Influence of Applied Loads on Free Vibrations of Functionally Graded Material Plate–Shell Panels
Abstract
:1. Introduction
2. Formulation of the P-FGM Model
2.1. Displacement Fields and Strain-Displacement Relations
2.2. Constitutive Relations for the FGM Structures
3. Finite Element Approach
4. Virtual Work Principle
4.1. Static Analysis
4.2. Linear Buckling Analysis
4.3. Free Vibration Analysis
5. Applications
5.1. Nonlinear Analysis of a Simply Supported and Clamped FGM Square Plate under Uniform Transverse Pressure
5.2. Nonlinear Analysis of Hinged and Clamped FGM Cylindrical Panels under a Center Point Load
5.3. Critical Loads of a Clamped FGM Square Plate under Uniaxial In-Plane Applied Load
5.4. Free Vibrations of a Simply Supported FGM Square Plate
- (a)
- Uniaxial in-plane uniform load from px = 0 to a final px = 2.0, 4.0, and 10.0 MPa, and the geometrically nonlinear behavior is considered;
- (b)
- Transverse uniform load from pz = 0 to a final pz = 20.0, 40.0, and 60.0 kPa;
- (c)
- Uniaxial in-plane uniform load combined with transverse uniform load, ranging from zero to the previously defined magnitudes.
5.5. Critical Loads of Hinged and Clamped FGM Cylindrical Panels under Uniaxial Compression
5.6. Free Vibrations of Hinged and Clamped FGM Cylindrical Panels
- Hinged FGM panel loaded:
- (a)
- By a uniform pressure on the curved side, from py = 0 to a final = 20.0; 40.0 MPa. For this case of loading, the displacement v at y = L must be constrained to v = 0;
- (b)
- By a center point load, from = 0 to a final = 20.0; 40.0 kN;
- (c)
- By a uniform pressure on the curved side, from = 0 to a final = 20.0; 40.0 MPa, combined with a center point load, from = 0 to a final = 20.0; 40.0 kN.
- (a)
- The uniform compressive load minimally increases the first two natural frequencies but minimally decreases the third natural frequency.
- (b)
- The transverse center point load decreases the first three natural frequencies.
- (c)
- When both types of loads are applied, the first two frequencies decrease, but less than when only the center point load is applied.
- (d)
- It is shown that the frequencies decrease/increase more with the increase of the loadings.
- 2.
- Clamped FGM panel loaded:
- (a)
- By a uniform pressure on the curved side, from = 0 to a final = 25.0; 50.0 MPa;
- (b)
- By a center point load, from = 0 to a final = 20.0; 40.0 kN, or by an external radial pressure, form pr = 0 to a final pr = 2 MPa;
- (c)
- By a uniform pressure on the curved side, from = 0 to a final = 25.0; 50.0 kPa, combined with a center point load, from = 0 to a final = 20.0; 40.0 kN, or combined with an external radial pressure, from = 0 to a final = 1 MPa; 2 MPa.
- (a)
- The uniform compressive load, the center point load, and the radial pressure load decrease the first three natural frequencies.
- (b)
- When any two types of loads are applied, the first three frequencies decrease much more.
- (c)
- It is shown that the frequencies decrease more with the increase of the loadings.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woo, J.; Meguid, S.A. Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 2001, 38, 7409–7421. [Google Scholar] [CrossRef]
- Reddy, J.N.; Arciniega, R.A. Free vibration analysis of functionally graded plates. In Analysis and Design of Plated Structures: Dynamics; Woodhead Publishing: Cambridge, UK, 2006. [Google Scholar]
- Arciniega, R.A.; Reddy, J.N. Large deformation analysis of functionally graded shells. Int. J. Solids Struct. 2007, 44, 2036–2052. [Google Scholar] [CrossRef]
- Kim, K.D.; Lomboy, G.R.; Han, S.C. Geometrically nonlinear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element. J. Compos. Mater. 2008, 42, 485–511. [Google Scholar] [CrossRef]
- Zhao, Z.; Liew, K.M. Geometrically nonlinear analysis of functionally graded shells. Int. J. Mech. Sci. 2009, 51, 131–144. [Google Scholar] [CrossRef]
- Tran, L.V.; Ferreira, A.J.M.; Nguyen-Xuan, H. Isogeometric analysis of functionally graded plates using higher-order shear deformation theory. Compos. Part B Eng. 2013, 51, 368–383. [Google Scholar] [CrossRef]
- Thai, H.-T.; Kim, S.-E. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Compos. Struct. 2013, 96, 165–173. [Google Scholar] [CrossRef]
- Natarajan, S.; Ferreira, A.J.M.; Bordas, S.; Carrera, E.; Cinefra, M.; Zenkour, A.M. Analysis of Functionally Graded Material Plates Using Triangular Elements with Cell-Based Smoothed Discrete Shear Gap Method. Math. Probl. Eng. 2014, 247932. [Google Scholar] [CrossRef]
- Yn, S.; Yu, T.; Bui, T.Q.; Nguyen, M.N. Geometrically nonlinear analysis of functionally graded plates using isogeometric analysis. Eng. Comput. 2015, 32, 519–558. [Google Scholar] [CrossRef]
- Moita, J.S.; Araújo, A.L.; Mota Soares, C.M.; Mota Soares, C.A.; Herskovits, J. Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures. Appl. Compos. Mater. 2016, 23, 537–554. [Google Scholar] [CrossRef]
- Moita, J.S.; Araújo, A.L.; Correia, V.F.; Mota Soares, C.M.; Herskovits, J. Higher-order finite element models for the static linear and nonlinear behaviour of functionally graded material plate-shell structures. Compos. Struct. 2019, 212, 465–475. [Google Scholar] [CrossRef]
- Long, N.V.; Tu, T.M.; Truong, H.K.; Hai, L.T.; Trang, V.T.T. Displacement-based and stress-based analytical approaches for nonlinear bending analysis of functionally graded porous plates resting on elastic substrate. Acta Mech. 2022, 233, 1689–1714. [Google Scholar] [CrossRef]
- Pham, V.V.; Nguyen, V.C.; Hadji, L.; Mohamed-Ouejdi, B.; Ömer, C. A comprehensive analysis of in-plane functionally graded plates using improved first-order mixed finite element model. Mech. Based Des. Struct. Mach. 2023. [Google Scholar] [CrossRef]
- Bao, G.; Wang, L. Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 1995, 32, 2853–2871. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C. The Finite Element Method; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Bathe, K.J.; Ho, L.W. A simple and effective element for analysis of general shell structures. Comput. Struct. 1981, 13, 673–681. [Google Scholar] [CrossRef]
- Bathe, K.J. Finite Element Procedures in Engineering Analysis; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Moita, J.S.; Araújo, A.L.; Martins, P.G.; Mota Soares, C.M.; Mota Soares, C.A. Analysis of active-passive plate structures using a simple and efficient finite element model. Mech. Adv. Mater. Struct. 2011, 18, 159–169. [Google Scholar] [CrossRef]
- Crisfield, M.A. A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 1980, 62, 13–55. [Google Scholar]
- Crisfield, M.A. Non-Linear Finite Element Analysis of Solid and Structures, Volume 1: Essentials; John Wiley & Sons: Chichester, UK, 1991. [Google Scholar]
- Nguyen-Xuan, H.; Tran, L.V.; Thai, C.H.; Nguyen-Thoi, T. Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin-Walled Struct. 2012, 54, 1–18. [Google Scholar] [CrossRef]
- Wu, T.-L.; Shukla, K.K.; Huang, J.H. Post-buckling analysis of functionally graded rectangular plates. Compos. Struct. 2007, 81, 1–10. [Google Scholar] [CrossRef]
- Zhao, X.; Liew, K.M. A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels. Comput. Mech. 2010, 45, 297–310. [Google Scholar] [CrossRef]
- Pradyumna, S.; Bandyopadhyay, J.N. Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J. Sound Vib. 2008, 318, 176–192. [Google Scholar] [CrossRef]
- Neves, A.M.A.; Ferreira, J.M.; Carrera, E.; Cinefra, M.; Roque, C.M.C.; Jorge, R.M.N.; Soares, C.M.M. Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Eur. J. Mech. A Solids 2013, 37, 24–34. [Google Scholar] [CrossRef]
Power Law Index | |||||||
---|---|---|---|---|---|---|---|
Mode Source | Ceramic | p = 0.2 | p = 0.5 | p = 1.0 | p = 2.0 | p = 5.0 | Metal |
1 PM | 203.833 | 181.190 | 160.204 | 142.854 | 130.327 | 120.066 | 94.492 |
1 Ref. [21] | 203.497 | 180.331 | 159.529 | 142.533 | 130.342 | 120.471 | - |
1 Ref. [13] | 202.738 | - | 158.889 | 141.962 | - | 119.773 | - |
2 PM | 230.012 | 204.622 | 180.998 | 161.502 | 146.936 | 135.029 | 106.628 |
3 PM | 372.296 | 331.653 | 293.574 | 261.502 | 237.458 | 217.276 | 172.587 |
4 PM | 473.132 | 421.549 | 373.224 | 332.490 | 301.889 | 276.107 | 219.332 |
Power Law Index | |||||
---|---|---|---|---|---|
Mode Source | Ceramic | p = 1.0 | p = 2.0 | p = 5.0 | Metal |
1 PM | 9.187 | 4.606 | 3.571 | 3.020 | 1.690 |
1 Ref. [22] | 9.158 | 4.618 | 3.579 | 3.034 | - |
2 PM | 10.688 | 5.342 | 4.155 | 3.493 | 1.969 |
3 PM | 18.099 | 9.047 | 7.036 | 5.908 | 3.334 |
Mode | Source | Ceramic | p = 1.0 | p = 2.0 | Metal |
---|---|---|---|---|---|
1 | PM | 0.2462 | 0.2275 | 0.2254 | 0.2112 |
Ref. [6] | 0.2461 | 0.2185 | 0.2190 | 0.2113 | |
2 | PM | 0.4539 | 0.4342 | 0.4237 | 0.3899 |
Ref. [6] | 0.4539 | 0.4118 | 0.4039 | 0.3897 | |
3 | PM | 0.4539 | 0.4342 | 0.4237 | 0.3899 |
Ref. [6] | 0.4539 | 0.4118 | 0.4039 | 0.3897 | |
4 | PM | 0.5379 | 0.5013 | 0.4930 | 0.4620 |
Ref. [6] | 0.5385 | 0.4794 | 0.4768 | 0.4623 | |
5 | PM | 0.5379 | 0.5010 | 0.4930 | 0.4620 |
Ref. [6] | 0.5385 | 0.4794 | 0.4768 | 0.4623 |
(a) | ||||
---|---|---|---|---|
Mode | Plate Unloaded | px = 2 MPa | pz = 20 kPa | px = 2 MPa + pz = 20 kPa |
1 | 142.325 | 141.442 | 144.252 | 143.185 |
2 | 291.271 | 290.132 | 292.259 | 290.786 |
3 | 292.066 | 291.098 | 293.134 | 292.019 |
4 | 432.917 | 431.828 | 433.395 | 432.224 |
(b) | ||||
Mode | Plate Unloaded | px = 4 MPa | pz = 40 kPa | px = 4 MPa + pz = 40 kPa |
1 | 142.325 | 140.552 | 149.526 | 147.391 |
2 | 291.271 | 288.854 | 295.034 | 291.357 |
3 | 292.066 | 290.042 | 295.806 | 293.672 |
4 | 432.917 | 430.741 | 435.552 | 432.328 |
(c) | ||||
Mode | Plate Unloaded | px = 10 MPa | pz = 60 kPa | px = 10 MPa + pz = 60 kPa |
1 | 142.325 | 137.843 | 157.010 | 154.310 |
2 | 291.271 | 284.797 | 299.130 | 292.997 |
3 | 292.066 | 287.177 | 299.768 | 296.824 |
4 | 432.917 | 427.461 | 438.402 | 433.154 |
(a) | ||||||
---|---|---|---|---|---|---|
Source | Mode | p = 0 | p = 0.5 | p = 1.0 | p = 2.0 | p = 5.0 |
Ref. [23] | 1 | 1.7195 | 1.3700 | 1.2229 | 1.1025 | 0.9949 |
PM | 1.7380 | 1.3884 | 1.2316 | 1.1065 | 0.9973 | |
Ref. [23] | 2 | 1.8416 | 1.4575 | 1.3001 | 1.1796 | 1.0750 |
PM | 1.9480 | 1.5385 | 1.3669 | 1.2365 | 1.1247 | |
Ref. [23] | 3 | 2.3913 | 1.8863 | 1.6837 | 1.4017 | 1.4018 |
PM | 2.2300 | 1.7310 | 1.5331 | 1.3836 | 1.2675 | |
(b) | ||||||
Power Law Index | ||||||
Mode | Ceramic | p = 0.5 | p = 1.0 | p = 5.0 | Metal | |
1 | 0.1330 | 0.1137 | 0.1060 | 0.0943 | 0.0836 | |
2 | 0.1595 | 0.1369 | 0.1277 | 0.1132 | 0.1004 | |
3 | 0.3294 | 2.9664 | 0.2680 | 0.2405 | 0.2073 | |
(c) | ||||||
Power Law Index | ||||||
Mode | Ceramic | p = 0.5 | p = 1.0 | p = 5.0 | Metal | |
1 | 2.0668 | 1.7809 | 1.6638 | 1.4779 | 1.3004 | |
2 | 2.1679 | 1.8604 | 1.7404 | 1.5626 | 1.3640 | |
3 | 3.4575 | 2.9664 | 2.7747 | 2.4919 | 2.1754 |
Power Law Index | ||||
---|---|---|---|---|
Mode | Source | Ceramic | p = 0.5 | p = 1.0 |
1 | PM | 102.807 | 86.285 | 77.186 |
Ref. [24] | 102.923 | 87.545 | 77.077 | |
Ref. [25] | 102.787 | 85.478 | 77.638 |
(a) | |||||
---|---|---|---|---|---|
Index p | Frequency | Hinged Unloaded | Hinged py = 20.0 MPa | Hinged Pc = 20 kN | Hinged py = 20 MPa +Pc = 20 kN |
1 | 313.274 | 316.566 | 295.679 | 300.890 | |
0.5 | 2 | 351.139 | 355.694 | 340.132 | 345.626 |
3 | 479.608 | 479.055 | 465.256 | 465.001 | |
1 | 305.210 | 310.625 | 286.167 | 291.501 | |
1.0 | 2 | 343.077 | 348.121 | 331.984 | 337.146 |
3 | 473.809 | 473.269 | 458.445 | 458.245 | |
1 | 297.077 | 302.268 | 275.787 | 281.273 | |
5.0 | 2 | 335.446 | 339.251 | 321.954 | 326.915 |
3 | 471.027 | 470.347 | 454.304 | 454.022 | |
(b) | |||||
Index p | Frequency | Hinged Unloaded | Hinged py = 40.0 MPa | Hinged Pc = 40 kN | Hinged py = 40 MPa +Pc = 40 kN |
1 | 313.274 | 320.973 | 276.674 | 282.668 | |
0.5 | 2 | 351.139 | 353.198 | 335.139 | 332.018 |
3 | 479.608 | 478.479 | 449.294 | 448.897 | |
1 | 305.210 | 313.219 | 261.988 | 271.357 | |
1.0 | 2 | 343.077 | 345.654 | 316.605 | 322.333 |
3 | 473.809 | 472.696 | 440.668 | 440.884 | |
1 | 297.077 | 305.536 | 249.127 | 258.280 | |
5.0 | 2 | 335.446 | 336.296 | 305.175 | 309.792 |
3 | 471.027 | 469.658 | 434.684 | 434.823 |
(a) | |||||
---|---|---|---|---|---|
Index p | Frequency | Clamped Unloaded | Clamped py = 25 MPa | Clamped Pc = 20 kN | Clamped py = 25 MPa +Pc = 20 kN |
1 | 530.354 | 525.088 | 517.085 | 512.525 | |
0.5 | 2 | 910.949 | 906.395 | 902.049 | 897.850 |
3 | 950.677 | 940.616 | 944.500 | 935.275 | |
1 | 523.455 | 518.643 | 509.337 | 504.472 | |
1.0 | 2 | 899.626 | 894.811 | 890.297 | 885.837 |
3 | 938.582 | 927.958 | 932.117 | 922.348 | |
1 | 515.247 | 509.832 | 500.414 | 494.868 | |
5.0 | 2 | 892.631 | 887.328 | 882.877 | 877.858 |
3 | 929.081 | 917.333 | 922.329 | 911.439 | |
(b) | |||||
Index p | Frequency | Clamped Unloaded | Clamped py = 50 MPa | Clamped Pc = 40 kN | Clamped py = 50 MPa +Pc = 40 Kn |
1 | 530.354 | 521.489 | 504.152 | 493.762 | |
0.5 | 2 | 910.949 | 901.861 | 893.429 | 884.175 |
3 | 950.677 | 930.478 | 938.769 | 919.380 | |
1 | 523.455 | 513.874 | 495.884 | 484.824 | |
1.0 | 2 | 899.626 | 890.029 | 881.296 | 871.642 |
3 | 938.582 | 927.243 | 926.165 | 905.783 | |
1 | 515.247 | 509.832 | 486.434 | 473.780 | |
5.0 | 2 | 892.631 | 881.968 | 873.564 | 862.640 |
3 | 929.081 | 905.471 | 916.220 | 893.425 |
(a) | |||||
---|---|---|---|---|---|
Index p | Frequency | Clamped Unloaded | Clamped py = 25 MPa | Clamped pr = 1 MPa | Clamped py = 25 MPa +pr = 1 MPa |
1 | 530.354 | 525.746 | 487.428 | 483.450 | |
0.5 | 2 | 910.949 | 906.135 | 878.406 | 875.414 |
3 | 950.677 | 940.051 | 928.638 | 921.602 | |
1 | 523.455 | 518.375 | 478.441 | 474.085 | |
1.0 | 2 | 899.626 | 894.541 | 865.624 | 862.355 |
3 | 938.582 | 927.362 | 915.678 | 908.076 | |
1 | 515.247 | 509.531 | 468.468 | 463.246 | |
5.0 | 2 | 892.631 | 886.980 | 857.417 | 853.489 |
3 | 929.081 | 916.673 | 905.549 | 896.673 | |
(b) | |||||
Index p | Frequency | Clamped Unloaded | Clamped py = 50 MPa | Clamped pr = 2 MPa | Clamped py = 50 MPa +pr = 2 MPa |
1 | 530.354 | 521.489 | 453.350 | 442.269 | |
0.5 | 2 | 910.949 | 901.862 | 849.881 | 842.178 |
3 | 950.677 | 930.474 | 914.233 | 895.260 | |
1 | 523.455 | 513.874 | 445.354 | 432.959 | |
1.0 | 2 | 899.626 | 890.029 | 837.117 | 828.118 |
3 | 938.582 | 917.243 | 902.145 | 880.988 | |
1 | 515.247 | 504.466 | 439.559 | 423.800 | |
5.0 | 2 | 892.631 | 881.968 | 830.819 | 819.155 |
3 | 929.081 | 905.471 | 894.629 | 869.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moita, J.S.; Correia, V.F.; Soares, C.M. Influence of Applied Loads on Free Vibrations of Functionally Graded Material Plate–Shell Panels. Appl. Sci. 2024, 14, 1993. https://doi.org/10.3390/app14051993
Moita JS, Correia VF, Soares CM. Influence of Applied Loads on Free Vibrations of Functionally Graded Material Plate–Shell Panels. Applied Sciences. 2024; 14(5):1993. https://doi.org/10.3390/app14051993
Chicago/Turabian StyleMoita, José Simões, Victor Franco Correia, and Cristóvão Mota Soares. 2024. "Influence of Applied Loads on Free Vibrations of Functionally Graded Material Plate–Shell Panels" Applied Sciences 14, no. 5: 1993. https://doi.org/10.3390/app14051993
APA StyleMoita, J. S., Correia, V. F., & Soares, C. M. (2024). Influence of Applied Loads on Free Vibrations of Functionally Graded Material Plate–Shell Panels. Applied Sciences, 14(5), 1993. https://doi.org/10.3390/app14051993