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Abstract: The conventional design cycle in human–computer interaction faces significant challenges
when applied to users in isolated settings, such as astronauts in extreme environments. Challenges
include obtaining user feedback and effectively tracking human–software/human–human dynamics
during system interactions. This study addresses these issues by exploring the potential of remote
conversation analysis to validate the usability of collaborative technology, supplemented with a
traditional post hoc survey approach. Specifically, we evaluate an integrated timeline software tool
used in NASA’s Human Exploration Research Analog. Our findings indicate that voice recordings,
which focus on the topical content of intra-crew speech, can serve as non-intrusive metrics for
essential dynamics in human–machine interactions. The results emphasize the collaborative nature
of the self-scheduling process and suggest that tracking conversations may serve as a viable proxy
for assessing workload in remote environments.

Keywords: human-in-the-loop; user interaction development methodology; collaborative work;
conversation analysis; usability evaluation; self-scheduling; remote observation

1. Introduction

The conventional design cycle in human–computer interaction (HCI) involves un-
derstanding a specific domain, gathering feedback from end users, refining prototypes
through usability testing, and ultimately releasing a product developed with significant
end-user participation [1]. This process, however, faces significant access challenges when
applied to user populations in isolated, confined environments. Our research revolves
around enabling human space exploration, with astronauts as our user population. Space
is an extreme environment inhabited by only a select few who live in spaceships like the
International Space Station (ISS). Astronaut crews heavily rely on numerous computer sys-
tems to support critical tasks and ensure mission success during spaceflight. The advanced
technologies used in space missions demand meticulous human-in-the-loop design and
development, but achieving this is challenging due to the limited number of astronauts,
the very limited time they have to be part of the HCI design process, and their presence in
remote and inaccessible environments.

To address some of these limitations, NASA has invested resources in developing
spaceflight analogs. Analog missions simulate aspects of spaceflight; for instance, crews
may experience isolation, an extreme environment, or interact in a physical environment
resembling space. These analog missions recruit participants with backgrounds similar
to astronauts for simulated long-duration space missions. Analogous user populations
provide an opportunity to not only refine prototypes and conduct usability evaluations
but also allow exploration of new methods to apply HCI in the spaceflight domain. This
paper summarizes how our research team conducted remote usability observations in a
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spaceflight analog for an integrated timeline software tool used in operations. We demon-
strate that conversation analysis of naturalistic voice recordings significantly contributes to
characterizing the usability of collaborative software.

2. Background
2.1. Remote Observations through Conversation Analysis

Usability is defined as how easy and feasible it is to use an interface to accomplish
tasks [1]. The think-aloud protocol for testing usability is one of the most widely used
methods in HCI design, allowing for the assessment of a user’s thought processes and
decisions in real time [2]. Participants are required to verbalize their thoughts while using
the system under evaluation. This method’s popularity stems from its simplicity, cost-
effectiveness, and flexibility. However, like all usability research techniques, the think-aloud
protocol is not without drawbacks. In the context of crewed space missions, limitations of
think-aloud evaluation for software become particularly pronounced. The necessity for
verbal collaboration, unnatural conditions created by the think-aloud methodology, the
likelihood of participants opting for selected verbalizations instead of the preferred stream-
of-consciousness, and potential biases all contribute to limiting the effectiveness of the
think-aloud protocol. These constraints often make its application in a space environment
less than ideal, prompting the exploration of alternative methods.

Recent studies have found that think-aloud protocols significantly benefit from addi-
tional evaluation in analog contexts. For example, Li et al. [3] paired think-aloud testing
with a novel, near-live simulation approach. Their user population, primary care providers
relying on clinical decision support tools, interacted with simulated patients to provide nec-
essary care. Transcripts and behavioral analyses from these sessions showed where, when,
and how providers accessed the support tool to efficiently provide the necessary services;
they also revealed workflows that conventional think-aloud testing never caught. Morgan
and colleagues [4] assessed the usability of a patient-care guide by coupling think-aloud
testing with mock patient discussions. Post hoc interviews and transcript content analyses
showed that accessing the guide in “practice” was hindered by several obstacles. From
these conclusions, the authors made significant revisions to the guide to make it easier for
providers to find relevant information. Testing in analogous settings emerges as a valuable
strategy in usability science, especially for tools used during interpersonal interactions and
complex workflows.

A recent framework presented by Clinkenbeard [5] outlines a methodology for study-
ing usability by coupling conversation analysis with traditional approaches, such as user
experience (UX) questionnaires. This framework asserts that conversation analysis, the
study of social interactions through audio and/or video data, can effectively validate the
usability of collaborative technologies in complex, social environments. Such environments
often carry an intricate ecology of human–human and human–computer interactions that
must be characterized with a targeted data collection approach. For example, Nicolini [6]
uncovered several issues associated with novel medical software that became only evident
when considering users’ (i.e., healthcare employees) social interactions. Their approach
used focus group interviews, individual interviews, and naturalistic patient observations
over 24 months to inform the design and development of patient-oriented technologies
for years to come. Other empirical studies have successfully characterized computer-
supported cooperative work specifically using the conversation analysis method in many
fields, including public transportation coordination [7] and telemedicine [8]. As a pro-
posed cornerstone of this framework, voice recordings in particular [9–11] have garnered
much recent attention as promising enhancements to usability evaluation. Work by Li
and colleagues [12] suggests that trust in autonomous agents can be inferred from lexical
and acoustic features in speech. Similarly, Magnusdottir et al. [13] coupled cardiovascular
measures and speech to measure the dynamics of cognitive workload during various tasks
(see also [14]). Voice recordings may serve as a non-intrusive measure of critical dynamics
in human–machine interactions. In essence, empirical research underscores the value of in-
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tegrated audio recordings in capturing nuanced dynamics of human–computer interactions
and collaborative work.

Our team has chosen to expand the application of conversation analysis to spaceflight
analogs. In these analog environments, crew members spend extended periods together in
isolation, often tasked with solving problems that demand coordination. Moreover, analog
crews undergo close monitoring like astronauts in space, as analogs serve both as a research
platform and a simulation of spaceflight. Analog missions are equipped with various video
and audio recordings that can be leveraged to collect remote observations. This facilitates
the collection of data while crews engage in problem-solving tasks using novel software.
Past work has utilized voice data from a spaceflight analog setting to infer team cohesion
based on utterances and vocal microbehaviors [11], which underscores the feasibility of
using analog audio to explore the dynamics of collaborative HCI tasks. Consequently, we
advocate for conversation analysis as a valuable addition to conventional usability methods,
especially when studying remote populations that pose challenges in accessibility.

2.2. Integrated Timeline Software

Our HCI team at NASA Ames Research Center has developed Playbook, an integrated
timeline software designed for future astronauts [15] (see hci.arc.nasa.gov/work/playbook.
html [accessed on 8 February 2024] for more details). Playbook serves as a “one-stop shop”,
enabling future astronauts to schedule and execute assigned activities and tasks. Its pri-
mary goal is to better support Earth-independent operations and enhance crew autonomy,
thereby reducing the crew’s reliance on ground stations to organize daily tasks during
communication delays in deep space. NASA envisions future astronauts conducting self-
scheduling to manage, schedule, and reschedule their timelines, enabling more autonomous
crew. Playbook has been deployed in various analogs to support mission operations. Specif-
ically, the team has been evaluating Playbook for the task of self-scheduling [16]. Analog
crews utilize Playbook to create and manage complex mission timelines, incorporating
crewmate preferences (e.g., the flight engineer’s preference for exercising after lunch) and
meeting various constraints (e.g., task completion before 11:00 a.m.) [17]. Additionally,
analog crew members rely on Playbook to complete operationally relevant tasks. In pre-
vious analog missions, the team has requested crews to perform self-scheduling using
Playbook. We have used traditional HCI methods, post hoc asking analog crews to fill out
surveys and participate in debriefs which provide valuable insights into their experiences
using Playbook.

Self-scheduling with Playbook in an analog environment provides a research oppor-
tunity for conversation analysis, applying Clinkenbeard’s [5] framework to augment our
previous laboratory-based approaches [18] in validating the tool for future long-duration
exploration missions.

3. Methods
3.1. Analog Mission—Study Overview

Our research was conducted in the Human Exploration Research Analog (HERA)
at NASA Johnson Space Center (JSC) from September 2021 to March 2023. HERA, a
650-square-foot isolation analog, simulates future long-duration exploration missions.
HERA is split between two floors and a loft, designed to replicate conditions of isolation,
confinement, and remote scenarios in exploration missions. NASA’s Human Research
Program sets specific research goals and selects research projects to be completed for each
HERA Campaign. In each of HERA Campaign 6’s (C6) four missions, four astronaut-like
crew members lived in the habitat for 45 days and “embarked” on a mission to the Martian
moon Phobos without physically leaving Earth. Throughout these missions, the crew
exclusively engaged in virtual interactions with their family, friends, and Mission Control.
While conducting tasks in isolation, these analog crews were closely monitored by research
teams to gain insights into behavior, health, and human–systems integration. Despite

hci.arc.nasa.gov/work/playbook.html
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this, collecting usability and user evaluations in these missions remained challenging as
researchers were not physically present and had to collect data remotely.

In HERA C6, crew autonomy was operationalized as the crews’ ability to indepen-
dently manage their own operational timelines. The missions underwent distinct phases:

• No Autonomy (first seven days): During this initial period, all timelines were fixed
and could not be edited by the crew.

• Limited Autonomy (next eight days): The subsequent eight days were considered
“limited autonomy”, allowing the crews to reschedule many activities.

• High Autonomy (last thirty days): The final thirty days were called “high auton-
omy”, where crews’ self-scheduling was entirely initiated by crew without external
constraints.

This phasic shift in autonomy over time aligns with expectations for long-duration
space exploration missions. In our research experiment, analog astronauts were specifically
asked to self-schedule four of their days, as opposed to just following the timeline provided
by Mission Control. For detailed procedures and the experimental design used in the C6
scheduling experiment, refer to Marquez et al. [19].

During the limited autonomy phase, our team requested that each crew member
lead a team preference meeting (TPM) and participate in a self-scheduling session (SS).
Crew members were responsible for scheduling their operational timelines using Playbook
(v13; see Figure 1). In the TPM, the assigned planner led an open discussion on timeline
preferences. The crew was expected to discuss items such as “lots of free time in the
afternoon” or “hygiene periods in the morning”. In the SS, the planner independently
created the operational timeline, aiming to integrate the team preferences into a feasible
schedule. Participants were allocated thirty minutes for their TPM and one hour to complete
their SS. Following the SS, crew members completed the NASA-Task Load Index (NASA-
TLX; [20]), a commonly used workload questionnaire in usability studies. In HCI, workload
is defined as the demands of a task on an operator’s mental and physical resources—
developers often desire lower levels of workload to avoid users’ cognitive overload. Finally,
the crew executed the scheduled day, and the planner provided feedback through a brief
questionnaire on their experience.
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Figure 1. A screenshot of Playbook’s user interface. Schedule violations are highlighted so the user
can make adjustments until a timeline is feasible for the whole crew.

At the end of their mission, crews completed the User Experience Questionnaire
(UEQ; [21]) to evaluate Playbook. The UEQ is a 26-item scale that breaks down UX into
six distinct factors: attractiveness, perspicuity, efficiency, dependability, stimulation, and
novelty. Scores for each of these subscales were computed using a provided calculator
(www.ueq-online.org [accessed on 8 February 2024]). The goal with the UEQ was to
quantify the usability of our tool in the analog and roughly compare it with prior UEQ scores
from lab-based testing [18,22]. Because usability questionnaires are commonly used in

www.ueq-online.org
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human–systems integration research, we sought to supplement our proposed conversation
analysis by presenting scores for Playbook in a simulated spaceflight environment.

It is crucial to note that HERA’s controlled setting and simulation demands necessitate
a highly selective and small participant pool to accurately emulate space missions. Conse-
quently, the limited sample size (n = 16; 4 females; Mage = 35.93, SDage = 5.64) in this study
serves as an important caveat to all reported findings.

3.2. Processing Voice Recordings

All crew members wore Philips Audio Recorders (DVT4010) throughout each mis-
sion day, providing a substantial bank of naturalistic audio data. These data serve as a
valuable resource for characterizing scheduling-related collaboration as a crucial step in
confirming Playbook’s usability and inferring crew behavior. To post-process the data,
we first identified timeframes in which TPM and SS took place and extracted the relevant
audio recordings. We then combined Whisper, a speech recognition system developed
by OpenAI [23], with manual transcription. We used Whisper to automate the initial
transcription and corrected errors through manual review. Transcripts were formatted to
represent different speakers and verbalizations on each line.

While reviewing the transcripts, we synthesized our research question in a bottom-up
fashion as recommended by Clinkenbeard [5]: what is the focus and frequency of different
types of verbal collaboration during TPM and SS? After a comprehensive examination of
the topics discussed by the crews, we identified four categories of interest (Table 1): collab-
oration regarding the timeline, collaboration regarding the task, collaboration regarding
Playbook, or off-topic conversation. Each of these categories could provide insight into
group behavior and attitudes; for example, collaboration regarding the nature of the self-
scheduling task might reflect confusion about the instructions. Similarly, lots of off-topic
chatter might represent low task burden or unengaging demands.

Table 1. The four observed conversation types and respective examples.

Label Category Description Example

CRTimeline Collaboration Regarding Timeline Discussion on timeline
content and preferences

“I personally like the questionnaires
stacked together. . . knock ‘em all out.”

CRTask Collaboration Regarding Task Discussion on the nature of
the assigned task at hand

“We can talk about what our
preferences are.”

CRPlaybook Collaboration Regarding Playbook Discussion on how to use the
tool or navigate the interface

“But where do you see the tasks?”
“They’re right there on add-to-plan.”

OT Off-Topic Jokes, tangents, or unrelated
topics

“Have you watched the latest season of
that show?”

Next, we appointed two independent raters to categorize the crews’ conversations
into one of the four categories. These raters were provided with the definitions of the collab-
oration categories from Table 1 and were instructed to tally the instances of each category
for all TPM and SS. Given our primary interest in the topical focus of collaboration, raters
were specifically instructed to closely monitor content shifts in blocks of verbalizations. To
avoid potential confusion, we provided an example of a same-category content shift: if the
discussion shifted from scheduling preferences for hygiene to preferences for when to do
surveys, it would be counted as two instances of CRTimeline. To address the possibility of
low interrater reliability, we predetermined that a third independent mediator would meet
with the raters to resolve transcripts with significant count discrepancies.

We calculated an intraclass coefficient (ICC) to assess interrater reliability and found it
to be excellent (ICC = 0.91, 95% CI = [0.83, 0.95]) according to guidelines set forth by Koo
and Li [24], removing the need for any follow-up mediation. We then averaged the tallies
from our independent raters to produce a single score for each category per transcript. Our
primary variable of interest for analysis is the total counts for a discussion category during
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a TPM or SS. We also considered the total duration of the TPM or SS as extracted from the
length of our trimmed audio files.

4. Results
4.1. Team Preference Meetings (TPMs)

Figure 2 illustrates the overall time in minutes dedicated to team preference meetings
by each crew and the breakdown of verbal collaboration counts to explore shifts over the
course of the mission. Discussions consumed less time in later meetings (MMD7 = 11.51,
SDMD7 = 9.17; MMD8 = 12.07, SDMD8 = 4.70; MMD11 = 4.45, SDMD11 = 4.72; MMD12 = 3.73,
SDMD12 = 2.57), with counts of collaboration categories remaining relatively consistent over
the MDs. Notably, two crews in C6 chose not to conduct TPMs at all (M2’s third meeting
and M3’s fourth meeting), and these meetings are excluded from subsequent TPM plots.
In Figure 3, the collaboration breakdown during TPM and SS sessions reveals that crews
generally remained on task, primarily focusing on timeline preferences.
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Figure 2. The duration (minutes) and count of category breakdown of TPMs. MD indicates the
mission day the TPM took place.
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4.2. Self-Scheduling Sessions (SS)

During SS, crew planners were instructed to work independently to complete the
self-scheduling activity. Figure 3 shows that they ignored this instruction, however, and
collaborated often, predominantly discussing timeline content and preferences. In fact,
15 out of 16 planners engaged in collaboration during the SS process. The extent of this
behavior greatly varied across individuals and crews, as illustrated by the variability in the
stacked CRTimeline bar (see also Table 2).
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Table 2. Descriptive statistics for counts of each category and overall durations across TPM and
SS. The two skipped TPMs were not included in our calculations. Statistics are formatted as mean
(standard deviation).

Duration in
Minutes CRTimeline CRTask CRPlaybook OT

Team Preference
Meetings 9.08 (6.20) 13.93 (10.11) 3.21 (3.17) 2.14 (2.92) 3.57 (2.12)

Self-Scheduling
Sessions 28.91 (19.25) 16.53 (19.11) 2.19 (1.98) 3.13 (5.80) 6.66 (7.86)

Exploratory correlation tests were conducted to investigate the potential relationship
between SS interactions and workload, which was measured directly after SS using the
NASA-TLX. Kendall’s rank correlations were used due to the nonparametric form of the
data. A negative correlation was found between counts of off-topic (OT) conversation and
workload (τb = −0.42, p = 0.026), while CRPlaybook, CRTimeline, and CRTask showed no
significant correlation with workload (τb = −0.04, p = 0.85; τb = −0.21, p = 0.26; τb = −0.02,
p = 0.93).

4.3. Playbook Usability Scoring

Having established that self-scheduling in HERA is inherently collaborative, we aimed
to quantify Playbook’s usability in a spaceflight analog environment. Post-mission UEQ
scores across crews and missions were amalgamated. These scores were then compared to
a benchmark (v12) derived from thousands of UEQ ratings of various products, provided
by Schrepp et al. [25]. Additionally, we compared these scores to past scores from a
recent, larger in-lab sample (n = 30; [18]) which serve as a satisfaction baseline specifically
for Playbook. This comparative analysis enables an assessment of whether Playbook
performs in the upper percentiles of software UX, even when in a complex, collaborative
environment.

Figure 4 shows that, in C6, Playbook scored highly in all aspects. It received excellent
ratings (top 10% of products in the benchmark dataset) for attractiveness (M = 1.87, SD = 0.67,
95% CI = [1.54, 2.19]), perspicuity (M = 2.39, SD = 0.59, 95% CI = [2.10, 2.68]), efficiency
(M = 2.05, SD = 0.53, 95% CI = [1.79, 2.31]), and dependability (M = 1.97, SD = 0.69, 95% CI
= [1.63, 2.31]). Its stimulation (M = 1.59, SD = 0.75, 95% CI = [1.23, 1.92]) and novelty
(M = 1.08, SD = 0.79, 95% CI = 0.69, 1.47]) were categorized as good (10% better, 75% worse)
and above average (25% better, 50% worse), respectively.
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5. Discussion

Our method, rooted in conversation analysis, aimed to comprehensively characterize
collaboration among spaceflight analog crew members during timeline self-scheduling.
Leveraging voice logs for unobtrusive monitoring, we remotely studied crew members’
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verbal social interactions as they participated in team preference meetings (TPMs) and
self-scheduling sessions (SS).

We observed a general downward trend in the duration of TPMs over time. Crews
appeared to dedicate progressively less time to discussing preferences throughout their
missions, with two crews forgoing some TPMs in the latter half of their mission. No crew
used the full duration allocated for any TPMs, and all latter TPMs had durations of only
a few minutes. After reviewing the transcripts, we were unable to find explicit content
in discussions that explained this trend; however, we inferred that crews became more
efficient at discussing their preferences or that these preferences remained generally static
after the first couple of discussions. This insight will inform future spaceflight analog
missions, and we plan to allocate less time for these meetings before the self-scheduling
sessions. It may be adequate to allocate a single longer block for the first meeting and
shorter meetings to update and re-discuss preferences every week afterward.

We also found that crew collaboration predominantly stayed on task during TPMs,
focusing on time preferences rather than delving into Playbook features, the nature of the
task at hand, or unrelated topics. This suggests that task instructions for these TPMs were
clear, there were no critical Playbook usability issues, and assigned planners utilized the
time to understand everyone’s preferences before creating the team’s schedule.

Surprisingly, our conversation analysis revealed an unexpected aspect of SS. The
assigned crew scheduler engaged in impromptu conversations with the rest of the crew to
integrate team preferences into the timeline. Without the use of conversational analysis,
we never would have discovered that crews were collaborating during SS. This collabo-
rative behavior was unexpected since the SS task was designed for a single scheduler to
independently create a feasible timeline for the whole team. We designed the experiment
expecting the scheduler to have discussed these preferences before (during TPM) and then
self-schedule alone. As mentioned earlier, this tendency for sporadic collaboration varied
greatly across planners and crews, but almost all SS contained some type of timeline-related
collaboration. For the first time, we have quantitative data that show that self-scheduling is
a collaborative task.

Similarly to the TPMs, the discussions during SS often stayed focused on timeline
preferences. If much of the discussion revolved around maneuvering within Playbook’s
user interface, we would have interpreted that as a signal of some design flaw that required
intra-crew collaboration to solve. If much of the discussion centered on the nature of the
task itself or irrelevant topics, we would have interpreted that as confusing or unengaging
task demands. Instead, it appears that timeline-related discussion between crew members
was often a necessary ingredient for completing the self-scheduling task. These interactions
consisted of crew members seeking and offering recommendations, which is a keystone
behavior of team coordination. NASA has acknowledged positive team dynamics as vital
for mission success [26].

We found a negative correlation between off-topic conversations and workload. There
are three possible interpretations of this finding. First, crews may engage in more casual
conversation during self-scheduling when the task incurs low workload. Second, the
workload questionnaire may be measuring general workload within the analog rather than
the specifics of the self-scheduling task, explaining the crew’s chatting behavior. The third
interpretation is that the NASA-TLX accurately reflected workload during the task, and
that off-topic chatting did not increase workload. The first interpretation suggests that
tracking conversations could serve as a viable unobtrusive proxy for workload in remote
environments, which is particularly valuable in a spaceflight analog where participant
survey compliance may be challenging. It aligns with literature that suggests that low
workload indicates spare cognitive resources [20], which can then be directed to task-
unrelated behaviors like mind-wandering (e.g., [27]) or, as presently observed, chatting.
These preliminary results require exploration in subsequent analogs with larger astronaut-
like samples.
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After using the voice logs to establish that HERA is a collaborative, social environment
during self-scheduling, we analyzed the descriptive statistics of post-mission usability
survey responses to infer UX in a spaceflight analog. Our findings indicate that Playbook
in C6 scored extremely well relative to a benchmark provided by the developers of the
UEQ [25] and demonstrated comparable scores to those from prior testing in our controlled
in-lab experiments [18]. While it remains uncertain to what extent general improvements
and new features in Playbook [17] contributed to shifts in UX between lab and analog
testing, our results suggest that Playbook is a usable system for actual autonomous crews
in space missions.

Conversation analysis proved to be a useful technique for characterizing the nuances
of self-scheduling with Playbook. We found that using this method to unobtrusively
study group problem-solving was invaluable for exploring how our collaborative software
was used in a realistic setting. The present work aligns with a recent trend in usability
science that encourages scholars to address the broader context in which computer systems
are used [5]. By using voice data to enrich our understanding of user interactions with
spaceflight technology, we have paved the way for subsequent context-sensitive approaches
in usability science as the technologies of the future are designed, developed, and deployed.

6. Conclusions and Future Work

Recorded conversations provided, for the first time, an unobtrusive glimpse into
behaviors during self-scheduling in a spaceflight analog environment. The conversation
analysis did not identify any usability issues but surprisingly showed that self-scheduling
is more of a collaborative task than previously thought. Looking forward, voice recordings
may serve as a proxy for cognitive usability metrics during collaborative work in remote
settings like spaceflight analogs or even space. Furthermore, our findings suggest that the
conversation analysis approach may be generalized to other settings that are isolated and
confined, such as deep-sea exploration. Future research can track voice recordings in real-
time, collect data from a variety of analog environments, and leverage greater representative
samples to verify our proposed value of voice logs in computer systems development.
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