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Abstract: In the field of energy networks, for their effective functioning, it is necessary to distribute
the required load between all online generating units in a proper way to cover the demand. The
load schedule is obtained by solving the so-called Economic Dispatch Problem (EDP). The EDP can
be solved in many ways, resulting in a power distribution plan between online generating units
in the network so that the resulting price per unit of energy is minimal. This article focuses on
designing a distributed gradient algorithm for solving EDP, supplemented by models of renewable
sources, Battery Energy Storage System (BESS), variable fuel prices, and consideration of multiple
uncertainties at once. Specifically, these are: time-variable transport delays, noisy gradient calculation,
line losses, and drop-off packet representations. The algorithm can thus be denoted as robust, which
can work even in unfavorable conditions commonly found in real applications. The capabilities of
the presented algorithm will be demonstrated and evaluated on six examples.

Keywords: battery system; distributed approach; Economic Dispatch Problem; fuel price; power
networks; smart grid; renewable resources; robust algorithm; solar power plant; wind power plant

1. Motivation

Over the years, significant modifications in the composition of power networks have
emerged, and the concept of Smart Grid has been introduced more frequently. This follows
the fact that renewable sources and battery systems are increasingly penetrating the current
energy grids. They contribute to fast dynamic changes in the grid that need to be considered.
Hence, this article addresses such issues of energy networks, especially the EDP. It describes
a novel distributed gradient algorithm for solving the EDP.

1.1. Energy Transition towards Dispersed Generation

Nowadays, the energy sector faces several challenges related to various domains cov-
ering the whole value chain of electricity delivery, such as energy generation, transmission,
and distribution, as well as consumption and dispersed generation. Dispersed generation
is the decentralized electricity production using small-scale, diverse energy sources located
closer to the point of consumption, promoting grid resilience and sustainability. As a
consequence of the implementation of European and worldwide climate strategies (e.g.,
EU Green Deal, Paris Agreement), the energy sector is progressing through extreme energy
transitions, which bring a significant increase in electricity demand (e.g., due to the electri-
fication of mobility) on one side and the strong decarbonization of electricity generation on
the other side, for instance. This results in the massive installation of dispersed generation
resources (mainly renewables) to the demand side. According to European Network of
Transmission System Operators for Electricity (ENTSO-E) Ten-Year Network Development
Plan (TYNDP) development scenarios [1], the volume of dispersed generation will signifi-
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cantly increase as depicted in Figure 1. The last three bars on the right side visualize actual
global ambitions.
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Figure 1. Primary energy supply mix in the COP 21 scenarios for EU27 (adapted from [1]).

The electricity volume provided by conventional generating units connected to trans-
mission power systems will be continuously shifted to distribution power systems, where
dispersed generation is located. According to TYNDP development scenarios, renewable
energy generating units (i.e., photovoltaic, wind) will constitute the majority of generating
elements. Unfortunately, these renewable generating units are mostly uncontrollable, as
shown in some analyses from countries with a highly dispersed generation penetration.
For example, Great Britain has reached a high penetration of dispersed generation units [2],
representing approximately 35% of the generation mix, as depicted in Figure 2.

Figure 2. Generation mix in UK transmission and distribution systems (adapted from [2]).

The controllable generating units embrace only 41% of overall dispersed generation,
while uncontrollable ones represent 59%. This phenomenon drives a significant increase in
operational uncertainty at a distribution system level, which implies a notable escalation of
volatile power flow exchanges among various parts of distribution power systems. A suffi-
cient operational flexibility volume is required by Distribution System Operators (DSOs)
to manage volatile power efficiently flows to maintain reliable and secure distribution
system operation, preventing congestion or power quality issues. From a DSO perspective,
various stakeholders, operational processes, and tools provide the required operational
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flexibility, where effective management of technology asset groups (e.g., microgrids, energy
communities) located at the demand side represents one possibility discussed in this article.

1.2. Specification of Scope

The electricity value chain has been strongly decoupled in past decades to liberalize
and unwrap energy markets (e.g., Winter Package). The electricity value chain can be split
into several technology domains such as (i) generation, (ii) transmission, (iii) distribution,
and demand side, including (iv) dispersed generation and (v) consumption, as depicted in
Figure 3.

Figure 3. Illustration of the connection relationship between power plants, transmission system, and
demand side—where the idea of decentralized resources is shown.

In these technology domains, various stakeholders with different business purposes
are present. For example, the transmission and distribution domains are operated by
transmission system operators and DSOs, respectively. In this paper, the emphasis is put on
the demand side, which embraces dispersed generation and consumption connected to a
distribution power system. On the demand side, technology asset groups can be considered,
which represent real-world entities such as microgrids, energy communities, or virtual
power plants. Technology asset groups include a variety of production, consumption,
or storage technologies whose coordinated operation enables flexibility for the provision
of business services to various stakeholders. For example, the owner of the technology
asset group can optimize its operational costs, and the flexibility can be provided to an
aggregator for energy market purposes or can be open to DSO for triggering an explicit
demand response service to maintain grid reliability and security.

1.3. Technology Asset Groups

The main focus of the paper is on the technology asset groups, which include various
technologies with electricity consumption needs, production potential or storage capability
(Note, only the electricity part of the energy vector is considered) located in a bounded area
(e.g., municipality, selected part of a distribution grid) [3–7]. These assets are connected to
distribution grids and are capable of coordinated operation or can work independently. An
energy community is a typical case where individual technologies can be operated individ-
ually according to user needs or managed according to a selected community operational
strategy. Such operational arrangements can be considered coordinated decentralized
power systems exchanging information among particular assets to ensure system stability
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and reliability. This decentralized approach is suitable for heterogeneous environments
with various stakeholders and offers resilience and economic savings compared to central-
ized systems [3,8,9]. Such information flows are drafted in Figure 3 by blue lines among
individual assets and create the information topology of the considered network, which
defines the communication scheme among individual agents operating a given asset.

The presented work is divided into several parts: Section 2 focuses on analyses and a
literature review of the state of the art. Section 3 brings the mathematical formulation of the
problem and its boundaries. Next, Section 4 is devoted to the algorithm design, including
the construction of models for renewable sources and battery systems. Apart from that,
all uncertainties are incorporated into the algorithm. Six simulation examples will be
introduced in Section 5. This is followed by Section 6, which deals with Future works and
other possible improvements. All outcomes and results are concluded in Section 7.

2. State of the Art

The energy network falls into the section of critical infrastructure. The entire grid
has many levels of control and management, according to the technological domain (e.g.,
transmission grid, distribution grid, demand side) [10–12]. Complex optimization tasks,
including Unit Commitment and Economic Dispatch (ED), are solved during the opera-
tional planning of system elements. The complexity of discrete optimization related to
Unit Commitment (i.e., curse of dimensionality) prevents its real-time solution. Therefore,
these complex optimization tasks (Unit Commitment complemented by ED) are usually
solved in advance [11,12]. Short-term operational planning is solved on the day-ahead
time horizon in the case of distribution grids. This task uses statistical methods and models
to estimate and forecast this value for a given time frame [13]. The Unit Commitment
problem optimizes an activation or deactivation of selected controllable assets (e.g., genera-
tors) [14]. On the other hand, the EDP is continuously solved in real-time to manage system
disturbances and system state deviations from the expectation when unit commitment
has been calculated. The EDP defines operational set points for committed controllable
assets (e.g., generators, energy storage) according to the energy needs (i.e., balance) of the
energy system, considered optimization constraints and selected control policy. Minimizing
operational costs of technology asset groups is often the primary goal [15–17].

There are several ways to solve EDP. Article [18] presents a review of methods that
were used around 1990. These are mainly centralized solution methods, which include, for
example, the Lambda-iteration method or genetic programming [19,20]. Other applicable
methods are based on particle swarm optimization or evolutionary programming [21–23].
Over the years, efforts have been made to replace these methods with decentralized
methods. The inclination towards decentralized methods is mainly thanks to the progress
of multi-agent systems theory and technological progress [10,24].

Many consensus-based algorithms are used for a distributed way of solving [8,9,25].
Furthermore, there is also an effort to incorporate renewable sources, mainly from replacing
conventional sources to reduce emissions [26,27]. These goals also lead to advancing the
technical possibilities of renewable power plants. This development led to the need to
manage them across the entire energy network [28]. In order to make greater use of energy
from renewable sources, they are often extended by BESS [29–31]. BESSs can provide
stored energy to the grid but also take it from the grid [30,32]. Due to the growing number
of electric cars, the energy network needs to account for them [33]. The next step is the
integration of charging stations [34]. This fact leads to the need to ensure stability and cover
the required load in the case of networks that consist of different generators, renewables,
and BESS.

It is also essential that the distributed methods are applicable even for a large number
of considered agents [35]. Paper [36] demonstrates the suitability of distributed algorithms
even for many agents, specifically for thousands of generators. Electricity prices change
during the day, so it is necessary to adapt to them [37,38]. Mostly, the price is set using an
auction-based system, which can be on a different time horizon in Europe; it is usually a
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15-min trading interval [39,40]. In order to build such power plants, which will have the
lowest possible costs, it is necessary to consider changes in energy prices as well as other
costs associated with the operation of generators and the entire energy network. It can
sometimes be advantageous for BESS to buy energy at lower prices, then sell it and feed it
back into the grid once the price rises.

None of the previously described works represented uncertainties or time delays in the
communication network. In realistic cases, however, the communication network is never
ideal [41]. The impact of such time delays in communication are described for distributed
EDP solution methods in [42,43]. Other problems can be dynamic changes in network
topology [44,45] or noisy data transfer between agents [46]. The system representation
must also include these communication or data reception uncertainties.

Among the significant topics addressed in 2023 can be selected, for example, the issue
of Privacy-Preserving for a distributed EDP solution [47]. Alternatively, it is possible to
meet with the effort to reduce the communication complexity of the distributed method of
solving using the Dynamic Event-Triggered Algorithm for EDP [48].

This article aims to extend the algorithm proposed in Article [8] with the representation
of renewable resources, BESS, variable fuel prices and add more uncertainty at once. In this
work, several uncertainties will be considered at the same time, such as time-variable traffic
delay, representation of drop-off packets (corrupted or lost data), noisy gradient calculation,
and line losses and their treatment. Partial results and extensions by the authors can be
found in [49–51]. The goal is to provide a robust decentralized algorithm that remains
stable even in such cases.

3. Problem Formulation

This paper introduces the distributed optimization method for solving EDP for the
technological asset group, where control policy focuses on minimizing operation costs from
the owner’s perspective. The main task of EDP is to minimize the total operational costs.
At the same time, the overall consumption and limitation of individual technological assets
(e.g., generators (generally, controllable units such as generators, controllable loads, etc.))
are considered [8,43,52,53]. The objective function can be formulated as:

min
Pi

N

∑
i=1

Ci(Pi), (1)

where N represents the number of technological assets, Pi is the active power injection
related to the i-th asset and Ci denotes the cost function of the i-th asset. Each agent in N,
i.e., technological assets, is part of the considered network graph denoted as G. The graph
G indicates the overall shape of the network topology, and on its basis, the communication
matrix is constructed later in Section 4.4.

In the next step, the objective function (1) can be detailed to include considered assets
such as conventional generating units (i.e., generators), renewable generating units, battery
systems, and power grid connection [32,54]. In a distributed optimization approach, each
term of an objective function is optimized by an individual agent, which interacts with other
ones to achieve optimal system-wide consensus. Consequently, the agents representing
these generating resources have their cost functions, which may differ from each other.

The distributed formulation of the objective function minimizing operational costs
across all network agents can be expressed as [10,26,30,55,56]:

min
[ Nc

∑
i=1

Cci (Pci )︸ ︷︷ ︸
Conventional

+
Ns

∑
i=1

Csi (Psi ) +
Nw

∑
i=1

Cwi (Pwi )︸ ︷︷ ︸
Renewables

+
Nb

∑
i=1

Cbi
(Pbi

)︸ ︷︷ ︸
Energy storage

+Cg(Pg)
]

︸ ︷︷ ︸
Grid

, (2)

where variable Nc stands for conventional generating assets (microturbines, diesel gener-
ators), Ns for photovoltaic plants, Nw for wind power plants, and Nb for battery systems
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within the network. Additionally, Pci , Psi , Pwi , and Pbi
represent the power output of gen-

erators by type and index i. These types include conventional, solar, wind, and battery
systems. Furthermore, Cci , Csi , Cwi , and Cbi

denote price functions for generators of the
respective type and index i. Variable Cg denotes the price function of energy provided
or taken from an external large network. Therefore, the variable Pg indicates the power
provided or received by this network [37,38].

Renewable resources, such as solar and wind power plants, are uncontrollable [54,57],
and their generating performance depends on current weather conditions [55].

The power balance equation can be defined as follows [23,26]:

Nc

∑
i=1

Pci +
Ns

∑
i=1

Psi +
Nw

∑
i=1

Pwi +
Nb

∑
i=1

Pbi
+ Pg = PD, (3)

where PD is overall demand power and P(·) stands for the above-mentioned power injec-
tions of the assets. Some technological assets such as energy storage [56], or power grid
connections can vary their power flow direction. In the case of discharge or power grid
supply, the outputs of these assets are considered positive, otherwise negative.

The need to meet the total power demand while respecting the generator limitations,
particularly the minimum and maximum power outputs, aligns with the previously defined
formulation [10,26,58]. These constraints can be expressed as:

Pmin
ci

≤ Pci ≤ Pmax
ci

,

Pmin
si

≤ Psi ≤ Pmax
si

,

Pmin
wi

≤ Pwi ≤ Pmax
wi

,

Pmin
bi

≤ Pbi
≤ Pmax

bi
.

(4)

Again, Pci , Psi , Pwi , and Pbi
represent power generated by agents (i.e., technology

assets), each with a minimum (Pmin
(·) ) and maximum (Pmax

(·) ) limit.
Conventional generating units have individual minimum and maximum power limita-

tions determined by mechanical and electrical properties [10]. Solar and wind power plants
can produce active power from zero up to their maximal limits (i.e., rated power) [54,57].
Finally, energy storage systems have capacity restrictions depending on battery design,
charging or discharging rates, and the inverter used [10,28,56]. The power interaction with
the grid Pg is considered unconstrained.

In the case of energy storage, the stored energy over a time horizon Ebi
(t) can be

defined as follows:

E0
bi
+

k+Td

∑
t=k

Pbi
(t) · h = Ebi

(t), (5)

where E0
bi

is the energy storage initial state, Td is considered time horizon, h is (dis)charging
interval and k represents current time step. Further, the battery systems need to consider
capacity constraints, which can be formulated as follows:

Emin
bi

≤ Ebi
(t) ≤ Emax

bi
, (6)

where Emin
bi

is the state of the charge minimal level and Emax
bi

is the state of the charge
maximum level for the i-th energy storage unit. Equation (5) ensures that the cumulative
energy (dis)charged from/to the battery system during the specified period Td does not
exceed the total energy stored in the battery system at that particular time.

In the case of a grid-connected system, the overall power system stability is maintained
by robust balancing mechanisms operated by distribution or transmission system operators.
In the case of island operation, the stability is maintained locally using controllable pro-
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duction, consumption, and storage assets. In this case, renewable volatile sources should
not provide more than a maximum of 30–40% of the total required network load PD to
maintain system stability [29,57]. From now on, the paper focuses on island power systems
for clarity. Here, the overall renewable production is defined as:

Pren = Ps + Pw =
Ns

∑
i=1

Psi +
Nw

∑
i=1

Pwi . (7)

Other energy sources can be collected as:

Prest = Pc + Pb =
Nc

∑
i=1

Pci +
Nb

∑
i=1

Pbi
, (8)

and overall load is covered by these energy sources as:

PD = Prest + Pren. (9)

Therefore, design constraints related to operation stability can be defined as:

Pren ≤ Xlevel · PD, (10)

where Xlevel denotes the maximum secure renewable contribution to the total load. For
instance, if the maximum is 30%, then Xlevel = 0.3. In order to ensure the operation
feasibility of the islanded power system, power demand must lie between the sum of the
minima and the maxima over all sources connected to the network [10,26,55].

Nc

∑
i=1

Pmin
ci

+
Ns

∑
i=1

Pmin
si

+
Nw

∑
i=1

Pmin
wi

+
Nb

∑
i=1

Pmin
bi

≤ PD ≤
Nc

∑
i=1

Pmax
ci

+
Nc

∑
i=1

Pmax
ci

+
Nw

∑
i=1

Pmax
wi

+
Nb

∑
i=1

Pmax
bi

(11)

4. Models and Algorithm Design

In this section, the whole decentralized gradient algorithm will be designed. First,
models for renewable sources and battery systems will be presented, and then the possible
shapes of the used price functions will be described.

4.1. Representation of the Renewable Resources

The performance of renewable sources is closely linked to the weather. For solar
power plants, the power provided is proportional to the amount of the sun, i.e., solar
irradiation (the amount of radiant energy emitted by the Sun is called solar radiation, while
solar irradiation refers to the amount of solar irradiation received from the Sun per unit
area which is expressed in (kW/ m²). In the case of wind power plants, the output power
depends on the wind speed but also on the size of the area of the specific power plant
on which the wind leans. In order to respect the diversity of the weather, the following
assumption needs to be established.

Assumption 1. The weather cannot be controlled in any way. Renewable energy can be used
directly, stored in the BESS or unused depending on the weather and energy market situation [50].

4.1.1. Solar Power Plants

The mathematical model for a solar power plant is called a “solar power output
model”. This model calculates solar power output based on solar irradiation, temperature,
and other parameters. This model thus respects the effect of temperature on the efficiency
of solar panels. The variable Psi represents the power output of the i-th solar power plant
based on photovoltaic (PV) panels number [27,50,59]:

Psi = 3.24 · MPVi ·
[
1 − 0.0041 · (Tti − 8)

]
· Sti , (12)
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where MPVi represents the capacity of one PV panel whose value is subsequently multi-
plied by the number of panels in the given solar power plant. Term Tti denoted outdoor
temperature and Sti means solar irradiation at concrete time t in the i-th solar power plant.
Part

[
1 − 0.0041 · (Tti − 8)

]
adjusts the efficiency of the solar panel based on the deviation

of the outdoor temperature (Tti ) from the reference temperature (8 ◦C). Constant 0.0041
is often determined empirically based on the specific characteristics of the solar panels
being used. It represents the temperature coefficient of the efficiency of the solar panel.
Different solar panels may have different temperature coefficients. This is the temperature
at which the solar panel efficiency is defined or measured under standard test conditions.
The constant 3.24 in Equation (12) is a scaling factor that converts solar irradiation and other
parameters into the desired output unit, such as megawatts. In practice, the value of this
scaling factor may vary depending on the system, location, and solar panel characteristics,
so it could be adjusted accordingly to match the actual performance of the solar panel
system. Using a scaling factor helps ensure that the equation is consistent with the desired
units for the output power. The scaling factor itself is dimensionless. If it is necessary to
calculate several calculations in a row, the index k can be used—Psi (k).

The price function for the solar power plant can be defined as [10,26,28]:

Csi (Psi ) = αsi Psi , (13)

where the αsi symbolizes the optional parameter representing the price of the i-th solar
power plant, operation and maintenance costs etc. [10].

Another shape that can be encountered is more focus on the business case price
function. This shape thus considers the return on the entire investment [26,55]:

Csi (Psi ) = as IPs Psi + GEs Psi , (14)

where variable Psi denotes i-th solar power plant output power. Next, parameter IPs

represents investment cost per energy unit (often in USD/kW). Parameter GEs indicate
operations and maintenance cost (often in USD/kW). Variable as in (14) can have following
form [26]:

as =
r

[1 − (1 + r)−IN ]
. (15)

Variable as denotes the annuitization (annuitization represents converting an annuity
investment into a series of periodic income payments) coefficient, which is dimensionless.
Next, r stands for interest rate (often described in units of percentages). Parameter IN
denotes an investment lifetime (often in years). A typical value for IN encountered is
20–30 years.

But sometimes, these shapes of the Csi are unnecessarily complicated. One can also
encounter cases where the price function Csi is equal to zero [8]:

Csi (Psi ) = 0. (16)

Such simplification can be made because solar irradiation has zero cost [54,57].

4.1.2. Wind Power Plants

The output power Pwi of the i-th wind power plant can be modeled as [27,50,59]:

Pwi =
1
2
· (ρAir · Ai · u3

i ),

where ρAir represents the air density. Its value is generally considered as 1 kg/m3. Term Ai
denotes the windswept area of the i-th agent (m2). This parameter accounts for the size
of the rotor-swept area of the wind turbine. Parameter ui represents the velocity of the
wind around the i-th agent (m/s). Wind speed is a critical factor in determining the power
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output of a wind turbine. The index i is given here because it can represent different-sized
and powerful wind power plants. If it is necessary to calculate several calculations in a row,
again the index k can be used—Pwi (k).

The cost function for wind farms can be defined as [10,26,28]:

Cwi (Pwi ) = αwi Pwi , (17)

where the αwi denotes the same as for solar power plants [10].
The price function form can be designed in more investment-based view again [26,55]:

Cwi (Pwi ) = aw IPw Pwi + GEw Pwi . (18)

Variables used in (18) denote the same variables as for solar power plants Section 4.1.1, but
here they are listed with the index w for wind power plants.

But even in this case, the price function can be defined as zero [8]:

Cwi (Pwi ) = 0. (19)

Moreover, that is because wind costs nothing as an energy source [54,57].
When renewables have non-zero costs, the model will consider the economic factors in

the dispatch decisions. The dispatch algorithm will prioritize sources with lower associated
costs to meet the demand. In certain situations, it might result in a non-dispatch of renew-
able sources, even if they are available if other sources are more economically favorable.
Regarding the potential for curtailment, it is indeed a consideration when integrating
renewable energy sources into the energy system. Curtailment might be necessary if the
battery storage is full, demand is low, and there is an excess of renewable generation due to
favorable weather conditions. Curtailment involves intentionally reducing or restricting
the output of renewable sources to balance supply and demand [60,61]. In a realistic model,
including curtailment scenarios would allow for a more accurate representation of the
challenges associated with renewable energy integration. Factors such as energy storage
capacity, grid flexibility, and market conditions need to be considered to optimize the
utilization of renewable energy and minimize curtailment.

4.2. Battery System Representation

In this section, the model for BESS will be presented [30,51]. Each BESS has capacity
limit. These limit capacities are usually given as a percentage, for example, 20% and 80%
or 10% and 90% from the maximum amount of the energy. This restriction is introduced
mainly to maintain the most extended possible lifetime of BESS [32]. Next, it is advisable to
introduce the maximum value of BESS charging and discharging rate:

0 ≤ Pch
b (t) ≤ Pchmax

b ,

0 ≤ Pdis
b (t) ≤ Pdismax

b ,

where Pch
b (t) and Pdis

b (t) denotes the charge and discharge rates of the i-th BESS in the
considered time t.

Another important condition guarantees that the BESS cannot be charged or dis-
charged at the same time; only one operation can take place at a given time:

Pch
b (t) · Pdis

b (t) = 0. (20)

The currently stored energy in the BESS Ebi
(t) is described by Equation (5). Parameter

Emax
bi

symbolizes maximum capacity of the i-th BESS. On this basis, the variable SOC(t)
can be introduced which denotes the state of the charge (in %) at the given time:

SOC(t) =
Ebi

(t)
Emax

bi

.
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The next conditions are the BESS storage constraints, which were defined in Equation (6).
In the case of the SOC(t) it will be defined as a percentage. For instance, if Emin

bi
= 10% and

Emax
bi

= 90%, then

Emin
bi

≤ SOC(t) ≤ Emax
bi

.

Sometimes, it is necessary to take into account the efficiency of charging or discharg-
ing. In the next step, Equation (5) will be supplemented by the considered charging or
discharging efficiency ηch and ηdis.

E0
bi
+

k+Td

∑
t=k

((
Pch

b (t) · ηch
)
· h +

(
Pdis

b (t) · ηdis
)
· h

)
= Ebi

(t),

Due to the condition given in Equation (20), it is ensured that only one operation will
take place at a time. Furthermore, the index k indicates the k−th step of the algorithm.

The last point will be the definition of the price function for BESS. The i index guaran-
tees multiple BESS definition options with different price functions:

Nb

∑
i=1

Cbi
(t) =

Nb

∑
i=1

πbi
(Pbch

i (t) + Pbdis
i (t)),

where the parameter πbi
denotes the i-th consumption coefficient of the BESS. Such a

parameter indicates the costs associated with the operation of the BESS as well as its wear
and tear; in essence, it serves to penalize the use of the BESS. Used parameters for BESS
will be presented in the Section 5 simulation examples.

4.3. Price Function for Conventional Power Plant

The cost function Cci (Pci ) can be chosen in the quadratic form, which is very often
used within the EDP [8,25]:

Cci (Pci ) =
(Pci − αci )

2

2βci

+ γci , (21)

where Pci denotes the power generated by the i-th generator. Generator parameters are set
as αci ≤ 0, βci > 0 and γci ≤ 0. The manufacturer gives the parameters of the generators,
or they can be experimentally measured and approximated. Then the incremental cost for
the i-th generator is [25]:

dCci (Pci )

dPci

=
(Pci − αci )

βci

.

And on that basis, the well-known solution to the EDP can be established, which is
the equal incremental cost criterion [8,25]:

P∗
ci
=



Pci−αi
βi

= λ∗ for Pmin
ci

< Pci < Pmax
ci

,

Pci−αci
βci

< λ∗ for Pci = Pmax
ci

,

Pci−αci
βci

> λ∗ for Pci = Pmin
ci

,

where Pmin
ci

and Pmax
ci

are the lower and upper bound of the i-th conventional generator.

Remark 1. The quadratic form of the price function can also be used for renewable sources or BESS.
It depends on the designer’s requirements.
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4.4. Algorithm Development

The proposed algorithm is based on the algorithm presented in [8] utilizing the
Lagrangian dual problem for EDP and further improves it. The designed algorithm derives
a distributed EDP solution using local λ estimation using only local communication for
each generator [8,49].

Initially, it is also necessary to state some assumptions that will be considered for the
entire algorithm operation.

Assumption 2. All considered price functions Ci : Pi → R+ are convex and continuously differentiable.

This assumption is not violated even in the case of the considered shapes of the price
functions for renewable resources given in Equations (13), (16), (17), and (19). That is
because they are linear or constant functions. Linear functions and constant functions are
both concave and convex.

Assumption 2, along with the condition described in Equation (11), which is affine,
meets the Slater condition. The Slater condition is essential for ensuring strong duality
in a convex optimization problem and requires the feasible region to contain an interior
point. In this context, an affine function comprises a linear function plus a constant, and its
graph forms a straight line. This implies a zero duality gap, allowing the original problem
outlined in Section 3 to be transformed into a Lagrange dual problem. Similarly, it can be
argued that the condition (3) for the extended problem is also affine, and therefore, along
with Assumption 2, it satisfies the Slater condition in this case as well.

As mentioned in the previous chapters, the communication topology of the network
between N agents is represented using an unbalanced directed graph G.

Remark 2. The proper functioning of the algorithm relies on the graph G being strongly connected,
primarily due to the need for information exchange among agents. The distributed solution would
not operate appropriately if any network part were informationally isolated from the rest.

Before the algorithm itself, it is necessary to define the set of all renewable resources
as Os,w = Os ∪ Ow to shorten the notation. Term Oc and Ob represent a set of conventional
units and BESS. In each agent in the network, the following three equations are calculated,
which thus define the entire iterative algorithm:

λi(k+1) =
N

∑
j=1

wijλj(k)−



γi(k)
∇Φi(λci (k))

yii(k)
, if i ∈ Oc,

γi(k)
∇Φi(λs,wi (k))

yii(k)
, if i ∈ Os,w,

γi(k)
∇Φi(λbi

(k))
yii(k)

, if i ∈ Ob,

(22)

Pi(k + 1) =



φci

(
∇C−1

ci
(λci (k + 1) · µ−1

ci
(k))

)
, if i ∈ Oc,

φs,wi

(
Ps,wi · µs,wi (k)

)
, if i ∈ Os,w,

φbi

(
Υ
(
Ebi

(t)
)
· µbi

(k)
)

, if i ∈ Ob,

(23)

yi(k + 1) =
N

∑
j=1

wijyj(k). (24)

For the first two equations, three distinct calculations can occur, depending on whether
the agent represents a conventional power plant (index c), renewable resources (index w, s),
or a BESS (index b) with price functions Cci , Cs,wi , or Cbi

. Variable λi(k + 1) represents the
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i-th generator estimation of the optimal incremental cost. The calculations for all three
options are nearly identical, differing only in the price function used and, consequently, the
form of the gradient calculation ∇Φi(λi(k)). Term Pi(k + 1) expresses the corresponding
power generation and has three calculation options.

The first option calculates for all conventional controllable power plants belonging to
the set Oc. The second option represents renewable sources like solar and wind, which are
not controllable and which belong to the set Os,w. It can be only decide whether to provide
the energy to the grid or store it in the BESS. The third option indicates the calculation of
the BESS, which belongs to the set Ob. Variables Pi(k) and λi(k) represent primal and dual
variables, while yi(k + 1) denotes the consensus variable. The parameter wij signifies the
consensus weight, and parameters µci , µs,wi , and µbi

represent the variable fuel price for
conventional power plants, renewables, and BESS, respectively, in percentage (100% = 1).
Function Υ() denotes the charging or discharging decision function of the BESS, and γi(k)
designates the step size, sometimes called learning gain.

Remark 3. An agent representing only the local load in the considered network topology PDi and
would not provide any produced power information to the network.

Definition 1. For all i ∈ Oc,s,w,b and k ≥ 0 the uncoordinated learning gain has a form [8]:

γi(k) =
1

k + 1
+ ai(k) > 0, (25)

where the term ai(k) from Equation (25) satisfies:

|ai(k)| ≤ a(k),
∞

∑
k=0

a(k) < ∞.

Term ai(k) can be chosen in the following form:

ai(k) =
Mi

(k + 1)ci
− 1

k + 1
, (26)

where terms ci ∈ ⟨0.5, 1⟩ and Mi > 0 are adjustable parameters of ai(k). If ai(k) has the shape
given in (26) then γi(k) can be designed by following equation:

γi(k) =
Mi

(k + 1)ci
. (27)

Definition 1 for γi(k) gives each generator freedom in the choice of parameter γi(k)
thanks to the shape of ai(k).

The nominal value for the actual energy price is typically set at 100%. The choice of
the considered initial condition is up to the designer of the concrete solution. Parameter
µ−1

ci
(k) is inversed because the price function gradient ∇Cci (k) is also considered in its

inverse form. Term Ebi
(t) indicates the energy stored in the battery system. It will further

be established that µbi
= 1T (a vector of ones). Finally, wij represents the consensus weight.

Next, it will be focused on the procedure for constructing the weight matrix W.

Definition 2. For all i ∈ Oc,s,w,b and κ ≥ 0 one can define a positive scalar κ ∈ (0, 1) for which:

wij =


> κ, j ∈ G ⋃

i,

0 otherwise.

(28)

At the same time, the values of wij must hold ∑j=1 wij = 1 for a given row of the weight matrix W.
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From now on, it is essential to note that the indices i and j represent all types of power
plants, including conventional, renewables, and BESS. The κ lower bound ensures that the
information link between agents i and j will not be too weak. Furthermore, in line with
Definition 2, the entire weight matrix W associated with the graph G is row stochastic
W = [wij] ∈ RN×N and W1N .

Each generation unit i ∈ Oc,s,w,b only requires its local information, denoted as din
i (the

number of incoming edges), to construct the row-stochastic weight matrix W. Each agent
can independently determine din

i value without needing information from its neighbors.
In order to fulfill this requirement, the values for wij should be chosen according to:

wij =


1

din
i +1

, j ∈ G ⋃
i,

0. otherwise.

(29)

In this case, Definition 2 is satisfied by choosing κ = 1
N .

Next, it will be moved to the shape of the Φi(λi) gradient calculation. The gradient of
Φi(λi) calculation have following shape:

∇Φi(λi) = Pi(λi)− PDi .

The variable Φi(λi) is bounded from above due to the sum of maximum possible
power Pi and virtual required loads PDi across all generators:

|∇Φi(λi)| = |Pi(λi)− PDi | ≤ max
i∈G

Pmax
i + max

i∈G
PDi .

The variable PDi indicates a virtual local demand with no physical meaning. It is used
only for the ability to build a distributed algorithm. Thus, PDi values can be chosen ran-
domly across all agents in the network only under the condition that their sum corresponds
to the required load PD to meet the condition stated in (34) [8].

In the article [62], it is stated that the standard gradient method without weighting
by the term yii can only lead to the minimization of the term ∑N

i=1 πiΦi(λ), instead of term
∑N

i=1 Φi(λ), especially for the reason of unbalancedness of directed graph. Here πi ∈ (0, 1)
applies where it is the i-th member of the vector π = [π1, ..., πN ]

T ∈ RN . It is, therefore, a
left-normalized vector of eigenvalues (Perron vector) of the matrix W that satisfies:

lim
k→+∞

Wk = 1NπT , and 1T
Nπ = 1.

The vector π, sometimes called the “Perron vector”, is relevant in the context of the
“Perron–Frobenius Theorem” (The Perron–Frobenius Theorem stated that a real square
matrix with positive entries has a unique largest real eigenvalue and that the corresponding
eigenvector can be chosen to have strictly positive components, and then a similar statement
for certain classes of non-negative matrices. This Theorem has essential applications to
probability theory, theory of dynamical systems, economics, and many more.) Computing
this vector in advance would enable scaling the gradient by it. However, determining
the Perron vector in advance is challenging since the algorithm cannot perform this step
until each generator knows its local πi. To address this, the variable yi(k) is introduced for
asymptotic estimation of the Perron vector.

The re-scaling gradient technique was initially introduced in [63]. It is essential to note
that one requirement for this method to function correctly is that each generator knows
the total required network load PD. Knowledge of PD can be ensured through a strongly
connected graph, information transmission, and unique identifiers for each generator.

Now, let us delve into the calculation for the quadratic price function, which applies
to conventional generators and is the most complex part. In (23), the argument of the φ
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function involving ∇C−1
ci

(
λci (k + 1)

)
does not have a closed-form solution for a universal

convex cost function. Moreover, for φi
(
∇C−1

ci
(λci (k + 1))

)
, will be received:

φci

(
C−1

ci
(λci (k + 1))

)
=



Pmax
ci

, if C−1
ci

(
λci (k)

)
> Pmax

ci
,

∇C−1
ci

(
λci (k)

)
, if Pmin

ci
≤ C−1

ci

(
λci (k)

)
≤ Pmax

ci
,

Pmin
ci

, if C−1
ci

(
λci (k)

)
< Pmin

ci
.

If a quadratic price function of Cci (21) is considered then ∇C−1
ci

(λci ) has form:

∇C−1
ci

(λci ) = βci λci + αci ,

where αci and βci are parameters of the i-th conventional generator.
Similarly, renewable sources and BESS, which have maximum energy limits, can be

constrained by φs,wi or φbi
. In the case of BESS, this function also includes deciding whether

to provide power to the grid or store it, denoted as the Υ() decision function.

4.4.1. Sequence of Operations for Deploying the Algorithm

The possible implementation of the described algorithm will be outlined here in a very
simple way. A simplified flowchart of the operations sequence with the presented algorithm
is shown in Figure 4. The entire process runs in a continuous loop. The calculation block
contains the calculation of the Equations of the algorithm (22)–(24). The yellow block
indicates the starting initialization. Finding a consensus means that all online agents in
the network have reached the same value of λi(k). If the convergence has been achieved
then the production plan can be passed to the individual generators, which is represents by
green block. The gray block represents changes in the network settings, desired load, or
other inputs from other agents. These modifications can lead to a change in the λi(k) value
or the local requirements of PDi , and the entire algorithm is thus recalculated.

Algorithm initialization

Calculation of

Was a
consensus

found?

Yes
Print schedule

No

Yes Limit

Pass information to
agents

No

Change
network

settings or
total demand

Limits
exceeded?

Figure 4. Simplified flowchart of the sequence of operations with the presented algorithm.

At this place it is important to mention that the entire algorithm runs online and thus
reacts to any changes in the input information itself. This fact will be further demonstrated
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by examples in Section 5. The aim of this analysis is to provide better insight into the
possible integration of the presented algorithm.

4.4.2. Convergence Analysis

In this section, the analysis of convergence for the algorithm will be conducted. Before
delving into the convergence analysis, it is essential to establish specific facts about the
directed graph G and the weight matrix W. The subsequent Lemmas and Theorems will be
stated generically using the index i, ensuring their applicability to all source types.

Lemma 1. Definitions 1 (Equation (25)) and 2 (Equation (28)) hold for the graph G and the
matrix W. Parameter πi is left normalized eigenvalues vector of the matrix W. Then there exists a
parameter β ≤ 0 and ξ ∈ (0, 1) such that ∀i, j ∈ G and k ≥ 0, it holds that [63]:∣∣∣[Wk]ji − πi

∣∣∣ ≤ βξk, |yii(k)− πi| ≤ βξk.

Furthermore, a constant h > 1 will be introduced such that:

h−1 ≤ yii(k) ≤ 1, ∀i, j ∈ G, k ≥ 0.

This Lemma will subsequently be used to establish results for asymptotic consensus.

Lemma 2. In this Lemma, the following sequence will be introduced [63]:

θi(k + 1) =
N

∑
j=1

wijθj(k) + ϵi(k).

Here, Definition 1 still holds for wij. Subsequently, a variable θ(k) will be introduced:

θ(k) =
N

∑
i=1

πiθi(k).

where the parameter πi was defined in Lemma 1. Furthermore, if it is considered that
limk→+∞ ||ϵi(k)|| = 0 then:

lim
k→+∞

||θi(k)− θ(k)|| = 0, ∀i ∈ G.

In this Lemma, the deterministic counterpart to the supermartingale convergence Theorem is
thus relied upon to achieve asymptotic convergence for the dual variable λi(k). (Doob’s martingale
convergence Theorems, named after mathematician Joseph L. Doob, deal with the limits of super-
martingales. Supermartingales are like decreasing sequences in the world of random variables. The
main idea is that, under certain conditions, a supermartingale will always converge. This Theorem
is akin to the monotone convergence Theorem, which tells us that bounded decreasing sequences
converge.)

Lemma 3. In the next step, a non-negative scalar sequence {s(k)} will be introduced for ∀k ≥ 0
such that it satisfies [64]:

s(k + 1) ≤
(
1 + v(k)

)
· s(k)− b(k) + c(k), (30)

where for the parameters v(k), b(k), c(k) ≥ 0 with the condition for v(k) and c(k):

∞

∑
k=0

v(k) < ∞,
∞

∑
k=0

c(k) < ∞.
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It follows that limk→+∞ s(k) = σ, where σ is a non-negative constant for which σ ≥ 0 and at the
same time ∑∞

k=0 b(k) < ∞.

Lemma 4. (Asymptotic consensus) Here, it will be returned to the algorithm defined by the
Equations (22)–(24). Furthermore, it will be assumed that Assumptions 1–3 and Definitions 1
and 2 still hold true. Subsequently, a variable λ(k) will be introduced [8]:

λ(k) =
N

∑
i=1

πiλi(k).

Then the form for the limit can be written as:

lim
k→+∞

||λ(k)− λ(k)|| = 0, for any i ∈ G.

This results in the convergence of λ(k) to the optimal value reached by all agents in the
network. Proof can be found in Appendix A.

Lemma 5. It will be assumed that Assumptions 1–3 and Definitions 1 and 2 hold true again.
Consequently, for any u ∈ R and k ≥ 0, the following holds [8]:

N

∑
i=1

πi||λi(k + 1)− u||2 ≤
N

∑
i=1

πi||λi(k)− u||2 − 2
k + 1

(Φ(λ(k)− Φ(u)))

+
6lh

k + 1

N

∑
i=1

πi||λi(k)− λ(k)||+ 2lha(k)
N

∑
i=1

πi||λi(k)− u||+ h2l2
N

∑
i=1

πiγ
2
i (k)

+
2nhβξk

k + 1
||λi(k)− u||.

(31)

Proof can be found in Appendix B.

Lemma 6. Renewable sources cannot be controlled. Their operation is thus directly dependent
on the current weather, as stated in Assumption 1. However, if their electricity production is
available, it can be decided whether and in what quantity it will be consumed locally, provided to the
grid, stored in battery systems or unused. In the case of using all the provided energy, this can be
imagined as a change in the value of the required load PD for the entire system:

Nc

∑
i=1

Pci +
Nb

∑
i=1

Pbi
+ Pg =

(
PD −

Ns

∑
i=1

Psi −
Nw

∑
i=1

Pwi

)
.

Thus, the entire right side can be marked as PDnew1
, which represents the reduced value of the

total required load D by renewable resources:

Nc

∑
i=1

Pci +
Nb

∑
i=1

Pbi
+ Pg = PDnew1

.

Similarly, based on the current needs and requirements, the claim could be modified only for
partial use of the total power provided by renewable sources or its partial storage in the BESS.

Lemma 7. Similar to the Lemma 6 BESSs can either provide energy to the local network in island
mode (discharge), to the grid (discharge), absorb it from local assets or from the grid (charge). Their
state depends on the upcoming input, which determines their operation. This decision-making
process relies on specific design and logic.
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In the case of using energy from BESS or storing the energy to the BESS, change to the PD can
be written as:

Nc

∑
i=1

Pci +
Ns

∑
i=1

Psi +
Nw

∑
i=1

Pwi + Pg =
(

PD −
Nb

∑
i=1

Pbi

)
,

where a new value of the total required load PDnew2
can be introduced again, which will increase or

decrease the original value of PD depending on whether the BESS is being discharged or charged:

Nc

∑
i=1

xci +
Ns

∑
i=1

xsi +
Nw

∑
i=1

xwi + Pg = PDnew2
.

Remark 4. If the connection to the grid is ensured, Pg will be preserved and used in the equations.
If the island mode of the local network is considered, then the term Pg will be considered as zero.

Based on all the mentioned Lemmas, Theorem 1 can be constructed.

Theorem 1. Let Assumptions 1–3 and Definitions 1 and 2 hold true. Then the algorithm stated
in (22)–(24) solves the problem defined in Section 3 in Equation (2)–(4). This can be written as for
k → ∞ applies:

λi(k) → λ∗, Pi(k) → P∗, ∀i ∈ G, (32)

where variable λ∗ represents optimal incremental cost and P∗ denotes optimal power generation for
each i-th generator in the graph G. It follows that the algorithm converges to the optimal solution.
Proof can be found in Appendix C.

From Lemma 6 and Lemma 7, it becomes evident that renewables generate power
according to weather conditions. At the same time, BESSs can supply or draw power from
the grid through a control function both in island mode and when connected to the grid.

4.4.3. Zero Cost for Renewables

In the case of the considered zero fuel price Csi and Cwi for renewable sources,
the calculation of the Equation for (22) for λi(k + 1) will be changed. The remaining
two Equations (23) and (24) remain unchanged.

λi(k+1) =
N

∑
j=1

wijλj(k)−



γi(k)
∇Φi(λci (k))

yii(k)
, if i ∈ Oc

0, if i ∈ Os,w

γi(k)
∇Φi(λbi

(k))
yii(k)

, if i ∈ Ob

(33)

This adjustment can be afforded because the price for solar or wind energy is zero, and its
availability depends only on the weather. This simplification will also be used in Section 5
in the simulation examples.

4.5. Algorithm with Multiple Uncertainties

This section will enhance the algorithm presented earlier to address various uncertain-
ties concurrently, including line losses, imprecise gradient calculations, time-varying traffic
delay, and representation of drop-off packets [49].

4.5.1. Line Losses

Line losses cannot be avoided when transporting energy using cables over long
distances. In addition, each voltage transformation to another level also brings with it
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certain losses. Line losses will be marked as Ploss and are added to the total required load
PD. This will compensate them. Formula (3) then takes the form:

Nc

∑
i=1

Pci +
Ns

∑
i=1

Psi +
Nw

∑
i=1

Pwi +
Nb

∑
i=1

Pbi
+ Pg = PD + PD · Ploss. (34)

Line losses are minimal compared to the load in the networks. That is why they are often
neglected in EDP [10], but to obtain a more accurate model it is advisable to consider them.
These losses are often thought of as 5% (0.05) of the total demand PD [13]:

PD = PD + PD · Ploss = PD · (1 + Ploss) = PD · (1 + 0.05) = 1.05 · PD.

Moreover, subsequently, the same rule will apply to the individual local demands PDi :

PDi = PDi + PDi · Ploss = PDi · (1 + Ploss) = PDi · (1 + 0.05) = 1.05 · PDi .

This modification is reflected in the initialization of the algorithm for Pi(0):

Pi(0) =



Pi
max if Pi

max < PDi ,

Di if Pi
min ≤ PDi ≤ Pi

max,

Pi
min if PDi < Pi

min,

∀i ∈ N.

4.5.2. Noisy Gradient Calculation

The noisy gradient calculation means that the generator does not require the exact
gradient value but a noisy version. This noise can arise from measurement errors or
fluctuations in the energy network. A label for the observation noise νi(k) will be introduced
for the i-th generator in the network at step k. The noise affects the algorithm solely in the
equation for λi(k + 1) to calculate the gradient:

λi(k + 1) =
N

∑
j=1

wijλj(k − τji)− γi(k)
∇Φi(λi(k)) + νi(k)

yii(k)
.

Next, the δ-algebra Fk will be introduced. (A delta-algebra includes sets that remain closed
under countable intersections. In simpler terms, if you have many sets in the delta-algebra,
their intersection will also belong to it. Delta-algebras are a broader version of σ-algebras,
encompassing sets closed under countable unions and intersections. The key difference
is that a delta-algebra does not have to include sets necessarily closed under countable
unions.) This will be generated by the entire running history of the algorithm up to the
k−th iteration. Then the noise νi(k) is bounded by the zero-mean noise variance:

E[νi(k)|Fk−1] = 0, E[ν2
i (k)|Fk−1] ≤ ν̂2,

where ν̂ > 0 for all agents in the network and k ≥ 0.

4.5.3. Time-Varying Traffic Delay

In real applications, traffic delays are inevitable when many agents communicate
with each other. It will be noted that τji represents the unknown traffic delay on the
communication line from agent i to agent j. Traffic delay τji can be modeled using normal
random distribution where ω denotes the mean value and σ2 represents the variance.

τji(k) ∼ N (ω, σ2)
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It is assumed that the traffic delay is uniformly bounded, which means that there exists a
positive value of τmax for which:

0 ≤ τji(k) ≤ τmax, j ∈ N in
i , (35)

where τii = 0, ∀i in graph G.
One can imagine that the traffic delay cannot be negative. Therefore, the term log-

normal distribution can sometimes be encountered. That is why its absolute value is
then used for the following calculations. Since it is a discrete iterative algorithm, traffic
delays can be integer values only. Unfortunately, normal distribution also returns decimal
numbers. Therefore, the round function is used here, assuring that the result will be an
integer. The resulting value is used for all generators in a given time step.

τji(k) ∼ round
(
|N (ω, σ2)|

)
4.5.4. Drop-Off Packet Representation

The term “drop-off packet’,’ also known as a “lost packet”, is commonly used in
communication scenarios. It can be modeled using the Bernoulli process, denoted as
X ∼ Ber(p). The Bernoulli process is a discrete-time stochastic process involving bi-
nary random variables, taking either 0 or 1 values. Specifically, it is characterized by
P(X = 1) = p and P(X = 0) = (1 − p).

An alternative model can be Binomial distribution. Binomial distribution means the
instance frequency of a random event in N independent trials. The probability can be
formulated as X ∼ Bi(n, p). Parameter n represents the number of attempts, and parameter
p denotes the probability. Binomial distribution thus describes that the event will occur x
times out of a total of n attempts, with a probability of p.

P[x = X] =
((n

x

))
px(1 − p)pn−x

The mean is represented by E, and the variance is marked as D. They can be expressed as:

E[X] = np, D[X] = np(1 − p).

The Binomial distribution thus works with the result for multiple trials for a given event.
In contrast, the Bernoulli process is used if the result is needed only once. This means that
Bernoulli is designed for the outcome of a single trial for the given event.

If the traffic delay approaches infinity or some invalid value, this state can be labelled
as a Drop-off packet.

drop-off packet : τi(k) → ∞

If the traffic delay τi(k) has a constant value lower than the limit given in (35), then the
algorithm converges, as was shown in [65]. However, the traffic delay can take on values
higher than this limit, which makes it possible to add the representation and treatment of
these events. In case that the traffic delay τi(k) rises above limit value τmax + 1, then it can
be marked as a Drop-off packet.

τi(k) =


τi(k) if τi(k) < τmax + 1

∞ if τi(k) ≥ τmax + 1



Appl. Sci. 2024, 14, 1991 20 of 41

From the Equation (37)–(39) is clear that the traffic delay only affects the calculation of the
Equations for λ (37) and y (39).

λi(k) =


λi(k) if τi(k) ̸= ∞

λi(k − 1) if τi(k) = ∞

(36)

The same rule shown in (36) applies to yi(k), substituting λ by y. This straightforward
adjustment effectively addressed oscillations and instability caused by significant traffic
delays. It also prevented potential issues, such as fatal collapse, if negative indices were
involved in the discrete algorithm.

With the provided insights, these elements can be integrated into the existing algo-
rithm expressed by Equations (22)–(24). The modified algorithm version will take the
following form:

λi(k+1) =
N

∑
j=1

wijλj(k − τji)−



γi(k)
∇Φi

(
λci (k)

)
+νi(k)

yii(k)
, if i ∈ Oc,

0, if i ∈ Os,w,

γi(k)
∇Φi

(
λbi

(k)
)
+νi(k)

yii(k)
, if i ∈ Ob,

(37)

Pi(k + 1) =



φci

(
∇C−1

ci
(λci (k + 1) · µ−1

ci
(k))

)
, if i ∈ Oc,

φs,wi

(
Ps,wi · µs,wi (k)

)
, if i ∈ Os,w,

φbi

(
Υ
(
Ebi

(t)
)
· µbi

(k)
)

, if i ∈ Ob,

(38)

yi(k + 1) =
N

∑
j=1

wijyj(k − τji). (39)

Theorem 2 will be presented in the next step, which describes that the algorithm represented
by Equations (37)–(39) is robust against all the inaccuracies described above and still
converges to the optimal solution.

Theorem 2. Assumptions 1–3 and Definitions 1 and 2 still hold again. Then the algorithm
stated in (37)–(39) solves then problem defined in Section 3 in Equations (2)–(4) with all described
uncertainties and satisfying conditions (35) and (36). This can be written as for k → ∞ applies:

lim
k→∞

λi(k) → λ∗, lim
k→∞

Pi(k) → P∗, ∀i ∈ G,

where variable λ∗ represents optimal incremental cost value and P∗ denotes optimal power genera-
tion for each i-th generator in the graph G. Proof can be found in Appendix D.

5. Simulation Examples

This section will introduce simulation examples that illustrate the capabilities and
applications of the presented algorithm. Six examples will be divided into two parts, each
comprising three scenarios. The examples were implemented in the Matlab program using
the model-based design approach, widely used in practice [66].

The first part will focus on using the algorithm without uncertainties, while the second
part will include the same examples but with additional uncertainties. This allows for a
direct comparison of the results. Detailed information for replicating these examples will
be provided. Next, the zero price of renewable resources will be considered (Equation (33)).
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For further simplification, the term Pg given in Equations (2) and (3) will be assumed to be
zero, which was discussed in Remark 4. Thus, only the island mode will be considered. As
a result, its price function will also be zero. However, it is not a problem to implement this
agent in the network as another node, which will either provide additional power taken
from the extensive network or increase the total required load PD of the local network.

5.1. Examples with No Consideration of Uncertainties

In this part, the focus will be on using the algorithm without respecting multiple
uncertainties at once. The first example covers the required network load, i.e., convergence
to the optimal solution. The second example focuses on incorporating a BESS into a grid
topology while considering a variable cost function. The third example combines both
of the above using real weather forecast data. The learning gains γ will be represented
as a constant in examples without uncertainties. Its value is calculated according to (27)
at the beginning.

5.1.1. Example 1—Coverage of the Required Load and Its Changes

The algorithm will be presented by example, comprising four generators and two re-
newable power plants. One will be a large solar power plant, and the other will be a wind
power plant. Three types of generators will be introduced. First will be Type I represents
coal-fired steam unit, then Type II is oil-fired steam unit and Type III denotes oil-fired
steam unit. The generator parameters were adapted from [10] only with the difference that
the power of the generators will be considered in kW. Their values are described in Table 1.

Table 1. Generator parameters.

Generation Unit Parameters

Generator Type Type I Type II Type III

Range [kW] [150, 600] [100, 400] [50, 200]
α [USD/kW2h] −2535.211268 −2023.195876 −826.7634855
β [USD/kWh] 352.1126761 257.7319588 103.7344398
γ [USD/h] −8616.760563 −7631.043814 −3216.65249

The total demand will be set as PD = 1500 kW. Local demands PDi will be set randomly
between all agents, with the condition that their sum must be equal to PD. Table 2 lists the
algorithm initialization parameters.

Table 2. Initialization of P(0), y(0), λ(0), PD(0), M(0), c(0) and γ(0) for the first example.

Variable i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

P(0) [kW] 150 150 100 50 0 0
y(0) [kW] 300 300 150 200 50 50
λ(0)
[USD/kWh]

7.6262 7.6262 8.2390 8.4552 0 0

PD(0) [kW] 450 450 250 250 50 50
M(0) 0.8 0.8 0.8 0.8 0.8 0.8
c(0) 0.85 0.85 0.85 0.85 0.85 0.85
γ(0) 0.8 0.8 0.8 0.8 0.8 0.8

Example network topology is depicted in Figure 5, where vertices 1 and 2 denote Type
I generators, vertex 3 mean Type II generator and vertex 4 indicate Type III generator.
Next, vertex 5 represents the solar power plant, and the wind power plant is denoted by
vertex 6. Weight matrix W will be calculated according to (29). The blue highlighted line in
W denotes the wind farm, and the yellow highlighted line represents the solar power plant.
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Figure 5. Network topology for Example 1.

A total of 2000 panels with a power of 250 W are considered for the solar power plant;
this is how the variable MPVi is characterized. The outside temperature is Tti = 25 ◦C.
Furthermore, for the needs of wind power plants, it is considered that their windswept
area will be Ai = 1000 m2 and ρAir = 1 kgm3. This setting is retained for all examples.

To confirm convergence, the power outputs of the solar and wind power plants
underwent four changes. These changes occurred in the time steps of 100, 200, 300, and 400,
affecting P5 as it transitioned from 0 to 75, then to 200, followed by 85, and finally reaching
0. Similarly, P6 went from 0 to 50, then to 100, followed by 45, and eventually back to 0.

The simulation results for λi and Pi are depicted in Figure 6. The algorithm effec-
tively responds to variations in power output from solar and wind sources, consistently
meeting the required power demand PD. The plots reveal that the total incremental cost λ
decreases as renewable power generation increases. The lowest λ value within the k = 200
to 300 range is 8.559 USD/kWh, compared to the initial 8.84 USD/kWh at the start of
the simulation.
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Figure 6. Example 1 results for λi and Pi.

Remark 5. The results were compared with results from centralized methods. Namely, these
were the Lagrangian multipliers method and the Lambda-iteration method. These centralized
methods are always calculated for given initial conditions and required loads. In case of change, the
calculation must be performed again. Thus, these calculations were performed for each time point of
change (k = 0, 100, 200, 300 and 400), and their results were compared with those provided by the
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distributed algorithm. It was found that they are identical, and therefore, it can be claimed that the
described distributed algorithm provides the same results and thus converges to the optimal solution.

5.1.2. Example 2—Response to Variable Fuel Price

Figure 7 shows the considered network topology for this example. Vertices 1, 2, 3 and
4 represent same generators as in Example 1 (Section 5.1.1). Only vertex 5 is added here,
which indicates BESS. The generator parameters remain the same throughout this article.
The weight matrix W is again computed using (29), with the BESS connection highlighted
in green.
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Figure 7. Network topology with 5 agents.

The parameters considered for the battery system model are listed in Table 3 where
Emin

bi
and Emax

bi
denote minimum and maximum capacity, respectively. The description of

all other parameters listed in Table 3 was given in the Section 4.2.

Table 3. Battery system model parameters.

Parameters Value

Pchmax
b [kWh] 10

Pdismax
b [kWh] 10

E0
b [kW] 50

Emin
bi

[kW] 10

Emax
bi

[kW] 100

ηch 0.83

ηdis 0.83

πb[USD/kWh] 0.1

The total required load will be set to PD = 1000 kW. The individual PDi will be
randomly distributed again among all agents, again with the condition of meeting the
value of the required load. All variable initialization is described in Table 4 where term
i = 5 corresponds to BESS.

Table 4. Initialization of P(0), y(0), λ(0), D(0), M(0), c(0), and γ(0) for the second example.

Variable i = 1 i = 2 i = 3 i = 4 i = 5

P(0) [kW] 150 150 100 50 0
y(0) [kW] 300 300 150 200 25
λ(0) [USD/kWh] 7.6262 7.6262 8.2390 8.4552 1
D(0) [kW] 450 450 250 250 25
M(0) 0.8 0.8 0.8 0.8 0.8
c(0) 0.85 0.85 0.85 0.85 0.85
γ(0) 0.8 0.8 0.8 0.8 0.8
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This example shows the response of the BESS to the evolution of the resource price
change. A total of six price changes will be considered here over a period of 86,400 steps.
All steps represent the time horizon of one day in seconds. For better clarity the BESS fuel
price will remain unchanged throughout the whole simulation. However, if the designer
would also like to change the price for BESS, the presented algorithm makes this possible.
The initial value µ and all changes are described as:

µ0 = [0.8, 0, 7, 1, 1, 1], µ10,000 = [1.2, 1.2, 1.15, 1.15, 1], µ20,000 = [1, 1, 1, 1, 1],

µ30,000 = [0.75, 0.75, 0.8, 0.8, 1], µ50,000 = [1, 1, 1, 1, 1], µ60,000 = [1.3, 1.3, 1.2, 1.15, 1],

µ750,000 = [1, 1, 1, 1, 1].

The BESS control logic Υ() operates as follows. When fuel prices fall to 80% or less
of the original price, the BESS begins charging; conversely, if prices exceed 120% of the
original, the BESS discharges; for prices in between, the BESS remains inactive.

BESS discharge is assumed as a ramp for simulation clarity, but it can also be rep-
resented as a rectangle while ensuring total energy transfer consistency. You can see
the simulation results for λi(t), Pi(t), BESS stored energy Ebi

(t), and fuel cost µ(t) in
Figures 8 and 9. For better clarity, the results were divided into two figures.
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Figure 8. Example 2 results for λi and Pi.

Figures 8 and 9 illustrate how the algorithm responds to changes in fuel prices. The
BESS was charged during 2 intervals: from t = 0 s to t = 10,000 s and from t = 30,000 s
to t = 50,000 s. Conversely, energy is supplied to the grid when fuel prices rise above the
threshold. Discharge occurred during the intervals from t = 10,000 s to t = 20,000 s and
from t = 50,000 s to t = 75,000 s. No charging or discharging of the BESS occurred between
t = 20,000 s and t = 30,000 s, as well as from t = 75,000 s until the end of the simulation.

In Figure 8, the upper part depicts the evolution of λi(t) where the influence of the
fuel price can be noticed on its value.
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Remark 6. The control function BESS Υ() was considered very simply here. Its aim was only to
show the possible integration of BESS into the network. A much more complex implementation of
the control function will be needed in the real world. The potential employment of more complex
approaches will be described in Section 6, Future Works.
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Figure 9. Example 2 results for BESS capacity Ebi
(t) and fuel price µ(t).

5.1.3. Example 3—Response to Real Weather Forecast Data

In this example, the integration of renewable energy sources and battery systems will
be explored within a single network topology. It is important to note that renewable energy
sources cannot consistently provide 100% of the required energy due to grid stability consider-
ations and weather-related variations. Typically, renewables can cover approximately 30–40%
of the total energy demand [29,57]. The remaining energy can be stored in battery systems for
later use. The types of generators in this topology are the same as in the previous case.

A business case on energy network stability with renewable sources and BESS inte-
gration is addressed here. For simplicity, a maximum renewable energy coverage will be
set as 30% of the total load (denoted as PD). Any excess production beyond this limit will
be stored in BESS for future use. This condition corresponds to Xlevel = 30% = 0.3, as
discussed in Section 3.

Figure 10 shows the network topology for this example. Vertices 1 and 2 are Type
I generators. Vertex 3 is Type II generator, and vertex 4 is Type III generator. Vertex 5
denotes solar power plant. Vertex 6 represents the wind farm, and vertex 7 denotes BESS.
The parameters of the generators remained unchanged again. The weight matrix W is set
according to the Equation (29).

The weather data stated in (40) were linearly interpolated to obtain 86,400 samples.
Acquired data in this way were used as input for Sections 4.1.1 and 4.1.2 from which the
actual power provided at a distinct moment was calculated. The BESS charge and discharge
parameters are considered in the same way as in the previous Example 2 (Section 5.1.2).
The initial battery capacity will be set as E0

b = 50 kW again. Total demand was set as
PD = 1200 kW. Table 5 described the initialization of the algorithm.
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Figure 10. Network topology for Example 3.

Table 5. Initialization of P(0), y(0), λ(0), D(0), M(0), c(0) and γ(0) for the third example.

Variable i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

P(0) [kW] 150 150 100 50 0 0 0
y(0) [kW] 200 200 100 125 50 46 25
λ(0)
[USD/kWh]

7.6262 7.6262 8.2390 8.4552 0 0 1

D(0) [kW] 350 350 200 175 50 50 25
M(0) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
c(0) 0.85 0.85 0.85 0.85 0.85 0.85 0.85
γ(0) 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Speed of the wind and sun power values from 24 h forecast were taken from [27].

u = [2.0, 2.3, 3.2, 5.8, 5.9, 7.1, 5.2, 4.8, 6.8, 8.2, 7.7, 7.2, 6.5

7.3, 6.8, 6.1, 5.6, 6.7, 4.1, 3.5, 2.5, 1.6, 1.65, 1.9, 2.8]m/s

St = [0, 0, 0, 0, 0, 0, 0, 0.01, 0.045, 0.12, 0.16, 0.27, 0.05, 0.03

0.22, 0.18, 0.07, 0.04, 0.005, 0.02, 0.01, 0, 0, 0, 0]kW/m2

(40)

For a better illustration of this example, the fuel price for all sources µci , µs,wi and µbi
will be constant throughout the simulation. However, it is not a problem to supplement
this example with their changes like in the previous example. Figure 11 shows the reactions
of the algorithm to incorporating renewable sources and BESS together. The first graph
shows the estimated incremental cost λi, the second output power Pi, and the third battery
system capacity status.

The results indicate that maximizing the use of renewable sources in the network
reduces the overall incremental price. The lowest price, 8.1801 USD/kWh, was observed
during two periods: from k = 30,953 s to 41,176 s and then from k = 48,527 s to 54,455 s. In
contrast, at the end of the simulation, when renewable resources were minimal and BESS
was depleted, the price was 8.5476 USD/kWh. It is important to note that we evaluated
steady-state values of the algorithm, excluding transient events during input changes as
the minimum achieved values.

Additionally, the BESS was in discharge mode until step k = 17,351 s. Subsequent
discharge sequences occurred from k = 41,761 s to 48,522 s and then from k = 54,456 s to
64,159 s. Charging sequences for the BESS occurred from k = 30,947 s to 41,760 s and from
k = 48,523 s to 54,455 s.

This example confirmed the feasibility of applying the described algorithm using real
weather forecast data. It is essential to highlight that the models for renewable resources
used here can be replaced with alternative models as long as they follow the same principle
of using weather data inputs to calculate and provide the power generated to the network.
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Figure 11. Example 3 results for λi, Pi and BESS capacity Ebi
(t).

5.2. Examples with Consideration of Multiple Uncertainties

In this section, all examples are only supplemented with uncertainties, so this section
uses the extensions from Section 4.5. The uncertainties considered are variable time delay,
noisy gradient calculation, line losses, and representation of drop-off packets. All three
examples in this section are identical to those in the previous one. The parameters, network
topology, and generator types used in the previous examples remain unchanged. The only
difference lies in the initial algorithm initialization, which will be presented separately for
each of the following examples.

For all the examples below, the gradient noise will be modeled as follows:

∇Φi(λi(k)) + νi(k), νi(k) ∼ N (µ, σ2) = N (0, 4).

This noise can be designed as a Gaussian noise with a Gaussian distribution (normal
distribution). It is, therefore, defined by the mean µ and variance σ2. Furthermore, the
power loss Ploss was considered as 5%. This value was thus inserted into the required initial
load, compensated by this value. The time-varying traffic delay will be modeled as the
mean value µ of the distribution is considered to be 0 and the variance σ2 is considered
to be 4:

τji(k) ∼ round
(
|N (µ, σ2)|

)
= round

(
|N (0, 4)|

)
.

The maximum value for τmax was considered in all examples as τmax = 10. The
representation of drop-off packets varies across examples and will be explained separately.

The learning gains γ will be represented as a variable calculated according to
Equation (27). Additionally, it is crucial to reset the index learning gain at each change.
Otherwise, the algorithm would react slowly and might not achieve the required con-
vergence speed. This is because the learning gain approaches zero as the simulation
progresses, as depicted in (27). When uncertainties are introduced, the learning gain cannot
remain constant.
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5.2.1. Example 4—Coverage of the Required Load and Its Changes

In this example, the desired load was set to PD = 1500 kW. The individual values Pi
are randomly assigned, with the only constraint that their sum equals PD. The network
topology and generator types remain consistent with those in Example 1 (Section 5.1.1). The
algorithm initialization follows the settings in Table 6. Notably, adjustments were made to
the parameters for calculating the learning constant M(0) and c(0). Based on the Bernoulli
process, the drop-off packet occurrence is modeled as one event every n = 250 steps.

Table 6. Initialization of P(0), y(0), λ(0), D(0), M(0), c(0), and γ(0) for the fourth example.

Variable i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

P(0) [kW] 150 150 100 50 0 0
y(0) [kW] 300 300 150 200 50 50
λ(0)
[USD/kWh]

7.6262 7.6262 8.2390 8.4552 0 0

D(0) [kW] 472.5 472.5 262.5 262.5 52.5 52.5
M(0) 1 1 1 1 1 1
c(0) 0.5 0.5 0.5 0.5 0.5 0.5
γ(0) 1 1 1 1 1 1

The parameters for solar and wind power plants remain the same as described in
Section 5.1.1, which also holds true for all subsequent examples.

The simulation results for the values of λi, Pi, and time delay on the first generator are
shown in Figure 12. The algorithm approaches the desired load within 100 steps but does
not quite reach it before the next change, resulting in a final value slightly lower by about
3–4 kW. However, it was confirmed that the algorithm achieves convergence to the optimal
solution for a longer time horizon (k → ∞). The plots show that the total incremental cost λ
decreases as renewable power generation increases. The lowest λ value, 8.626 USD/kWh,
is observed in the range from k = 200 to 300. At the beginning of the simulation, it was
8.908 USD/kWh.
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Figure 12. Example 4 results for λi, Pi and time delay on the first generator with more uncertainties.
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Comparing these results to the previous Example 1 (Section 5.1.1), it is evident that the
algorithm requires more time for convergence. Additionally, introducing line losses leads
to an overall increase in the required power and, consequently, an increase in the value of
λ. The treatment of drop-off packets in the variable traffic delay representation ensures the
stability and functionality of the algorithm even in these scenarios.

It is also worth noting the oscillations that occur when the algorithm reacts to a change
in the performance of renewable sources. It is only a transition event caused by the inclusion
of several uncertainties at once and stabilizes after some time, as seen from Figure 12. The
size and speed of these overshoots can be influenced by the choice learning gain γ, i.e., the
values of M(0) and c(0).

5.2.2. Example 5—Response to Variable Fuel Price

In this example the desired load will be set to PD = 1000 kW again. The topology of
the network remained the same as the type of generators, BESS parameters, and the control
function Υ() as in the Example 2 (Section 5.1.2). The initialization is set according to Table 7.

Table 7. Initialization of P(0), y(0), λ(0), D(0), M(0), c(0), and γ(0) for the fifth example.

Variable i = 1 i = 2 i = 3 i = 4 i = 5

P(0) [kW] 150 150 100 50 0
y(0) [kW] 300 300 150 200 25
λ(0) [USD/kWh] 7.6262 7.6262 8.2390 8.4552 1
D(0) [kW] 300 300 210 183.75 26.25
M(0) 1 1 1 1 1
c(0) 0.6 0.6 0.6 0.6 0.6
γ(0) 1 1 1 1 1

When comparing it with Table 4’s parameters for calculating the learning constant
M(0) and c(0), it needed to be adjusted again. The drop-off packet was modeled as one
occurrence per n = 5000 steps, based on the Bernoulli process again. In this example, a
total of six fuel price changes over a period of 86,400 steps will be performed again. The
changes will be the same as in the previous Example 2 (Section 5.1.2) in Equation (26).

The simulation results, including λi(t), Pi(t), BESS current capacity Ebi
(t), and fuel

cost µ(t), along with time delays on the first generator, are presented in Figures 13 and 14.
The upper graph in Figure 13 illustrates the evolution of λi(t) throughout the simulation
and how the fuel price influences it. These results confirm that the presence of traffic delays
and drop-off packets did not destabilize the entire algorithm.

The charging and discharging intervals remained consistent with those in Example 2
(Section 5.1.2). This indicates that accommodating multiple uncertainties did not impact the
BESS control function Υ(). It is essential to reiterate that the shape of the function remains
relatively simple.
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Figure 13. Example 5 results for BESS capacity Ebi
(t) and fuel price µ(t) with more uncertainties.

Figure 14. Example 5 results for λi, Pi and time delay on the first generator with more uncertainties.

5.2.3. Example 6—Response to Real Weather Forecast Data

In this example, all the assumptions outlined in the previous Example 3 (Section 5.1.3)
still apply, with the key difference being the inclusion of multiple uncertainties in the
algorithm. The total demand remains at PD = 1200 kW.

The algorithm initialization follows the settings in Table 8. The fuel prices for all
sources, µci , µs,wi , and µbi

, remain constant throughout the simulation. The drop-off packet
is also modeled to occur once every n = 5000 steps, following the approach used in the
previous example.
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In this example, a unique rule was utilized for resetting the learning gain index due
to the fluctuating performance of renewable resources at each step. Resetting the index
at every change would be impractical. Instead, the decision was made to reset the index
once every 900 steps, equivalent to once every fifteen minutes. This interval aligns with the
standard trading interval observed in the electricity market [39,40].

Table 8. Initialization of P(0), y(0), λ(0), D(0), M(0), c(0), and γ(0) for the sixth example.

Variable i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

P(0) [kW] 150 150 100 50 0 0 0
y(0) [kW] 200 200 100 125 50 46 25
λ(0)
[USD/kWh]

7.6262 7.6262 8.2390 8.4552 0 0 1

D(0) [kW] 350 350 200 175 50 50 25
M(0) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
c(0) 0.85 0.85 0.85 0.85 0.85 0.85 0.85
γ(0) 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Based on the results in Figures 15 and 16, maximizing the integration of renewable
sources in the network reduces the overall incremental price. The lowest price observed,
8.1801 USD/kWh, occurred from k = 30,953 s to 41,176 s and then from k = 48,527 s to
54,455 s. In contrast, at the end of the simulation, when renewable resources were minimal
and BESS was depleted, the price was 8.5476 USD/kWh. Notably, these values represent
steady-state conditions, and transient events during input changes were not considered as
minimum achieved values.

Figure 15. Example 6 results for λi and Pi with more uncertainties.
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Figure 16. Example 6 results for the Ebi
(t) and time delay on the 1st generator with more uncertainties.

Additionally, the BESS was in discharge mode from the beginning, specifically until
step k = 17,351 s. Subsequent discharge sequences occurred from k = 41,593 s to 48,004 s
and then from k = 54,126 s to 62,360 s. Charging sequences for BESS ran from k = 31,215 s to
41,594 s and from k = 48,005 s to 54,125 s. Compared to the example without uncertainties,
it is apparent that uncertainties caused a shift and modification of the intervals.

Uncertainties and resetting the learning gain index also influenced convergence to the
optimal solution. The algorithm approaches the desired value over hundreds of steps but
falls slightly under before the following change, resulting in a value approximately 3–4 kW
lower, similar to Example 3 (Section 5.1.3). This example confirms the applicability of the
described algorithm when using real weather forecast data, even for more uncertainties.

5.3. Evaluation of the Results

In cases without uncertainties, the algorithm consistently converges to the optimal so-
lution. These results were compared against centralized methods, specifically the Lambda-
iteration method and the Lagrange multipliers method, and they are identical at the defined
time step. This result confirms the convergence of the distributed method to the optimal
solution and the statement established in Theorem 1.

However, in uncertain scenarios, continuous dynamic changes at each step negatively
impact speed and convergence to the optimal solution. Factors like traffic delays and gradi-
ent calculation noise significantly extend the convergence time. This often results in the
algorithm remaining approximately 3–4 kW below the required value due to fluctuations in
the learning gain or continuous changes in power from renewable sources. An additional
feedback link could be introduced to evaluate the difference and adjust the required load on
the network accordingly to address this limitation. This approach could eliminate this issue,
ensuring accurate convergence to the optimal solution even in scenarios with multiple
uncertainties on a shorter time horizon.

However, the algorithm remains stable even with the complete loss of information
that could otherwise destabilize it, and even in the face of multiple uncertainties.
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6. Future Works

The current effort is put to deploying this algorithm to the real part of the network;
this area contains a battery system, solar panels, generators, and several charging stands for
electric cars. The number of agents will thus change dynamically. The presented algorithm
should be able to respond flexibly to that situation. This entire setup is connected to the
network from which it can draw energy or, on the contrary, supply it back again.

Next, throughout the article, there are references to areas where the presented algo-
rithm could be enhanced. One primary focus is on method for calculating the learning gain
value. The current approach is based on experimental testing and tuning. Developing a
calculation methodology for learning gain value based on, for example, network topology
and agent performance could lead to better and quicker convergence, especially when
dealing with multiple uncertainties.

Additionally, the algorithm could benefit from more advanced BESS control functions
Υ(). Those could involve usage of weather forecasts and market energy price data to
predict solar and wind power production and optimize BESS operations for energy storage,
extraction, or direct grid use. Methods like Model Predictive Control or Rolling Horizon
Strategy could be explored for this purpose [31,32,58].

Another area of consideration is incorporating emission production into the EDP
model [67]. This approach would involve optimizing power distribution among generators
to minimize price and emissions simultaneously. The aim would be to find such a distribu-
tion of power between the generators, which would, at the same time, lead to the lowest
possible emissions production.

Lastly, an asynchronous version of the algorithm could be proposed. The reason is
that communication may not be ideal, and information from agents may arrive at different
time steps. This approach could also account for changes in energy prices from sources
over the time.

7. Conclusions

This paper presents a robust algorithm for the solution of the EDP together with
the inclusion of renewable resources, BESS, and variable fuel prices and adds multiple
uncertainties at once. This paper described a distributed gradient algorithm for solving
EDP when mathematical models for solar and wind power plants and BESS were compiled
and described. Gradient calculation noise, time-varying traffic delay, line losses, and
representation of drop-off packets were further considered and introduced to the algorithm.
For each version of the algorithm, three identical examples were implemented. They
were subsequently supplemented with uncertainty, and their results were compared and
discussed. In total, this work contains six simulation examples, which are intended to
demonstrate the capabilities of the described algorithm, especially since even the inclusion
of multiple uncertainties at once did not lead to the overall destabilization of the algorithm.
The whole algorithm still offers places for improvement, some of which were mentioned in
Section 6.
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Appendix A

Proof of Lemma 4. First, the properties for the member yii(k) will be presented, for which

yii(k) > 0, ∀k ≥ 0,

lim
k→+∞

yii(k) = πi > 0,

which was firstly discussed in Lemma 1. Furthermore, it can be established that {yii(k)} is
a positive bounded sequence. Together with the fact that the term ∇Φ

(
λi(k)

)
is uniformly

bounded and limk→+∞ γi(k) = 0 it leads to

lim
k→+∞

∣∣∣∣∣∣γi(k)
∇Φ(λi(k))

yii(k)

∣∣∣∣∣∣ = 0.

Consequently, from Lemma 2 follows the following relation for the limit determining
the convergence of the term λi(k):

lim
k→+∞

||λi(k)− λ(k)|| = 0.

Appendix B

Proof of Lemma 5. For this proof the following variable will be introduced
qi(k) = ∑N

j=1 wijλj(k). Then it can be written that

||λi(k + 1)− u||2 = ||qi(k)− u||2 − 2γi(k)
∇Φi

(
λi(k)

)T(qi(k)− u
)

yii(k)
+ γ2

i (k)
||∇Φi(λi(k))||2

y2
ii(k)

. (A1)

It is worth highlighting here that the gradient calculation weighted by the yii(k) term
appears here. By subsequently considering the row stochasticity of the matrix W and the
convexity of the term || · ||2 and ||qi(k)− u||2, the term can be bounded as follows:

||qi(k)− u||2 ≥
N

∑
j=1

wij||λj(k)− u||2. (A2)

Subsequently, when considering Equation (A1) where the term 2
yii(k)

will be neglected, the
following form will be obtained:



Appl. Sci. 2024, 14, 1991 35 of 41

−γi(k)∇Φi
(
λi(k)

)T ·
(
qi(k)− u

)
≤ la(k)||qi(k)− u|| − 1

k + 1
(
∇Φ(λ(k))

)T(qi(k)− u
)

≤ la(k)
N

∑
j=1

wij||λj(k)− u|| − 1
k + 1

(
∇Φ(λ(k))− Φi(u)

)
+

l
k + 1

N

∑
j=1

wij||λj(k)− λ(k)||

+
2l

k + 1
||λi(k)− λ(k)||.

(A3)

The first inequality in Equation (A3) follows |γi(k)− 1
k+1 | ≤ a(k) and at the same time

|∇Φ| ≤ l and the second inequality is valid because Φi(λ) is convex and l−Lipschnitz con-
tinuous. (Lipschitz continuity is a strong form of uniform function continuity. Lipschitz’s
continuous function is limited in how fast it can change. A real number exists such that,
for every pair of points on the graph of this function, the absolute value of the slope of the
line connecting them is not greater than this real number; the smallest such bound is called
the Lipschitz constant.) In the next step, Equations (A3) and (A2) will be substituted into
Equation (A1), resulting in the following prescription:

||λi(k + 1)− u||2 ≤
N

∑
j=1

wij||λj(k)− u||2 −
2
(
Φ(λ(k))− Φi(u)

)
(k + 1)yii(k)

+ h2l2γ2
i (k)

+
2lh

k + 1

N

∑
j=1

wij||λj(k)− λ(k)||+ 4lh
k + 1

||λi(k)− λ(k)||+ 2lha(k)
N

∑
j=1

wij||λj(k)− u||.
(A4)

Now, multiplying πi, both sides of Equation (A4), the following will be obtained:

N

∑
i=1

πi||λi(k + 1)− u||2 ≤
N

∑
j=1

πi||λi(k)− u||2 − 2
k + 1

N

∑
i=1

πi
yii(k)

(
Φi(λ(k))− Φi(u)

)
+

6lh
k + 1

N

∑
i=1

πi||λi(k)− λ(k)||+ 2lha(k)
N

∑
i=1

πi||λi(k)− u||+ h2l2
N

∑
i=1

πiγ
2
i (k).

(A5)

In Equation (A5), the fact πTW = πT will be used, thanks to which it will be simplified.
Next, the second term will be considered on the right-hand side in Equation (A5), for which

− 2
k + 1

N

∑
i=1

πi
yii(k)

(
Φi(λ(k))− Φi(u)

)
≤ − 2

k + 1
(
Φ(λ(k))− Φ(u)

)
+

2
k + 1

N

∑
i=1

∣∣∣yii(k)− πi
yii(k)

∣∣∣ · |Φi(λ(k))− Φi(u)|

≤ − 2
k + 1

(
Φ(λ(k))− Φ(u)

)
+

2nhβξk

k + 1
||λ(k)− u||.

(A6)

If Equation (A6) is substituted into (A5), this substitution will lead to the shape given in
Equation (31).
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Appendix C

Proof of Theorem 1. For the convergence proof, the Lemma 5 will be used, where the
substitution for the variable u = λ∗ will be introduced. Then, the following equation will
be obtained:

N

∑
i=1

πi||λi(k + 1)− λ∗||2 ≤
N

∑
i=1

πi||λi(k)− λ∗||2 − 2
k + 1

(
Φ(λ(k)− Φ(λ∗))

)
+

6lh
k + 1

N

∑
i=1

πi||λi(k)− λ(k)||+ 2lha(k)
N

∑
i=1

πi||λi(k)− λ∗||+ h2l2
N

∑
i=1

πiγ
2
i (k)

+
2nhβξk

k + 1
||λi(k)− λ∗||.

(A7)

In the next step, the defined functions s(k), b(k) and c(k) will be used in the Lemma 3 and
the following parts of Equation (A7) will be introduced for them:

s(k) =
N

∑
i=1

πi||λi(k + 1)− λ∗||2,

b(k) =
2

k + 1
(
Φ(λ(k))− Φ(λ∗)

)
,

c(k) =
6lh

k + 1

N

∑
i=1

πi||λi(k)− λ(k)||+ 2nhβξk

k + 1
||λi(k)− λ∗||+ 2lha(k)

N

∑
i=1

πi||λi(k)− λ∗||

+ h2l2
N

∑
i=1

πiγ
2
i (k).

This can be abbreviated to the form of

s(k + 1) ≤ s(k)− b(k) + c(k).

With the introduction of the term v(k) = 0, the same form is obtained as was given in
Equation (30) in Lemma 3. In the next step, it will be proved that ∑∞

k=0 c(k) < ∞ still holds.
From Lemma 4 follows

∞

∑
k=0

6lh
k + 1

N

∑
i=1

πi||λi(k)− λ(k)|| < ∞. (A8)

Based on Definition 1, it was established that ∑∞
k=0 a(k) < ∞ and ∑∞

k=0 γ2
i (k) < ∞. From

this, it can be deduced

∞

∑
k=0

2lha(k)
N

∑
i=1

πi||λi(k)− λ∗|| < ∞,

∞

∑
k=0

h2l2
N

∑
i=1

πiγ
2
i (k) < ∞.

(A9)

In Lemma 1, ξ ∈ (0, 1) was introduced, from which ∑∞
k=0

ξk

(k+1) < ∞ follows, then

∞

∑
k=0

2nhβξk

(k + 1)
||λ(k)− λ∗|| < ∞. (A10)
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The combination of Equations (A8)–(A10) implies that ∑∞
k=0 c(k) < ∞. Thanks to this, all

the conditions stated in Lemma 3 are fulfilled, and on this basis, two main results can be
determined. The first is dedicated to achieving the value of the optimal incremental cost λ:

lim
k→+∞

N

∑
i=1

πi||λi(k)− λ∗||2 = σ ≥ 0.

The second result deals with reaching a value for the gradient:

∞

∑
k=0

2
k + 1

(
Φ(λ(k))− Φ(λ∗)

)
< ∞. (A11)

It follows from the result given in Equation (A11) together with ∑∞
k=0

1
k+1 = ∞ that

lim
k→+∞

inf Φ
(
λ(k)

)
= Φ(λ∗).

In summary, this means a sequence of variable λ(k) converges to the optimal incremental
cost λ∗. Furthermore, if the expression ||λ(k)− λ∗|| converges, it means that

lim
k→+∞

||λ(k)− λ∗|| = 0.

Based on the statement described in Lemma 4, it can be established that the difference
between λ(k) and the value of λ∗ converges to zero. Next, it can be argued that the
update rule for Pi(k) given in Equation (23) is based on the zero duality between the primal
problem (2) and the Lagrangian dual problem holds that Pi(k) → P∗. This is true for
conventional sources and BESSs that are controllable.

Appendix D

Proof of Theorem 2. In the network, each generator i ∈ G will have τ̂ virtual buffer units
denoted as i1, i2, ..., iτ̂ among its neighbors. Any information sent from generator j to i
is first stored in these buffers, which retain it for the specified traffic delay time. These
buffers are purely for storage, have no computational role, and each generator has an equal
in-degree and out-degree of one.

Generators are numbered from 1 to N, while the mentioned buffers are numbered
from N + 1 to N(τ̂ + 1) to distinctly index the generators and buffers. A set of buffers
is assigned for each i-th generator in the network, represented as N + i, ..., Nτ̂ + i. These
buffers correspond to the delay of 1, ..., τ̂ step for the i-th generator, where i ∈ {1, ..., N}.

Additionally, variables λ̂(k) and ŷ(k) are introduced for all agents i ∈ {1, ..., N(τ̂ + 1)}
within the augmented directed graph. The update rule takes the following form:

λ̂i(k+1) =
N(τ̂+1)

∑
h=1

ŵihλh(k)−



γi(k)
∇Φi

(
λci (k)

)
+νi(k)

yii(k)
, if i ∈ Oc,

0, if i ∈ Os,w,

γi(k)
∇Φi

(
λbi

(k)
)
+νi(k)

yii(k)
, if i ∈ Ob,
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Pi(k + 1) =



φci

(
∇C−1

ci

(
λci (k + 1) · µ−1

ci
(k)

))
, if i ∈ Oc,

φs,wi

(
Ps,wi · µs,wi (k)

)
, if i ∈ Os,w,

φbi

(
Υ
(
Ebi

(t)
)
· µbi

(k)
)

, if i ∈ Ob,

ŷi(k + 1) =
N(τ̂+1)

∑
h=1

ŵihyh(k).

where for the index h ∈ {1, ..., m(τ̂ + 1)} holds

ŵih =


wij, if h = j + τji N,

0, otherwise.

(A12)

The parameter wij denotes the weight assigned to the generator i ∈ {1, ..., N} calculated
according to the procedure given in Definition 2. For the update rule of each member of
the buffer i ∈ {N + 1, ..., N(τ̂ + 1)} applies the following:

λ̂i(k + 1) = λ̂i−N(k),

ŷi(k + 1) = ŷi−N(k).

The initialization of variables will be done as follows:

λ̂i(0) = 0, and ŷi(0) = 0, ∀i ∈ {N + 1, ..., N(τ̂ + 1)}.

Then, for the members of the weight matrix Ŵ the following applies:

ŵih =


1, for h = i − N,

0, otherwise.

The weight matrix Ŵ for the extended directed graph is row stochastic and strongly
connected, satisfying the condition in Lemma 1. The remainder of the proof aligns with
Theorem 1 and leads to the supermartingale convergence Theorem [62]. This is because
there is no perturbation for the buffer members in the extended graph, and it handles
values exceeding the maximum, resulting in a drop-off packet and the use of the last valid
value. Additionally, the calculation of the noisy gradient remains uniformly bounded,
eliminating the need for an exact gradient calculation in the proof of Theorem 1.
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