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Abstract: Predicting the health index of turbofan engines is critical in reducing downtime and
ensuring aircraft safety. This study introduces the elite snake optimizer-back propagation (ESO-BP)
model to address the challenges of low accuracy and poor stability in predicting the health index
of turbofan engines through neural networks. Firstly, the snake optimizer (SO) was improved into
the elite snake optimizer (ESO) through an elite-guided strategy and a reverse learning mechanism.
The performance improvement was validated using benchmark functions. Additionally, feature
importance was introduced as a feature selection method. Finally, the optimization results of the
ESO were employed to set the initial weights and biases of the BP neural network, preventing
convergence to local optima. The prediction performance of the ESO-BP model was validated using
the C-MAPSS datasets. The ESO-BP model was compared with the CNN, RNN, LSTM, baseline BP,
and unimproved SO-BP models. The results demonstrated that the ESO-BP model has a superior
accuracy with an impressive R-squared (R2) value of 0.931 and a root mean square error (RMSE) of
0.060 on the FD001 sub-dataset. Furthermore, the ESO-BP model exhibited lower standard deviations
of evaluation metrics on 100 trials. According to the study, ESO-BP demonstrated a greater prediction
accuracy and stability when compared to commonly used models such as CNN, RNN, LSTM, and BP.

Keywords: turbofan engine; health index prediction; snake optimizer; BP neural network; intelligent
optimization algorithms

1. Introduction

Turbofan engines are one of the core components of an aircraft [1]. Predicting the
remaining useful life (RUL) of the engine and implementing prognostics and health man-
agement (PHM) are critical for formulating a targeted maintenance strategy [2]. The
turbofan engine health prediction model helps to reduce the risk of unplanned downtime
and maximize the operational lifespan [3].

The prediction model for the RUL of turbofan engines is developed based on either
their physical structure model or the degradation trends among various monitoring sensors.
There are two types of existing methods for estimating RUL: those based on physical
models [4,5] and data-driven approaches [6–9]. Data-driven methods analyze data and
identify complex data relationships, achieving accurate predictions of changes in the
turbofan engine’s state [10]. Data-driven predictions for the RUL of turbofan engines
are influenced by various factors, including the number of operating cycles, operating
parameters, and sensor data.

The back-propagation (BP) neural network, which was proposed by Rumelhart
et al. [11] in 1986, is a feed-forward neural network trained with the error back-propagation
algorithm. It is currently acknowledged as one of the most extensively employed neural
network models, celebrated for its simple principles, high computational speed, and robust
regression prediction capabilities [12]. However, BP neural networks frequently experience
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slow convergence and a tendency to become stuck in local optima due to the random
selection of initial weights and thresholds [13]. Currently, there is a surge in the use of
neural networks coupled with intelligent optimization algorithms. In 2022, Yu et al. [14]
introduced a chaotic krill herd algorithm optimized BP neural network, achieving a 3.65%
reduction in prediction error for kidney bean yield. Ji and Ding [12] enhanced BP neural
networks by utilizing the improved Sparrow Search Algorithm, resulting in an R2 value of
0.99 for sea surface temperature retrieval. Lai et al. [15] introduced the IA-PSO-BP model,
which achieved an R2 value of 0.97 for ground pressure prediction.

In the field of intelligent optimization algorithms, Hashim et al. [16] presented a
novel algorithm named SO in 2022. However, this algorithm has persistent drawbacks,
such as the random movement of individual positions, which may lead to local optima
and poor stability. In 2023, Deng and Liu [17] introduced the snow ablation optimizer
(SAO), which incorporates elite sets, demonstrating both rapid convergence and a high
convergence accuracy.

This study presents an ESO-BP model for predicting the health of turbofan engines.
The goal is to enhance the prediction accuracy and stability of the BP neural network in
the context of predicting turbofan engine health. The subsequent sections are organized
as follows: Section 2 introduces the elite snake optimizer (ESO). Section 3 elaborates on
the proposed model architecture. Section 4 covers the experimental specifics, results, and
analysis. Section 5 discusses the findings. Finally, Section 6 concludes the study.

2. Elite Snake Optimizer

Intelligent optimization algorithms, also known as optimization techniques or meta-
heuristic algorithms, are computational methods designed to iteratively explore solution
spaces with the aim of discovering the optimal solution to a problem [18]. These algorithms
are often inspired by natural processes or phenomena and strive to efficiently navigate
complex and high-dimensional spaces in search of the best possible solution [18].

2.1. Snake Optimizer

The SO draws inspiration from the behavioral traits of snakes, specifically, their
fighting, foraging, mating, and reproduction behaviors. The algorithm utilizes a group of
snake agents to explore the search space and aims to achieve a global optimum based on
the fitness values of individual agents. The algorithm also takes into account environmental
factors that influence different snake behaviors, such as temperature and food quantity.
The equations for updating the environmental factors are provided below [16].

Temp = e−
t
T (1)

Q = C1e
t−T

T (2)

Here, Temp represents the temperature, t signifies the current iteration, T denotes the
maximum iterations, Q stands for the food quantity, and C1 is a constant value.

Unlike other algorithms, the SO takes a step further in emulating biological behavior.
The SO directs the population individuals through unique positional transitions based
on the current iterative phase during each iteration of the algorithm [19]. While there
are bio-inspired intelligent optimization algorithms such as the sparrow search algorithm
(SSA) [20], beluga whale optimization (BWO) [21], and dung beetle optimizer (DBO) [22],
which only mimic the predation paths of organisms in their position updating, the SO
improves its perceptual capabilities of the search space by simulating the physiological
behaviors of snakes in response to environmental changes. This enhancement accelerates
the convergence of SO and improves its precision in achieving convergence [19].

2.2. Elite-Guided Strategy

In intelligent optimization algorithms, elite-guided strategies involve selecting or
generating a set of individuals with a higher fitness during the population initialization
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phase. These individuals subsequently influence the movement of others in the following
iterations, enhancing the search efficiency and convergence speed of the swarm [23].

Various intelligent optimization algorithms use different elite-guided strategies. For
example, in particle swarm optimization (PSO), each particle updates its velocity and posi-
tion by considering its individual historical best position and the global best position [24].
In ant colony optimization (ACO), ants release pheromones while searching for a path, and
subsequent ants select paths based on the concentration of pheromones [25]. The whale
optimization algorithm (WOA) designates the current optimal solution as the leader for
the population in each iteration, and the rest adjust their positions based on the leader’s
location [26].

Elite-guided strategies aim to direct individuals towards regions with a superior fitness,
accelerating the convergence process [27]. However, this may result in premature conver-
gence, trapping the algorithm in local optima [27]. Therefore, designing an appropriate
elite-guided strategy is a crucial aspect of research on intelligent optimization algorithms.

During the population initialization stage of ESO, an elite-guided strategy is employed.
Elite subsets are selected from both the male and female snake populations, each comprising
four individuals. The subsets consist of the top three individuals ranked by the fitness of
their current position, along with a new individual calculated as the mean coordinate of all
individuals in the current population.

Figure 1 illustrates that Elite 1, Elite 2, and Elite 3 expedite the convergence speed of
SO in the search space, since they are the three agents closest to the optimal solution. Elite
4 is the new individual calculated as the mean coordinate of all individuals in the current
population, which emphasizes the diversity of the population and helps SO to avoid local
optima. Equation (3) is used to calculate Elite 4. This strategy aims to achieve a balance
between convergence speed and accuracy, thereby enhancing the global search efficiency
of SO.
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Figure 1. The elite set of the snake population. The guiders of Elite 1 to 3 are selected by rank of
fitness values. The Elite 4 is the mean coordinate of the current snake population.

xelite4,i =
∑n

j=1 xj,i

n
(3)

Here, xelite4,i is the i-th dimension value of Elite 4, xi,j is the i-th dimension value of
j-th individual, and n is the population size.
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2.3. Reverse Learning Mechanism

Reverse learning mechanisms are utilized as an enhancement method for intelligent
optimization algorithms. The idea is to use symmetric positions within the search space,
such as point symmetry, axial symmetry, planar symmetry, or rotational symmetry, to gen-
erate reverse populations [28]. The reverse population complements the original solution,
maximizes the utilization of the search space, and enhances the algorithm’s ability to over-
come local optima [29]. The aim of this method is to improve the algorithm’s global search
capability, thereby enhancing the comprehensiveness and effectiveness of the optimization
process [29].

During the position update phase of ESO, a reverse learning mechanism is incorpo-
rated. This involves assigning opposite values to the positions of the new population within
the limits of each dimension, resulting in a mirrored population. The reverse learning
mechanism expands the existing population while enhancing the algorithm’s capability
to overcome local optima. The calculation for the position of the reverse individual is
presented in Equation (4) [28].

x∗i = lu + ll − xi (4)

In the Equation (4), x∗i represents the value of the reverse individual for the i-th
dimensional coordinate, lu is the upper boundary of the current search space, ll is the lower
boundary of the current search space, xi is the value of the original individual for the i-th
dimensional coordinate.

2.4. Benchmark Test Results

The SO has been enhanced into the elite snake optimizer through the improvements
mentioned above. To evaluate the convergence accuracy and stability of the ESO, 30 trials
were performed using the 30-dimensional benchmark functions F7, F18, and F30 from the
2017 IEEE Congress on Evolutionary Computation (CEC2017) [30]. Figure 2a–c show the
corresponding three-dimensional surface plots with a contour plot underneath.

The CEC2017 test function set is a widely recognized and challenging tool for vali-
dating algorithm performance [30]. All functions in the test set are rotated and shifted,
which increases the difficulty of algorithmic optimization search. The set consists of 29 test
functions, all of which are rotated and shifted to increase the difficulty of the algorithmic
optimization search. It is worth noting that the F2 function was officially removed from the
original function set due to its instability.

Functions F1 and F3 have a single peak and no local minima, making them suitable
for testing the algorithm’s convergence ability. Functions F4–F10 have multiple peaks
with local extrema, making them suitable for testing the algorithm’s ability to escape
local optima [30]. Functions F11–F20 are hybrids, composed of three or more CEC 2017
baseline functions that have been rotated or shifted. Each subfunction is assigned a weight.
Functions F21–F30 are compositions of at least three hybrid functions or CEC 2017 baseline
functions that have been rotated or shifted. Each subfunction has an additional bias value
and weight, making these combined functions even more challenging to optimize.

The ESO was compared to eight mainstream intelligent optimization algorithms: dif-
ferential evolution algorithm (DE) [31], PSO, grey wolf optimization (GWO) [32], chicken
swarm optimization (CSO) [33], SSA, BWO, DBO, and SO. These algorithms were aimed
toward obtaining the global minimum of fitness. The best fitness values of the optimization
algorithm were recorded for each trial. The results, as shown in Figure 2b,d,f, demonstrate
that ESO has lower means, maximums, and minimums, which indicate a better conver-
gence accuracy. The smaller interquartile range represents the better stability of the ESO
algorithm.
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3D surface plot of 2D function F7 with a contour plot underneath. (b) Shows the results of nine
algorithms on 30-D function F7. (c) Shows the 3D surface plot of 2D function F18 with a contour plot
underneath. (d) Shows the results of nine algorithms on 30-D function F18. (e) Shows the 3D surface
plot of 2D function F30 with a contour plot underneath. (f) Shows the results of nine algorithms on
30-D function F30. The y-axis in (b,d,f) corresponds to the logarithm of the fitness value with base 10.

3. Model Construction

This study presents an ESO-BP neural network model for predicting the health index
of turbofan engines. The model utilizes the optimization results of ESO to initialize the
weights and biases of the BP neural network, which prevents it from converging to local
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optima and improves both prediction accuracy and stability. Figure 3 displays the complete
flowchart of ESO-BP.
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3.1. Health Index Degradation

The C-MAPSS dataset defines the remaining useful life of a turbofan engine as the
number of remaining operating cycles until a fault occurs. Current research primarily
centers on predicting the remaining operating cycles of turbofan engines [6–9,34–36]. How-
ever, the remaining operating cycles are influenced by various external and internal factors,
resulting in significant errors and a low coefficient of determination between the predicted
and actual values. Most prediction modeling studies that focus on the number of remaining
operating cycles struggle to capture the degradation of an engine with a substantial RUL
greater than 100 cycles.

This study differs from traditional RUL prediction by utilizing a remaining health
index (RHI) evaluation criterion for turbofan engines. The RHI is constructed based on
RUL, and the health of each brand-new engine is initially recorded as ‘1’. The RHI decreases
by a certain amount for each operating cycle until the engine stops due to a malfunction, at
which point, the RHI becomes ‘0’ [37]. In simpler terms, the RHI is the ratio between the
current number of operating cycles remaining for the engine and the maximum number of
operating cycles for this engine (Maxc), as calculated by Equation (5).

RHI =
RUL
Maxc

(5)



Appl. Sci. 2024, 14, 1996 7 of 25

Figure 4 illustrates a visualization that compares the RHI degradation function with
existing segmented RUL degradation functions.
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3.2. Introduction to Datasets

This study uses the publicly available turbofan condition monitoring data from the
Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset provided
by the National Aeronautics and Space Administration (NASA) to predict the remaining
health index of turbofan engines [38]. The C-MAPSS dataset comprises four subsets, each
containing various operating and faulty working conditions. Each subset is then divided
into a training set and test set, as shown in Table 1.

Table 1. C-MAPSS dataset information.

Sub-Dataset
FD001 FD002 FD003 FD004

Training
Set Test Set Training

Set Test Set Training
Set Test Set Training

Set Test Set

Operating condition 1 1 6 6 1 1 6 6
Fault mode 1 1 1 1 2 2 2 2

Number of engines 100 100 260 259 100 100 249 248
Number of operating cycles 20,631 13,096 53,759 33,991 24,720 16,596 61,249 41,214

Mean of engine operating cycles 206.31 130.96 206.77 131.24 247.20 165.96 245.98 166.19
Standard error of engine operating cycles 0.32 0.47 0.20 0.34 0.55 0.67 0.30 0.45

Maximum of engine operating cycles 362 303 378 367 525 475 543 486
Minimum of engine operating cycles 128 31 128 21 145 38 128 19

The training set records various state parameters of the turbofan engine. These
variables include the number of operating cycles and 24 pieces of sensor information. Data
are recorded as time series throughout its complete lifespan cycle, from the normal state to
the fault state. In contrast, in the test set randomly stops collecting the cycle parameters,
meaning that the complete life cycle is not recorded for each engine.

These sensor data include information about the engine’s operating parameters, pres-
sure, and temperature for 24 lots of sensor information, as shown in Table 2, which can be
used to train and test fault diagnosis and prediction models. This dataset is widely used in
the fields of machine learning and data mining, which provides valuable data support for
aero-engine health management.
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Table 2. Feature importance of 4 sub-datasets. The underlined numbers represent the redundant
features in the corresponding sub-datasets.

Feature Description Units Symbol
Feature Importance Ci

FD001 FD002 FD003 FD004

Number of operating cycles - CYCLE 5.574 10.141 5.386 9.868
Height km H 0.090 0.867 0.047 0.231
Mach - MA 0.086 0.343 0.002 0.493

Throttle resolver angle ◦ TRA 0.000 0.141 0.000 0.146
Total temperature at fan inlet ◦R T2 0.000 0.193 0.000 0.224

Total temperature at LPC outlet ◦R T24 1.625 0.710 0.800 1.855
Total temperature at HPC outlet ◦R T30 1.134 1.525 1.191 0.301
Total temperature at LPT outlet ◦R T50 1.285 0.866 0.891 1.297

Pressure at fan inlet psia P2 0.000 0.146 0.000 0.118
Total pressure in bypass-duct psia P15 0.017 0.291 1.973 0.655
Total pressure at HPC outlet psia P30 1.334 0.698 0.966 0.812

Physical fan speed rpm NF 1.649 0.766 0.825 1.085
Physical core speed rpm NC 1.137 0.645 1.011 0.928

Engine pressure ratio (P50/P2) - EPR 0.000 0.149 0.264 0.518
Static pressure at HPC outlet psia PS30 0.971 1.569 1.004 1.026

Ratio of fuel flow to Ps30 pps/psi PHI 1.357 0.497 1.586 0.886
Corrected fan speed rpm NRF 1.261 1.378 0.813 2.271
Corrected core speed rpm NRC 0.799 0.959 1.290 1.124

Bypass ratio - BPR 1.371 1.084 1.158 1.835
Burner fuel-air ratio - FARB 0.000 0.677 0.000 0.355

Bleed enthalpy - HT_BLEED 0.829 0.925 0.317 0.594
Demanded fan speed rpm NF_DMD 0.000 0.259 0.000 0.180

Demanded corrected fan speed rpm PCNFR_DMD 0.000 0.025 0.000 0.101
HPT coolant bleed lbm/s W31 0.752 0.554 1.652 0.382
LPT coolant bleed lbm/s W32 1.636 0.816 1.548 1.009

3.3. Feature Selection

In the context of predicting the health of turbofan engines, there are several redundant
features. Appropriate feature selection methods can enhance model performance, reduce
computational costs, and provide an improved model interpretability.

This study employs a feature selection method based on a random forest. In the
random forest model, each decision tree is built by conducting bootstrap sampling from the
original dataset [39]. The corresponding out-of-bag data are used to evaluate the prediction
error of the j-th tree in the random forest. In order to assess the importance of the i-th
feature, the values of i-th feature are randomly permuted and the out-of-bag data prediction
error is reevaluated. The importance of the i-th feature is determined by calculating the
ratio of the average and standard deviation of out-of-bag data errors for all trees in the
entire random forest, both before and after disrupting the i-th feature. Equation (6) is used
to calculate the standard deviation σi, and Equation (7) is used to calculate the feature
importance Ci.

σi =

√√√√∑nt
j=1

(
erri,j − err0,j

)2

nt
(6)

Ci =
∑nt

j=1

(
erri,j − err0,j

)
nt·σi

(7)

Here, σi represents the standard deviation of the errors, erri,j represents the prediction
error after disrupting the i-th feature, err0,j represents the prediction error before disrupting
the i-th feature, nt is the number of trees, and Ci is the importance of the i-th feature. In this
section, we present the feature importance analysis for FD001, FD002, FD003, and FD004.
The results are summarized in Table 2.
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Table 2 shows that the FD001 subset has seven redundant features, and the FD003
subset has six redundant features. Redundant features are those with ‘0’ feature importance
in Table 2. Upon examining of the raw data, it is evident that the values of these features
remain constant during the operating cycles of turbofan engines. To reduce computational
costs, these features are excluded from both the comparative and proposed models in
this study.

3.4. Data Normalization and Correlation Analysis

When predicting the health index of turbofan engines, there is a significant difference
in the order of magnitude between operational parameters and sensor parameters. To train
neural networks, each feature needs to be weighted and summed. Without normalizing the
original data, some features may carry excessively large weights, while others may have
excessively small weights. This can complicate the training of neural networks and affect
the predictive performance of the model.

Equation (8) expresses the Min–Max scaling calculation used to normalize both the
operational parameters and sensor parameters in the original dataset. The goal is to mitigate
the dimensional impact among different features.

Xi−norm =
Xi − Xmin

Xmax − Xmin
(8)

Here, Xmin represents the minimum of the feature, Xmax represents the maximum of
the feature, Xi is the original value, and Xi−norm is the normalized value.

The Pearson linear correlation coefficient is the most commonly used linear correlation
coefficient [40]. We calculated the Pearson correlation coefficient in order to analyze the
correlation between features. Equation (9) shows the calculation of the Pearson correla-
tion coefficient.

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
∑n

j=1
(
Yj − Y

)2
(9)

Here, n is the sample size of the feature, Xi represents the i-th sample value of the
feature, X represents the mean value of the feature, Yi is the i-th value of the number of
operating cycles, and Y is the mean value of the number of operating cycles.

For the No. 100 engine in the training set of the FD001, we selected the 15 features
with feature importance larger than 0.1 (Ci > 0.1) from its records. We then normalized
the original data using Min–Max normalization to obtain the corresponding normalized
values. The results of the normalization are presented in Figure 5.

From Figure 5, it seems that 10 out of the 15 features exhibit an increasing trend with
the number of engine cycles, while the remaining 5 features show a decreasing trend.
Analyzing these changes in degradation can enhance our understanding of the relationship
between the engine’s operational state and the features, providing valuable validation
for feature selection result. The Pearson correlation coefficients between the number of
operating cycles and the other 14 features are presented in Table 3. All the 10 features in
Figure 5a show positive Pearson correlation coefficients in Table 3, while the 5 features in
Figure 5b present negative values in Table 3. In this way, the values in Table 3 justify the
observed result of normalization.
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Table 3. Pearson correlation coefficients between number of operating cycles and all the 25 features of
the NO. 100 engine in the training set of FD001. The underlined values present the redundant features.

Feature Pearson Correlation Coefficient Feature Pearson Correlation Coefficient

CYCLE 1 EPR 0
H −0.037 PS30 0.840

MA 0.013 PHI −0.824
TRA 0 NRF 0.789
T2 0 NRC −0.057

T24 0.692 BPR 0.739
T30 0.672 FARB 0
T50 0.809 HT_BLEED 0.682
P2 0 NF_DMD 0
P15 0.121 PCNFR_DMD 0
P30 −0.787 W31 −0.743
NF 0.780 W32 −0.714
NC 0.459

3.5. BP Neural Network

The BP neural network model’s performance is significantly impacted by the number
of hidden layers, number of neurons in the hidden layer, initial weights, and biases. The
weights indicate the strength of the connections between neurons, while the biases are
additional learnable parameters for neurons that introduce shifts and offsets to the neuron
inputs, adjusting the input to the activation function [14].

This study consistently used a single hidden layer for the BP neural networks to
control the variable. The number of neurons in the hidden layer was determined using the
empirical formula, as shown in Equation (10) [15].

hn =
√

in + on + α (10)

In the equation, hn represents the number of neurons in the neural network’s hidden
layer, in represents the number of neurons in the input layer, on represents the number of
neurons in the output layer, and α is a positive integer with a value ranging from 1 to 10.
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The optimal value of α for finding the number of neurons in the hidden layer was
found using grid search. The initial weights and biases of the BP neural network were
optimized using ESO. The optimization problem for the weights and biases was formulated
in a high-dimensional space, and the fitness function was based on the root mean square
error of the BP neural network on training sets [13]. Figure 6 illustrates the optimization
process. Equations (11) and (12) are used to calculate the dimensions and fitness values [14].

d = (in + 1) ∗ hn + (hn + 1) ∗ on (11)

fi =
∑M

i=1
(
ti − t̂i

)2

M
(12)

Here, d signifies the search space dimension of ESO, fi is the fitness value of the i-th
iteration of ESO, M indicates the number of samples in the training set, ti denotes the actual
value of the i-th sample, and t̂i represents the model’s predicted value for the i-th sample.
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3.6. Parameters of ESO

After determining the number of neurons in the hidden layer using grid search, the
dimensionality of the ESO search space is defined based on the model structure. Sub-
sequently, ESO optimizes the initial values of the weights and biases in the BP neural
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network by establishing the upper and lower bounds of the solution space and specifying
the population size [13].

The population size is a crucial parameter in intelligent optimization algorithms. A
large population size may increase the computation time required to execute the algorithm,
potentially resulting in wasted computational resources. Conversely, a small population
size may decrease population diversity, hindering the effective exploration of the solution
space and potentially leading to a slower convergence. In addition, an excessively small
population may become trapped in local optima, which can cause the global optimum to
be missed. Therefore, the parameters of ESO are configured based on the values presented
in Table 4.

Table 4. Parameter values of ESO.

Parameter Name Value

Limit of the solution space [−2, 2]
Population size 10

Iterations 100

3.7. ESO Optimization Process

The overall framework of the proposed ESO-BP prediction model is illustrated in
Figure 7. The implementation of ESO optimization involves the following specific steps:

1. Employ grid search to determine the optimal number of neurons in the hidden layer
and establish the optimal structure for the BP neural network model.

2. Initialize the parameters for ESO, define the dimensions and value ranges of the
search space based on the optimal model structure, and specify the population size,
maximum iteration count, and fitness function using Equations (10)–(12).

3. Randomly generate the initial population, compute the fitness value for each individ-
ual, and identify the elite sets for both the male and female populations.

4. In the early iterations, the populations enter the exploration phase due to the quantity
of food being lower than 0.25. In this phase, individuals in both the male and female
populations randomly select an elite guider and move to positions near it. The
exploration phase is presented in Equation (13) [16].

Xi(t + 1) = Xelite(t)± 0.05 × exp
(
− felite

fi

)
× ((lu − ll)× rand + ll) (13)

Here, Xi is the i-th individual position and t is the current iteration count. Xelite is the
position of a randomly selected elite guider in an elite set. felite is the fitness of the
elite guider. fi is the fitness of the i-th individual. lu and ll are the upper and lower
bounds of the problem, respectively.

5. In the later stages of iteration, the populations enter the exploitation phase when
the food quantity exceeds 0.25. In this phase, the behavior of the populations is
influenced by the temperature. If the temperature is greater than the threshold, both
male and female individuals move toward the population’s optimal position (food).
If the temperature is lower than the threshold, there is a 40% probability that male
and female populations engage in conflict, and a 60% probability that they engage in
mating. The snake fight stage is defined in Equations (14) and (15). The snake mating
stage is defined in Equations (16) and (17). The calculation for updating the worst
individual is defined in Equation (18).

Xi,m(t + 1) = Xi,m(t)± 2 × exp
(− fbest, f

fi,m

)
× rand ×

(
Q × Xbest, f − Xi,m(t)

)
(14)

Xi, f (t + 1) = Xi, f (t)± 2 × exp

(
− fbest,m

fi, f

)
× rand ×

(
Q × Xbest,m − Xi, f (t)

)
(15)
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Xi,m(t + 1) = Xi,m(t)± 2 × exp
(− fi,j

fi,m

)
× rand ×

(
Q × Xi, f (t)− Xi,m(t)

)
(16)

Xi, f (t + 1) = Xi, f (t)± 2 × exp

(
− fi,m

fi, f

)
× rand ×

(
Q × Xi,m(t)− Xi, f (t)

)
(17)

Xworst = ll + rand × (lu − ll) (18)

In Equations (14)–(18), Xi,m and Xi, f are the positions of the i-th individual in the male
and female populations, Xbest,m and Xbest, f are the positions of the optimal individuals
in the male and female populations, fbest,m and fbest, f are the fitness values of the
optimal individuals in the male and female populations, fi,m and fi, f are the fitness
values of current male or female individuals, and Q is the food quantity defined in
Equation (2) [16].

6. Generate reverse populations using Equation (4). If there is a new individual with bet-
ter fitness, the ESO algorithm will replace the original agent with the new individual.

7. Continuously adjust the position of the snake agent until reaching the maximum
iteration count, obtaining the optimal spatial position.

8. Based on the coordinates of the optimal solution, set the weights from the input layer
to the hidden layer, the biases for the hidden layer, the weights from the hidden layer
to the output layer, and the biases for the output layer for the BP neural network. 
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The pseudo-code of ESO is defined as Algorithm 1:

Algorithm 1 The pseudo-code of ESO

Stage 1. Initialization
Initialized Problem Setting (d, ll , lu, n, T)
Generate the ESO population Sn(n = 1, 2, . . . , N).
Calculate the fitness ( fi) of each individual of population.
Divide the ESO population Sn into two equal groups.
Generate the Elite-Guided set.
Stage 2. ESO Iteration

for i = 1 : T
Calculate Temp using Equation (1).
Calculate Q using Equation (2).
if Q > 1 then

Q = 1
end if
Calculate Elite 4 using Equation (3).
Select Elite 1, Elite2, and Elite 3 according to the fitness.
if Q < 0.25 then

Perform exploration using Equation (13).
else if Temp > 0.6 then

Perform exploitation, all individuals move to food.
else
if rand > 0.6 then
Male population fight with female population using Equations (14) and (15).
else

Snakes mate using Equations (16) and (17).
Update the worst individual using Equation (18).

end if
end if
Generate reverse populations using Equation (4).
Calculate fitness of reverse individuals fi−r.
if fi−r < fi

Change the best solution to reverse individual.
end if

end for
Return optimal solution.

4. Simulation Experiments and Result Analysis
4.1. Description to Hyperparameters

To achieve a better forecasting performance, it is essential to systematically optimize
the relevant hyperparameters of the models. These hyperparameters include the number
of hidden layer nodes, learning rate, and the size of the training batch. To ensure the
control of the variables in later comparison experiments among different sub-datasets and
deep learning models, we used empirical values of 1 for the number of hidden layers,
1000 for the max iteration epochs, 128 for the batch size, and 0.01 for the initial learning
rate of BP neural networks. To achieve a higher accuracy, the number of hidden nodes
can be tuned sequentially in the range given by Equation (11), while keeping the other
parameters unchanged. Figure 8 presents the grid search result of the number of hidden
nodes. According to Figure 8, the number of nodes in the hidden layer of BP neural
networks was taken as 13.
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4.2. Model Evaluation Metrics

To evaluate the accuracy of the prediction model proposed in this study, three evalua-
tion metrics were used. The root mean square error was used to measure the difference
between the predicted and actual values. This metric indicates the average deviation
between predicted and actual values and is commonly used in regression tasks. A smaller
RMSE value indicates a greater accuracy, and its unit is the same as that of the original data.
The RMSE is calculated using Equation (19).

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(19)

The coefficient of determination, which represents the model’s explanatory power for
the dependent variable, has a range of values from 0 to 1. A higher value indicates a better
fit of the model to the data. The R2 is calculated using Equation (20).

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (20)

It is better for the predicted health index of the turbofan engine to be slightly under-
estimated rather than overestimated [35]. If the predicted health index cannot reach zero
before a failure occurs, it poses a serious safety hazard to the aircraft. To address this issue,
this study employs a scoring function (Score) proposed by the International Conference on
Prognostics and Health Management (PHM08) Data Challenge [38]. The scoring function
penalizes situations where the model’s predicted values are larger more severely. The score
is calculated by Equations (21) and (22).

Si =

{
e−

ŷi−yi
13 − 1, ŷi < yi

e
ŷi−yi

10 − 1, ŷi ≥ yi

(21)

Score =
n

∑
i=1

Si (22)
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From Equation (19) to Equation (22), ŷi indicates the predicted value of the i-th sample,
while yi denotes its real value and n is the total number of samples.

4.3. Optimization Results

To evaluate the optimization ability of various intelligent optimization algorithms on
BP neural networks, we optimized the initial weights and biases of the networks using the
eight comparison algorithms mentioned above. The population size, number of iterations,
and limits of the solution space for all eight algorithms were controlled to be the same as
ESO above. The fitness function of the optimization problem was selected as the RMSE of
the BP neural network on the training set. The convergence curves of the nine algorithms
are depicted in Figure 9.

Appl. Sci. 2024, 14, 1996 16 of 26 
 

between the predicted and actual values. This metric indicates the average deviation be-
tween predicted and actual values and is commonly used in regression tasks. A smaller 
RMSE value indicates a greater accuracy, and its unit is the same as that of the original 
data. The 𝑅𝑀𝑆𝐸 is calculated using Equation (19). 

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑦ො − 𝑦)ଶୀଵ 𝑛  (19)

The coefficient of determination, which represents the model’s explanatory power 
for the dependent variable, has a range of values from 0 to 1. A higher value indicates a 
better fit of the model to the data. The 𝑅ଶ is calculated using Equation (20). 𝑅ଶ = 1 − ∑ (𝑦ො − 𝑦)ଶୀଵ∑ (𝑦 − 𝑦ത)ଶୀଵ  (20)

It is better for the predicted health index of the turbofan engine to be slightly under-
estimated rather than overestimated [35]. If the predicted health index cannot reach zero 
before a failure occurs, it poses a serious safety hazard to the aircraft. To address this issue, 
this study employs a scoring function (𝑆𝑐𝑜𝑟𝑒) proposed by the International Conference 
on Prognostics and Health Management (PHM08) Data Challenge [38]. The scoring func-
tion penalizes situations where the model’s predicted values are larger more severely. The 
score is calculated by Equations (21) and (22). 

𝑆 = ቐ𝑒ି௬ොି௬ଵଷ − 1,    𝑦ො < 𝑦𝑒௬ොି௬ଵ − 1,    𝑦ො ≥ 𝑦  (21)

𝑆𝑐𝑜𝑟𝑒 =  𝑆
ୀଵ  (22)

From Equation (19) to Equation (22), 𝑦ො indicates the predicted value of the 𝑖-th sam-
ple, while 𝑦 denotes its real value and 𝑛 is the total number of samples. 

4.3. Optimization Results 
To evaluate the optimization ability of various intelligent optimization algorithms on 

BP neural networks, we optimized the initial weights and biases of the networks using the 
eight comparison algorithms mentioned above. The population size, number of iterations, 
and limits of the solution space for all eight algorithms were controlled to be the same as 
ESO above. The fitness function of the optimization problem was selected as the RMSE of 
the BP neural network on the training set. The convergence curves of the nine algorithms 
are depicted in Figure 9. 

  
(a) (b) 

RM
SE

0 10 20 30 40 50 60 70 80 90 100
Iterations

0.066

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

RM
SE

FD002

DE
PSO
GWO
SSA
BWO
DBO
CSO
SO
ESO

Appl. Sci. 2024, 14, 1996 17 of 26 
 

  
(c) (d) 

Figure 9. Convergence curves of nine algorithms optimizing BP neural networks for all four sub-
datasets. (a) Convergence curves for FD001; (b) convergence curves forFD002; (c) convergence 
curves for FD003; and (d) convergence curves for FD004. The x-axis in the figures corresponds to 
the number of algorithm iterations, while the y-axis represents the root mean square error. 

In Figure 9, all nine algorithms improved the accuracy of BP neural networks. How-
ever, BWO and SSA performed as the worst and the second worst, respectively, in the 
simulation test of the benchmark functions F18 and F30. Correspondingly, BWO per-
formed the worst in optimizing the initial weights and biases in FD003 and FD004, while 
SSA performed the second worst in FD001 and FD003. Furthermore, ESO demonstrated a 
faster and more precise convergence than SO in all four sub-datasets. The performance 
indicators in simulation and practice were consistent with each other. These findings lead 
to three conclusions: 1. Using intelligent optimization to initialize the weights and biases 
of the BP neural network is an effective method for improving model prediction accuracy; 
2. The more suitable the weights and biases found by initialization methods, the more 
accurate the prediction performed by BP neural networks; and 3. ESO, enhanced by the 
elite-guided strategy and reverse learning mechanism, has both theoretical and practical 
performance improvements. 

Figure 9 shows the convergence curves of DE, PSO, GWO, SSA, BWO, DBO, CSO, 
SO, and ESO in optimizing the fitting of BP neural networks to four different sub-datasets. 
After 100 iterations, ESO achieved a 7.356% reduction in the RMSE of the BP neural net-
work on the FD001 sub-dataset. This result demonstrates that ESO can enhance the pre-
diction accuracy of the BP neural network for the RHI prediction problem in turbofan 
engines within a relatively small number of iterations. Compared to the other eight main-
stream optimization algorithms, ESO converged to smaller fitness values. This indicates 
that ESO is more suitable for optimizing the BP neural network on turbofan engine RHI 
prediction. 

4.4. Prediction Results 
The ESO-BP model was used to predict the health index of engines in subsets FD001, 

FD002, FD003, and FD004 of C-MAPSS. In FD001, the predicted and actual health indexes 
of the last operating cycle for all engines in the test set were compared. Figure 10 shows 
slight errors in the RHI prediction of each engine’s last cycle. This indicates that the pro-
posed method can accurately predict the RHI of turbofan engines. Additionally, four en-
gines were randomly selected from the test set to compare the predicted and actual values 
of the health degradation curves. Figure 11 shows the fitting ability of the degradation 
trend for four engines in FD001. The results indicate that ESO-BP demonstrates a high 
accuracy in multivariate input and univariate output prediction. 

0 10 20 30 40 50 60 70 80 90 100
Iterations

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078
FD003

DE
PSO
GWO
SSA
BWO
DBO
CSO
SO
ESO

0 10 20 30 40 50 60 70 80 90 100
Iterations

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09
FD004

DE
PSO
GWO
SSA
BWO
DBO
CSO
SO
ESO

Figure 9. Convergence curves of nine algorithms optimizing BP neural networks for all four sub-
datasets. (a) Convergence curves for FD001; (b) convergence curves forFD002; (c) convergence curves
for FD003; and (d) convergence curves for FD004. The x-axis in the figures corresponds to the number
of algorithm iterations, while the y-axis represents the root mean square error.

In Figure 9, all nine algorithms improved the accuracy of BP neural networks. How-
ever, BWO and SSA performed as the worst and the second worst, respectively, in the
simulation test of the benchmark functions F18 and F30. Correspondingly, BWO performed
the worst in optimizing the initial weights and biases in FD003 and FD004, while SSA
performed the second worst in FD001 and FD003. Furthermore, ESO demonstrated a
faster and more precise convergence than SO in all four sub-datasets. The performance
indicators in simulation and practice were consistent with each other. These findings lead
to three conclusions: 1. Using intelligent optimization to initialize the weights and biases
of the BP neural network is an effective method for improving model prediction accuracy;
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2. The more suitable the weights and biases found by initialization methods, the more
accurate the prediction performed by BP neural networks; and 3. ESO, enhanced by the
elite-guided strategy and reverse learning mechanism, has both theoretical and practical
performance improvements.

Figure 9 shows the convergence curves of DE, PSO, GWO, SSA, BWO, DBO, CSO,
SO, and ESO in optimizing the fitting of BP neural networks to four different sub-datasets.
After 100 iterations, ESO achieved a 7.356% reduction in the RMSE of the BP neural network
on the FD001 sub-dataset. This result demonstrates that ESO can enhance the prediction
accuracy of the BP neural network for the RHI prediction problem in turbofan engines
within a relatively small number of iterations. Compared to the other eight mainstream
optimization algorithms, ESO converged to smaller fitness values. This indicates that ESO
is more suitable for optimizing the BP neural network on turbofan engine RHI prediction.

4.4. Prediction Results

The ESO-BP model was used to predict the health index of engines in subsets FD001,
FD002, FD003, and FD004 of C-MAPSS. In FD001, the predicted and actual health indexes of
the last operating cycle for all engines in the test set were compared. Figure 10 shows slight
errors in the RHI prediction of each engine’s last cycle. This indicates that the proposed
method can accurately predict the RHI of turbofan engines. Additionally, four engines
were randomly selected from the test set to compare the predicted and actual values of the
health degradation curves. Figure 11 shows the fitting ability of the degradation trend for
four engines in FD001. The results indicate that ESO-BP demonstrates a high accuracy in
multivariate input and univariate output prediction.
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4.5. Comparative Experiments

To evaluate the prediction accuracy and stability of ESO-BP, we compared its perfor-
mance with that of convolutional neural network (CNN), recurrent neural network (RNN),
long short-term memory (LSTM), and BP neural networks trained using two different
functions. The CNN, RNN, and LSTM models employed in this study used the Adam
optimizer [41] for training. BP(SCG) and ESO-BP(SCG) were trained using the scaled
conjugate gradient (SCG) backpropagation algorithm [42]. BP(LM) and ESO-BP(LM) were
trained using the Levenberg–Marquardt (LM) backpropagation algorithm [43].

Table 5 displays the averages (Avg) and standard deviations (Std) of the evaluation
metrics after 100 model training turns. The results indicate that ESO-BP consistently
outperformed mainstream models in all the evaluation metrics, proving the effectiveness
of the ESO-BP neural network model in predicting the RHI of turbofan engines.

The results demonstrate that ESO-BP(LM) attained the highest prediction stability,
showcasing the smallest standard deviation across all evaluation metrics. This suggests
that combining the LM algorithm with improved initial values assists neural networks
in avoiding local optima, leading to increased stability. In terms of prediction accuracy,
ESO-BP(LM) outperformed in FD001, FD002, and FD004, showcasing a superior predictive
capability across various operational conditions. The R2 and RMSE of ESO-BP(SCG) on
FD003 were slightly better than those of ESO-BP(LM), indicating that predicting the RHI of
turbofan engines under multi-fault conditions poses a particular challenge. ESO improved
the performance of BP neural networks with both SCG and LM, indicating that using ESO
to initialize BP neural networks is a beneficial approach. The BP neural networks in the
following study were trained with the LM algorithm for a better performance, according to
the results in Table 5.
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Table 5. Comparison of different prediction models for 100 trials. The bold number represents the
best model.

Dataset Model
RMSE R2 Score

Avg Std Avg Std Avg Std

FD001

CNN 6.641 × 10−2 4.346 × 10−3 9.163 × 10−1 1.158 × 10−2 5.728 × 10+1 4.813 × 100

RNN 6.773 × 10−2 2.841 × 10−3 9.132 × 10−1 7.560 × 10−3 5.764 × 10+1 3.445 × 100

LSTM 6.253 × 10−2 1.722 × 10−3 9.261 × 10−1 4.219 × 10−3 5.152 × 10+1 2.342 × 100

BP(SCG) 6.337 × 10−2 1.346 × 10−3 9.241 × 10−1 3.249 × 10−3 5.175 × 10+1 1.812 × 100

ESO-BP(SCG) 6.223 × 10−2 7.070 × 10−4 9.268 × 10−1 1.664 × 10−3 5.021 × 10+1 8.930 × 10−1

BP(LM) 6.070 × 10−2 4.840 × 10−4 9.304 × 10−1 1.115 × 10−3 4.891 × 10+1 5.164 × 10−1

ESO-BP(LM) 6.040 × 10−2 4.160 × 10−4 9.311 × 10−1 9.580 × 10−4 4.859 × 10+1 4.111 × 10−1

FD002

CNN 8.233 × 10−2 6.792 × 10−3 8.839 × 10−1 2.008 × 10−2 1.854 × 10+2 1.569 × 10+1

RNN 8.645 × 10−2 7.401 × 10−3 8.719 × 10−1 2.294 × 10−2 1.976 × 10+2 1.629 × 10+1

LSTM 7.543 × 10−2 6.836 × 10−3 9.024 × 10−1 1.938 × 10−2 1.675 × 10+2 1.461 × 10+1

BP(SCG) 7.427 × 10−2 4.604 × 10−3 9.058 × 10−1 1.183 × 10−2 1.656 × 10+2 1.389 × 10+1

ESO-BP(SCG) 7.195 × 10−2 3.950 × 10−3 9.116 × 10−1 9.829 × 10−3 1.583 × 10+2 1.283 × 10+1

BP(LM) 6.528 × 10−2 2.730 × 10−4 9.275 × 10−1 6.080 × 10−4 1.380 × 10+2 7.994 × 10−1

ESO-BP(LM) 6.515 × 10−2 1.880 × 10−4 9.278 × 10−1 4.160 × 10−4 1.374 × 10+2 4.245 × 10−1

FD003

CNN 7.155 × 10−2 4.230 × 10−3 9.098 × 10−1 1.164 × 10−2 7.954 × 10+1 6.028 × 100

RNN 7.795 × 10−2 3.068 × 10−3 8.932 × 10−1 8.565 × 10−3 8.724 × 10+1 3.304 × 100

LSTM 7.133 × 10−2 1.807 × 10−3 9.106 × 10−1 4.604 × 10−3 7.732 × 10+1 1.962 × 100

BP(SCG) 6.892 × 10−2 1.986 × 10−3 9.165 × 10−1 4.976 × 10−3 7.478 × 10+1 3.088 × 100

ESO-BP(SCG) 6.729 × 10−2 7.630 × 10−4 9.205 × 10−1 1.812 × 10−3 7.269 × 10+1 1.384 × 100

BP(LM) 6.779 × 10−2 6.860 × 10−4 9.193 × 10−1 1.640 × 10−3 7.187 × 10+1 7.749 × 10−1

ESO-BP(LM) 6.744 × 10−2 4.090 × 10−4 9.202 × 10−1 9.690 × 10−4 7.146 × 10+1 5.216 × 10−1

FD004

CNN 9.433 × 10−2 5.466 × 10−3 8.447 × 10−1 1.851 × 10−2 2.600 × 10+2 1.525 × 10+1

RNN 9.982 × 10−2 8.187 × 10−3 8.256 × 10−1 2.961 × 10−2 2.756 × 10+2 1.847 × 10+1

LSTM 9.214 × 10−2 4.700 × 10−3 8.520 × 10−1 1.556 × 10−2 2.518 × 10+2 1.156 × 10+1

BP(SCG) 8.889 × 10−2 3.833 × 10−3 8.623 × 10−1 1.210 × 10−2 2.462 × 10+2 1.314 × 10+1

ESO-BP(SCG) 8.615 × 10−2 2.283 × 10−3 8.708 × 10−1 6.897 × 10−3 2.365 × 10+2 7.276 × 100

BP(LM) 7.546 × 10−2 6.580 × 10−4 9.010 × 10−1 1.744 × 10−3 1.973 × 10+2 1.875 × 100

ESO-BP(LM) 7.529 × 10−2 4.020 × 10−4 9.014 × 10−1 1.054 × 10−3 1.970 × 10+2 1.345 × 100

To illustrate the deviation between the predicted and real RHI values for each operating
cycle of all test set engines in FD001, the real RHI value serves as the horizontal axis, and
the predicted RHI value serves as the vertical axis in Figure 12. The deviation between
predicted and real values for the different models is shown in Figure 12. The majority of
the scatter points from the four models align closely with the reference line. This figure
illustrates that the ESO-BP(LM) neural network model exhibits fewer anomalous scatter
points and achieves the best prediction results. Figure 13 shows that the predicted RHI
degradation curves of the turbofan engines using the proposed method are closer to the
real degradation curves compared to other models.
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Figure 12. Scatter of predicted RHI and real RHI values: (a) is the CNN model; (b) is the RNN model;
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between the predicted RHI values and the real RHI values. The y-axis denotes the predicted RHI
values, while the x-axis presents to the real RHI values of FD001.
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(c) is the No. 39 engine in the test set of FD003; and (d) is the No. 47 engine in the test set of FD004.

4.6. Ablation Experiment

An ablation experiment was conducted to assess the impact of each enhancement
approach on the BP model. The experiment compared the baseline BP(LM) with SO-BP(LM)
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and ESO-BP(LM). Table 6 presents the average evaluation metrics of 100 trials for BP(LM),
SO-BP(LM), and ESO-BP(LM).

Table 6. Averages of evaluation metrics for the ablation experiment. The bold number represents the
best model.

Dataset Model RMSE R2 Score

FD001
BP 6.070 × 10−2 9.304 × 10−1 4.891 × 10+1

SO-BP 6.065 × 10−2 9.305 × 10−1 4.859 × 10+1

ESO-BP 6.040 × 10−2 9.311 × 10−1 4.859 × 10+1

FD002
BP 6.528 × 10−2 9.275 × 10−1 1.380 × 10+2

SO-BP 6.524 × 10−2 9.276 × 10−1 1.380 × 10+2

ESO-BP 6.515 × 10−2 9.278 × 10−1 1.374 × 10+2

FD003
BP 6.779 × 10−2 9.193 × 10−1 7.187 × 10+1

SO-BP 6.761 × 10−2 9.197 × 10−1 7.182 × 10+1

ESO-BP 6.744 × 10−2 9.202 × 10−1 7.146 × 10+1

FD004
BP 7.546 × 10−2 9.010 × 10−1 1.973 × 10+2

SO-BP 7.610 × 10−2 8.993 × 10−1 1.994 × 10+2

ESO-BP 7.529 × 10−2 9.014 × 10−1 1.970 × 10+2

The evaluation metrics derived from 100 trials demonstrate that SO optimized BP
neural networks on the FD001, FD002, and FD003 sub-datasets of the C-MAPSS. ESO
further enhanced the optimization effect and showed improvement on the FD004 subset,
where SO-BP performed poorly. In order to visualize the improvements of SO and ESO on
BP neural networks, Figure 14 shows the RMSEs of BP(LM), SO-BP(LM), and ESO-BP(LM).
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interquartile range, which is the middle 50% of the data. The bottom and top edges of the box
correspond to the first quartile and third quartile, respectively. The line inside the box represents the
median or the second quartile, which is the middle value of the dataset. The height of the box is the
interquartile range. The circles represent the outliers. The y-axis denotes the RMSE values, while the
x-axis presents different models.

5. Discussion

The objective of training a neural network is to fine-tune weights and biases to find a
parameter set that aligns the predicted values with the actual values as closely as possi-
ble [44]. Typically, this process involves finding the global optimal solution, which requires
determining the combination of parameters that minimizes the loss function across the
entire parameter space. The exceptional prediction performance of the ESO-BP model
is attributed to three primary factors: optimizing the initial weights and biases through
ESO, employing the RHI metric for turbofan engine degradation, and selecting LM as the
training function for BP models.

1. Initializing neural network weights was demonstrated to accelerate convergence,
prevent entrapment in local optima, simplify network architecture, identify feature
importance, and improve prediction performance [45]. In this study, adjustments to
the initial weights and biases were applied before training to improve the convergence
accuracy and stability of the BP neural networks. ESO exhibited a superior conver-
gence compared to SO in benchmark functions. Similarly, in the ablation experiment,
ESO-BP outperformed SO-BP. This suggests that providing better initial weights and
biases results in higher accuracy and stability in BP neural networks. ESO determined
the initial weights and biases that minimized the RMSE after its iteration process,
preventing the BP neural network from easily becoming stuck in local optima and
experiencing stability issues due to random parameter selection.

2. In contrast to RUL prediction, Jiang et al. [46] also developed a health index prediction
model for turbofan engines in 2023. According to their study, the average accuracy
of 10 trials for hybrid methods was significantly lower than that of single methods.
Several methods were combined to create multiple new models, including empirical
mode decomposition (EMD), variational mode decomposition (VMD), scale-adaptive
attention mechanism (SAA), dynamic step size-based fruit fly optimization algorithm
(DSSFOA), bidirectional long short-term memory network (BiLSTM), support vector
regression (SVR), and LSTM. The average accuracies of the FD002 sub-dataset are
compared in Table 7.

3. The Levenberg–Marquardt algorithm is particularly effective in training BP neural
networks for regression problems [47]. The LM algorithm provides numerical solu-
tions for nonlinear minimization. It combines the strengths of the Gauss–Newton
algorithm and the gradient descent method by dynamically adjusting parameters
during execution to address the limitations of both methods. When the gradient
drops rapidly, the LM algorithm behaves more like the Gauss–Newton algorithm.
Otherwise, it behaves more like gradient descent [43].

Table 7. Comparison of RMSE for hybrid methods [46] and ESO-BP model.

Model Number of Trial RMSE

EMD-SAA-BiLSTM 10 0.101
VMD-SAA-BiLSTM 10 0.082
VMD-DSSFOA-SVR 10 0.156

VMD-DSSFOA-LSTM 10 0.093
VMD-DSSFOA-SAA-LSTM 10 0.086

ESO-BP 100 0.065
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6. Conclusions

This study improved the convergence performance of an existing optimization al-
gorithm through an elite-guided strategy and a reverse learning mechanism. Simulation
experiments were conducted using three benchmark test functions to compare the elite
snake optimizer (ESO) with eight mainstream intelligent optimization algorithms. The
results indicated that ESO exhibited a higher convergence accuracy and improved stability.
Furthermore, ESO was used to initialize the weights and biases of the BP neural network,
resulting in the creation of the ESO-BP model. The ESO-BP model was compared with
traditional CNN, RNN, LSTM, and a baseline BP neural network in terms of prediction
accuracy and stability using the C-MAPSS dataset. The findings showed that the ESO-BP
model enhanced the prediction accuracy and stability of BP across all the sub-datasets
of C-MAPSS. In conclusion, the ESO-BP model has theoretical significance in improving
intelligent optimization algorithms and practical value in predicting the health index of
turbofan engines.

In the future, intelligent optimization algorithms can be employed to initialize the
parameters for other neural networks and applied across various domains in machine learn-
ing. The primary concern is the unacceptable time cost required for intelligent optimization
algorithms to search for the global optimum in high-dimensional spaces, attributed to
the large number of weights and biases. Accordingly, we will develop effective pruning
methods to eliminate specific dimensions of the connection weights, reducing time costs
and streamlining the networks. This is a promising research direction.
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