 
	MPC Control Structure 
	Lyapunov Function-Based MPC 
	Lyapunov Function-Based MPC for DFIG 
	Utilizing Lyapunov Functions to Ensure System Stability 
	Forecasting System State Variables with Lyapunov-Based Closed-Loop Control 
	System Stability Assessment Using Lyapunov Function Analysis 
	Establishing the Conclusive Nonlinear MPC Closed-Loop System via Lyapunov Methodology 


	Simulation Results 
	Conclusions 
	References

