Multicore Parallelized Spatial Overlay Analysis Algorithm Using Vector Polygon Shape Complexity Index Optimization
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Polygon Clipping Algorithm
3.2. Construction of the Shape Complexity Model
3.3. Data Partitioning and Parallelization
3.3.1. Polygon Number Division and Parallelization
3.3.2. Shape Complexity Partitioning and Parallelization
4. Results
4.1. Polygon Overlay Analysis Intersection Operator
4.2. Polygon Overlay Analysis Difference Operator
5. Discussion
6. Conclusions
- (1)
- For large data sets, when the Vatti algorithm intersection operator and difference operator are executed on multicores in a parallel environment with more than four threads, the data partitioning method based on shape complexity significantly improves the speedup and load balancing performance compared with the data partitioning method based on the number of polygons.
- (2)
- For small data sets, multicore parallelization with data division based on shape complexity has acceleration effects similar to those of the traditional multicore parallelization method of dividing data based on polygon numbers. However, the proposed data partitioning method based on shape complexity can greatly improve the load balancing among threads.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.Q.; Deng, M.; Liu, B.; Li, J. Design of an optimal algorithm of realizing spatial overlap analysis within GIS. Shandong Keji Daxue Xuebao/J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2002, 21, 62–64. [Google Scholar] [CrossRef]
- Agarwal, D.; Puri, S.; He, X.; Prasad, S. A system for GIS polygonal overlay computation on linux cluster-an experience and performance report. In Proceedings of the IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, Shanghai, China, 21–25 May 2012; pp. 1433–1439. [Google Scholar] [CrossRef]
- Shi, X. System and Methods for Parallelizing Polygon Overlay Computation in Multiprocessing Environment. U.S. Patent US20120320087A1, 14 June 2012. [Google Scholar]
- Ma, M.Y.; Wu, Y.; Chen, L.; Li, J.; Jing, N. Interactive and online buffer-overlay analytics of large-scale spatial data. ISPRS Int. J. Geo-Inf. 2019, 8, 21. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Z.J.; Li, M.C. A parallel method to accelerate spatial operations involving polygon intersections. Int. J. Geogr. Inf. Sci. 2018, 32, 2402–2426. [Google Scholar] [CrossRef]
- Dowers, S.; Gittings, B.M.; Mineter, M.J. Towards a framework for high-performance geocomputation: Handling vector-topology within a distributed service environment. Comput. Environ. Urban Syst. 2000, 24, 471–486. [Google Scholar] [CrossRef]
- Liu, Y.M.; Yang, J.; Puri, S. Hierarchical filter and refinement system over large polygonal datasets on cpu-gpu. In Proceedings of the IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), Hyderabad, India, 17–20 December 2019; pp. 141–151. [Google Scholar] [CrossRef]
- Cramer, T.; Schmidl, D.; Klemm, M.; Mey, D.A. OpenMp programming on intel r xeon phi tm coprocessors: An early performance comparison. In Proceedings of the Many-Core Applications Research Community Symposium 2012, Aachen, Germany, 29–30 November 2012; pp. 38–44. [Google Scholar]
- Geer, D. Chip makers turn to multicore processors. Computer 2005, 38, 11–13. [Google Scholar] [CrossRef]
- Fan, J.F.; Ma, T.; Ji, M.; Zhou, Y.K.; Xu, T. Implementation and optimization of eight parallel polygon overlapping tools with OpenMP at the feature layer level in GIS. Prog. Geogr. 2013, 32, 1835–1844. [Google Scholar] [CrossRef]
- Jiang, Y.Y. Efficient Storage and Parallel Overlay Analysis of Massive Vector Data in Cloud Computing Environment. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2021. [Google Scholar] [CrossRef]
- Ye, J.Y.; Chen, B.; Chen, J.; Fang, Y.; Wu, L. A spatial data partition algorithm based on statistical cluster. In Proceedings of the 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Mineter, M.J. A software framework to create vector-topology in parallel GIS operations. Int. J. Geogr. Inf. Sci. 2003, 17, 203–222. [Google Scholar] [CrossRef]
- Wang, S.W.; Cowles, M.K.; Armstrong, M.P. Grid computing of spatial statistics: Using the TeraGrid for G (d) analysis. Concurr. Comput. Pract. Exp. 2008, 20, 1697–1720. [Google Scholar] [CrossRef]
- Lee, C.K.; Hamdi, M. Parallel image processing applications on a network of workstations. Parallel Comput. 1995, 21, 137–160. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, L. Hilbert curve based spatial data declustering method for parallel spatial database. In Proceedings of the 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Wu, L.X.; Guo, J.T.; Li, Z.F.; Liu, S.J. A method of spatial data partition for efficient parallel computing of topological relation. Geogr. Geo-Inf. Sci. 2013, 29, 25–29. [Google Scholar]
- Wu, X.Q.; Wu, Y.; Chen, L.; Jing, N. A parallel cut-fill algorithm for largescale DEM data. Geomat. World 2019, 26, 21–25. [Google Scholar]
- Zhang, Z.K.; Fan, J.F.; Xu, S.B.; Chen, Z. VCS Optimization Method of Vatti Algorithm for Polygon Overlay and Parallelization Using GPU. J. Geo-Inf. Sci. 2022, 24, 437–447. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Jin, B.X.; Zhao, K.; Zhou, S.Y. Research on measurement of polygon shape complexity in overlay calculation. Sci. Surv. Mapp. 2020, 45, 177–184. [Google Scholar] [CrossRef]
- Tilove, R.B. Line/polygon classification: A study of the complexity of geometric computation. IEEE Comput. Graph. Appl. 1981, 1, 75–88. [Google Scholar] [CrossRef]
- Attneave, F. Physical determinants of the judged complexity of shapes. J. Exp. Psychol. 1957, 53, 221. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Sundaram, H. Estimating complexity of 2D shapes. In Proceedings of the IEEE 7th Workshop on Multimedia Signal Processing, Shanghai, China, 30 October–2 November 2005; pp. 1–4. [Google Scholar] [CrossRef]
- Duan, X.Y.; Deng, X.X.; Zuo, Q.Y. The research on the complexity of progressive die edge. J. Eng. Graph. 2006, 5, 94–97. [Google Scholar] [CrossRef]
- Brinkhoff, T.; Kriegel, H.P.; Schneider, R.; Braun, A. Measuring the Complexity of Polygonal Objects. In Proceedings of the ACM-GIS, Baltimore, MD, USA, 28 November–2 December 1995; Volume 109. [Google Scholar]
- Matsumoto, T.; Sato, K.; Matsuoka, Y.; Kato, T. Quantification of “complexity” in curved surface shape using total absolute curvature. Comput. Graph. 2019, 78, 108–115. [Google Scholar] [CrossRef]
- Guo, M.Q.; Guan, Q.F.; Xie, Z.; Wu, L.; Luo, X.G.; Huang, Y. A spatially adaptive decomposition approach for parallel vector data visualization of polylines and polygons. Int. J. Geogr. Inf. Sci. 2015, 29, 1419–1440. [Google Scholar] [CrossRef]
- Li, A.B.; Chen, Y.; Yao, M.M.; Wu, S.S. Quantitative measurement of geometrical information for sensitive features in secret-related vector digital maps. J. Geo-Inf. Sci. 2018, 20, 7–16. [Google Scholar] [CrossRef]
- Zhang, P.; Fan, J.F.; Zhang, P.P.; Zhang, Z.K.; Chen, Z.; Han, L.S. Comparative Study on the Effect of Shape Complexity on the Efficiency of Different Overlay Analysis Algorithms. IEEE Access 2021, 9, 144179–144194. [Google Scholar] [CrossRef]
- Wang, Z.J.; Lin, X.; Fang, M.E.; Yao, B.; Peng, Y.; Guan, H.B.; Guo, M.Y. Re2l: An efficient output-sensitive algorithm for computing Boolean operations on circular-arc polygons and its applications. Comput.-Aided Des. 2017, 83, 1–14. [Google Scholar] [CrossRef]
- Liang, Y.D.; Barsky, B.A. An analysis and algorithm for polygon clipping. Commun. ACM 1983, 26, 868–877. [Google Scholar] [CrossRef]
- Sutherland, I.E.; Hodgman, G.W. Reentrant polygon clipping. Commun. ACM 1974, 17, 32–42. [Google Scholar] [CrossRef]
- Weiler, K.; Atherton, P. Hidden surface removal using polygon area sorting. ACM SIGGRAPH Comput. Graph. 1977, 11, 214–222. [Google Scholar] [CrossRef]
- Vatti, B.R. A generic solution to polygon clipping. Commun. ACM 1992, 35, 56–63. [Google Scholar] [CrossRef]
- Greiner, G.; Hormann, K. Efficient clipping of arbitrary polygons. ACM Trans. Graph. (TOG) 1998, 17, 71–83. [Google Scholar] [CrossRef]
- Liu, Y.K.; Gao, Y.; Huang, Y.Q. An efficient algorithm for polygon clipping. J. Softw. 2003, 14, 845–856. [Google Scholar]
- Martinez, F.; Rueda, A.J.; Feito, F.R. A new algorithm for computing Boolean operations on polygons. Comput. Geosci. 2009, 35, 1177–1185. [Google Scholar] [CrossRef]
CPU | GPU | Memory/GB | External Memory/TB | Compiler |
---|---|---|---|---|
AMD Ryzen 9 5950X 3.4 GHz 16 core | NVIDIA GeForce RTX 3090 | 128 | 4 | Visual Studio 2019 |
Experimental Data | Number of Polygons | Number of Vertices | Area/km2 |
---|---|---|---|
Land use patch data from China | 509,219 | 12,914,282 | 96,390.5 |
2009 land use data for several counties in Ningxia | 9129 | 856,238 | 8611.9 |
Polygon Shape Index | Equation | Description |
---|---|---|
Number of vertices (NOV) | The number of vector polygon vertices | |
Amplitude of the vibration (Ampl) | The perimeter difference between the vector polygon and its convex hull | |
Number of holes (NOH) | The number of inner rings of the vector polygon | |
Average nearest neighbor (ANN) | The degree of spatial clustering of the vector polygon vertices | |
Concavity (Conv) | The number of concave points in the vector polygon vertices | |
Equivalent rectangular index (ER) | The difference between the perimeter of a vector polygon and its equal-area rectangle |
R | R2 | Adjusted R2 | |
---|---|---|---|
Vatti Intersection | 0.943 | 0.890 | 0.890 |
Vatti Difference | 0.947 | 0.896 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Zuo, J.; Sun, G.; Shi, Z.; Gao, Y.; Zhang, Y. Multicore Parallelized Spatial Overlay Analysis Algorithm Using Vector Polygon Shape Complexity Index Optimization. Appl. Sci. 2024, 14, 2006. https://doi.org/10.3390/app14052006
Fan J, Zuo J, Sun G, Shi Z, Gao Y, Zhang Y. Multicore Parallelized Spatial Overlay Analysis Algorithm Using Vector Polygon Shape Complexity Index Optimization. Applied Sciences. 2024; 14(5):2006. https://doi.org/10.3390/app14052006
Chicago/Turabian StyleFan, Junfu, Jiwei Zuo, Guangwei Sun, Zongwen Shi, Yu Gao, and Yi Zhang. 2024. "Multicore Parallelized Spatial Overlay Analysis Algorithm Using Vector Polygon Shape Complexity Index Optimization" Applied Sciences 14, no. 5: 2006. https://doi.org/10.3390/app14052006
APA StyleFan, J., Zuo, J., Sun, G., Shi, Z., Gao, Y., & Zhang, Y. (2024). Multicore Parallelized Spatial Overlay Analysis Algorithm Using Vector Polygon Shape Complexity Index Optimization. Applied Sciences, 14(5), 2006. https://doi.org/10.3390/app14052006