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Abstract: Cable-stayed bridges have commonly been built for crossing large-span obstacles, such as
rivers, valleys, and existing structures. Obtaining an optimum design for a cable-stayed bridge is
challenging, due to the large number of design variables and design constraints that are typically
nonlinear and usually conflict with each other. Therefore, it is a reasonable alternative to turn
the large and complex optimization problem into two sub-problems, i.e., optimizing the internal
force distribution by adjusting the cable prestressing forces, and optimizing the other sizing or
geometrical parameters. However, conventional methods are lacking in efficiency when dealing with
the problem of optimization of cable forces in the first sub-problem, under the circumstance that
iteration between the two sub-problems is required. To address this, this paper presents a surrogate-
model-assisted method to construct a cable forces predictor ahead of the structural optimization
process, so that cable forces can be effectively predicted rather than optimized in each iterative round.
Additionally, B-spline interpolation curve is adopted for variable condensation when sampling for
the surrogate model. Finally, the structure optimization in the second sub-problem is performed by
leveraging an optimization program based on particle swarm optimization method. The performance
of the proposed framework is tested with a practical engineering application. Results show that the
proposed method showcases good efficiency and accuracy. The theoretical raw material consumption
of the towers and the cables is 32% lower than the original design.

Keywords: cable-stayed bridges; optimum design; surrogate model; cable forces predictor; particle
swarm optimization

1. Introduction

Cable-stayed bridges have been widely constructed to span roads and rivers. As a
highly redundant structure, cable-stayed bridges have advantages in terms of the stiffness,
wind-load resistance, maintenance, and span-crossing ability. As a result, cable-stayed
bridges have exceeded a span of 1 km in just 60 years since the first cable-stayed bridge
was built. The Chang-Tai Yangtze River Bridge in China, with a total length of 5.3 km and
a main span of 1176 m, is the world’s longest cable-stayed bridge for both highway and
railway. The construction of such a huge engineering structure is extremely challenging
and costly. Therefore, it is becoming increasingly critical to carry out detailed structural
optimization and comparison at the design stage.

For a practical engineering project, the implementation of bridge design optimization
can face a couple of challenges. First, the involved design parameters for optimization of a
cable-stayed bridge are typically high-dimensional. As a highly redundant structure, there
are numerous design parameters to be optimized in the bridge design process. Variables
involved can be classified into mechanical, sizing, geometrical, and topological [1]. The
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optimization problem becomes highly dimensional due to the increasing number of vari-
ables, which hinders efficiency and consumes more time. The interdependency among
design variables exacerbates nonconvexity and nonlinearity, making the problem difficult
and challenging. In addition, various constraints need to be considered in the optimization
design of cable-stayed bridges. Due to the complexity of real-world environments and
bridge-operating conditions, engineers should consider the varieties of site, structure, ma-
terial, member, section type, load cases, and the complex verification items of specification.
These considerations, whether linear or nonlinear, make the feasible domain very limited
within the design space. Moreover, the mechanical behavior of cable-stayed bridges must
be properly simulated. Cable-stayed bridges transmit loads with cables. They are relatively
flexible structures compared to girder and arch bridges. Therefore, the geometric nonlin-
earity caused by sag effect of cables, large displacement effect, and p-∆ effect, should be
considered. Though current commercial software can handle these non-linearity effects by
finite element analysis, the simulation can be time-consuming and undermine the feasibility
of optimization.

To address these challenges, a lot of research has been conducted to advance the
computational methods or strategies for the design optimization of cable-stayed bridges.
Early studies conducted by Feder [2] introduced an optimality-criteria-based method to
determine the prestressing forces of cables in steel bridges. Similar early studies involved
plenty of assumptions and addressed the problem using simplified mathematical formulas.
Sung et al. [3] minimized the total strain energy expressed as a quadratic function of the
post-tensioning cable forces with an influence matrix. Baldomir et al. [4] optimized cable
areas for a long-span steel bridge with the finite differences sensitivity analysis method and
solved the problem through a gradient-based sequential quadratic programming algorithm.
A three-stage algorithm was presented by Ha et al. [5] to optimize the cable prestressing ten-
sions with a nonlinear inelastic analysis. Besides the above work on optimizing single type
of variables, research has also been carried out to pursue a more comprehensive “optimum
design” of the bridge. The structural design problem is formulated with various variables
including not only mechanical but also sizing, geometrical, and topological variables. Lute
et al. [6] proposed an optimization method for cable-stayed bridges that utilized a genetic
algorithm to minimize costs while considering geometrical parameters and cross-sectional
dimensions as design variables. A support vector machine was utilized for constraint
verification, and the presented method was proven to be accurate and computationally
efficient for prediction purposes. Gao et al. [7] obtained the optimum design of prestressed
concrete bridges. Design variables included the number of prestressing tendons, cable
forces, cable areas, and girders’ and towers’ sectional dimensions. Cid et al. [8] examined
multi-span cable-stayed bridges while considering geometric nonlinearity effects. The
variables included anchorage positions, cable forces, and cable section areas. The SQP
algorithm was utilized to minimize the total cost of steel, and sensitivity analysis was
conducted using the finite difference method.

However, for the implementation of optimizing a practical cable-stayed bridge, han-
dling all types of variables simultaneously is typically not the most effective strategy,
because this formula can significantly lead to the increase in the dimensionality, noncon-
vexity, and nonlinearity of the problem. Moreover, it should be noted that optimizing the
distribution of internal forces is not intrinsically contradictory to the optimization of the
cost. Taking advantage of this feature, the optimization can be separated into a hierarchical
layout, i.e., sequentially optimizing the mechanics-related variables and the other ones.
Following this idea, [9] is one of the earliest works that introduced surrogate functions that
reveal the potential connection between mechanical variables and other sizing and geomet-
rical variables, therefore decoupling the cable forces optimization from the structural design
optimization. To develop the functions, polynomial regression with the ordinary least
square method was adopted. The necessary data for the regression were collected from a
large parametric study conducted by repeating the finite element technique, while varying
three parameters. The surrogate functions, expressed as quadratic polynomials, explicitly
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related cable forces to three variables concerning the span length, the total length, and the
upper structure height. With these functions, the cable forces can be easily determined for
different variable values to achieve the optimum post-tensioning distribution, which can
minimize the deflection in both the deck and pylon. In later research [10], these functions
are used to facilitate the optimum design of a cable-stayed bridge, considering variables
such as the cables’ section areas, prestressing forces, and cross-sectional dimensions of
the girder.

Although the post-tensioning functions were assessed as accurate in the previous
investigation [10], there are still drawbacks when it comes to optimum design problems
with more complex design conditions. Firstly, the variables included in the functions are
limited in terms of the number and the types, which may lead to inaccurate predictions for
the bridges if some of the other design conditions are changed. Secondly, the variables of
the surrogate functions are supposed to be consistent with those of the optimum design
problem. Therefore, there is a demand for reconstructing the surrogate function if some
new variables that may have a visible influence on the post-tensioning distribution are
introduced. Thirdly, as the number of design variables increases, the nonlinearity of the
problem significantly grows. The polynomial regression will be insufficient to give accurate
predictions, due to its poor anti-interference and local fitting ability, compared with other
regression methods.

To this end, machine learning techniques have recently garnered significant attention.
Researchers have explored various tools, including Random Forest [11], Support Vector
Machines [12], and Physics-informed or Data-driven Neural Networks [13], to predict
structural performance or responses. In a broad sense, as these tools are strategically
designed as a cheaper-to-evaluate substitute for the original sophisticated computational
model, they are also typically called surrogate models or meta-models [14]. The conceptual
illustration of the construction and the utilization of a surrogate model is shown in Figure 1.
Multidisciplinary applications have been conducted based on surrogate models to replace
the original time-consuming processes or high-cost experiments. These methods have been
successfully applied in a variety of research fields, such as the hydro-environment [15],
rock and soil mechanics [16], and bridge engineering [17].
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Motivated by the above advancements, the surrogate model from machine learning is
used in this research to replace the surrogate functions and is expected to exhibit greater
adaptability to a large number and diverse types of variables. Four regression models are
studied in this work: Polynomial Regression (PR), Gaussian Process Regression (GPR),
Regression Tree (RT), and Support Vector Regression (SVR). To construct the surrogate
model, samples are collected by means of a full factorial experiment, concerning the modest
number of target sample count and acceptable computational cost. To test the surrogate
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model, the predicted results and optimized results of a design point distinguished from
the samples are compared. Thereafter, the surrogate model is combined with heuristic
algorithms to demonstrate its efficiency in the optimum design. By introducing such a
predictor, the force variables can be decoupled from other sizing and geometrical variables
in the optimization routine, thus enabling a substantial reduction in the problem complexity
and boosting the efficiency of optimization. Additionally, a practical application of a cable-
stayed bridge project with a main span of 818 m has been used to validate the performance
of the proposed framework.

The rest of the paper is organized as follows: Section 2 displays our improved formula
of the two sub-problems. Section 3 presents the proposed methods and their integration
in the overall procedure. Section 4 shows the implementation of the methods on a (358 +
818 + 358)-meter-long cable-stayed bridge example. Section 5 displays the optimization
results and complementary checks. Conclusions are drawn in Section 6.

2. Problem Formula

In a general cable-stayed bridge design, engineers need to carry out comprehensive
design and optimization from the structure configuration to the detail members. In terms
of the configuration, crucial parameters including the length of the main and the side
span, the width of the deck, the height of the towers, and the anchorage position of the
cables should be well determined. In terms of the members, cross-sectional dimensions
of the main members including the towers, the cables, and the deck are supposed to be
well designed. The typical optimum design formula with all design variables optimized
altogether can be stated as

min
X,Q

Φ=
m

∑
j=1

CjVj

s.t.xil ⩽ xi⩽ xiu for all i ∈ NX

qkl ⩽ qk⩽ qku for all k ∈ NQ

σjl ⩽ σ
(p)
j ⩽ σju for all j ∈ M, all p ∈ L

f (p)
j ⩽ f ju for all j ∈ M, all p ∈ L

K(p)
j ⩽ Kju for all j ∈ M, all p ∈ L

(1)

where Φ represents the total cost of members, X = {x1, x2, x3, . . . , xnX} stands for sizing
(e.g., cross-sectional dimensions) and geometrical (e.g., side-span ratio, height-span ratio)
design variables, and Q =

{
q1, q2, q3, . . . , qnQ

}
stands for mechanical (e.g., cable prestress-

ing forces, tendon prestressing forces in reinforced concrete beams) design variables. Ck
and Vk represent the cost coefficient and the volume of the j-th member, respectively.
M = {1, 2, 3, . . . , m} is the member number set. The next two constraints represent the
lower and upper boundaries of the i-th variable in X and the k-th variable in Q, where
NX = {1, 2, 3, . . . , nX} and NQ =

{
1, 2, 3, . . . , nQ

}
. The following three constraints repre-

sent, respectively, the strength, stiffness, and stability constraints of the structure. The first
constraint of these represents the upper bound of the j-th member’s stress response, where
p is the load case identifier and L = {1, 2, 3, . . . , l} is the load case number set. The second
represents the boundary of the deflection response, and the third represents the boundary
of the stability coefficient.

It is worth noting that wind or seismic resistance is also critical, especially in the
design of long-span bridges; however, due to the limit of the paper length, such dynamic
performance is not discussed in this paper. Therefore, the girder sizes are excluded from X
and not optimized in the later example. Meanwhile, considering that cable prestressing
forces are more dominant than tendon prestressing forces in preliminary design, Q consists
only of cable forces in the later example.
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In this optimization, X and Q are variables optimized together, where nq is generally
much larger than nX due to the high density of cables. However, an optimization pro-
cess dealing with X and Q simultaneously is highly complex and computationally costly,
due to their nonlinear and conflicting (i.e., coupling) feature [1]. Thus, in this work, a
reasonable two-layer framework is adopted to decouple them into two sub-problems in
one optimization round.

Sub-problem one (Sp1) is an internal force distribution optimization problem where
Q is optimized with fixed X̂, as most of the “cable forces optimization” problems [18,19].
The most common and practical objective function of Sp1 is the weighted sum of members’
strain energy. The formula of Sp1 can be stated as

min
Q

U = min
Q

∫
S

M2(S,Q)
2EI dS

qkl ⩽ qk ⩽ qku for all k ∈ NQ
f (deadload) ⩽ fu for all p ∈ L

(2)

where U represents the total bending strain energy of members, usually including both the
main girder and the towers, E is Young’s modulus, and I is the bending moment of inertia.
The first constraint is lower and upper bounds set to ensure that the cable force magnitude
does not turn negative or exceed its design strength. In the second constraint, f (deadload)

is the deflection under the dead load case. It is set to ensure that the configuration of the
bridge meets the design upon its completion.

Sub-problem two (Sp2) is a sizing and geometry optimization problem where X is
optimized with Q̂ determined in Sp1. The formula of Sp2 can be stated as

min
X

Φ=
m

∑
j=1

CjVj

s.t.xil ⩽ xi⩽ xiu for all i ∈ NX

σjl ⩽ σ
(p)
j ⩽ σju for all j ∈ M, all p ∈ L

f (p)
j ⩽ f ju for all j ∈ M, all p ∈ L

K(p)
j ⩽ Kju for all j ∈ M, all p ∈ L

(3)

Conceptual differences are shown in Figure 2.
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Figure 2. Illustration of conceptual differences. (a) is the illustration of Formula (1), presenting the
united optimization problem, with X and Q optimized together; (b) is illustration of Formulas (2)
and (3), presenting the decoupled optimization problem. The box above means the sub-problem 1
optimizing Q with fixed X̂. The box below means the sub-problem 2 optimizing X with fixed Q̂. The
two sub-problems are processed iteratively.



Appl. Sci. 2024, 14, 2007 6 of 22

Formula (1) has a drawback in dealing with multiple interdependent variables together,
whereas the routine methods dealing with Formula (2) are overly time-consuming for the
proposed iterative approach. Thus, this paper focuses on how to solve Sp1 in Formula (2)
with greater efficiency and to make the proposed methods more adaptable to different and
complex circumstances. Rather than directly optimizing the cable forces in each iteration
round, this research seeks to solve Sp1 with a surrogate model from machine learning, by
predetermining Q with a cable forces predictor trained in advance of the optimization.

3. The Proposed Method
3.1. Cable Forces Optimization

In the beginning of this section, the method for determining the optimum cable forces,
i.e., Formula (2), is discussed, which builds a foundation for establishing the training
database of the force predictor. It should be noted that a rational distribution of cable
forces in cable-stayed bridges is generally smoothly distributed without sudden changes.
Therefore, B-spline curve presented by French engineer Pierre Bézier, is handy for fitting
the cable force distribution in cable-stayed bridges [20–22]. Compared to the precise
optimization of each original cable force, introducing B-spline greatly condenses design
variables into a few control points, while causing only a limited impact on the overall
structural behavior.

Suppose a p-th degree B-spline curve is introduced, the original dense cable prestressing
forces Q =

{
q1, q2, q3, . . . . . . qnq

}
can be replaced by its control points P =

{
p1, p2, p3, . . . . . . pnp

}
,

where np is far less than nq. The relation between Q and P can be described as

qk =
np

∑
i=0

Ni,p(uk)pi for all k ∈
{

1, 2, 3, . . . . . . , nq
}

(4)

where uk is the relative position of the k-th cable (0 ⩽ uk ⩽ 1), and Ni,p is the shape function.
More detail can be found in [22].

In this work, assisted by the B-spline technique, the following design variables are
considered: four fitting points (d1–d4) in the side span, four fitting points (d5–d8) in the
main span, the force of the No. 1 cable (d9), the range of the counterweight (d10), and the
load magnitude (d11), as shown in Figure 3. The counterweight and its distribution range
are set as variables as a complement to deal with the unbalanced self-weight between the
main span and the side.
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Since Formula (2) is a typical nonlinear optimization problem and the number of
design variables is condensed with B-spline curve, it can be efficiently solved with several
optimization methods, such as the differential evolution and surrogate-model-assisted
differential evolution [17]. The sequential quadratic programming (SQP) solver [23] is
adopted in this research due to its high efficiency (note that the initial point should be
carefully selected to avoid local optimum solutions).

During the sampling to construct the predictor, Formula (2) is solved in collaboration
with MATLAB R2018b and ANSYS 2022 R1 APDL. For each sample, modeling parameters
are derived in the beginning. An initial FEM is built with these modeling parameters in
ANSYS. When the cable forces and counterweight are updated during the cable forces
optimization in MATLAB, the initial strains of the cables are modified for the FEM and the
counterweight is imposed in ANSYS. Then, the static analysis is launched to obtain the
bending energy. If convergence is checked, the result of the sample is output to a text file.
The sample process is completed when it reaches the target sample count.

3.2. Surrogate Model Assisted Predictor

Because of the high computational cost to solve the cable forces optimization problem,
it is appropriate to introduce the surrogate model method to predict the cable forces of the
desired completion state. As shown in Figure 4, the following steps are developed in this
work to train and select a proper surrogate model.
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1. Sampling: Generate training data (or samples) from the design of experiment (DOE) [24].
In this work, the samples are collected by means of a classic full factorial experiment.
As for the cable-force predictor, the input data are the identified design variables, and
the output data are the optimum cable forces taking the form of controlling points
mentioned in Section 3.1. Considering that the cable forces optimization problem is
well solved with the minimum bending energy method and the proper algorithm,
there should be no anomalous sample.

2. Training: Configure the output function based on the machine learning algorithm.
The property of the chosen surrogate model can be evaluated with root mean square
error (RMSE) and training time. The surrogate model with the least RMSE and an
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acceptable training time is the best solution. In this work, the following models
are considered and compared: Polynomial Regression (PR) [25], Gaussian Process
Regression (GPR) [26], Regression Tree (RT) [27], and Support Vector Regression
(SVR) [28].

3. Testing: Create new testing data, conduct the experiment and obtain the actual
responses. Expose the new data to the output function and get the predictions.
Compare the actual responses and the predictions, then evaluate the accuracy of the
surrogate model. If the test fails, it means that the discretization of the variables
is either not dense enough or not rational; so, the design of the experiment should
be adjusted.

With the predictor constructed, the optimized cable forces in each iteration round can
be predetermined in subsequent Sp2. The introduction of the surrogate model significantly
speeds up the iteration process, thus enabling efficient design optimization later.

3.3. Modification Strategies

To simplify some parts of the overall optimization procedure, two modification strate-
gies are further adopted to improve the accuracy of simulations without significantly
reducing efficiency.

3.3.1. Elastic Modulus of the Cables

The first modification is made on the elastic modulus of the cables. Among the three
typical expressions of geometric nonlinearity, namely, sag effect, p-∆ effect, and large
geometric deformation [29], sag effect has the most obvious impact on the optimized cable
forces under dead load. Instead of performing the time-consuming nonlinear analysis, the
Ernst formula modifying the elastic modulus of cable is adopted.

Eeq =
E

1 + EA
12T3 (qH)2

(5)

where Eeq is the effective elastic modulus of the cable, E is the material elastic modulus, A
is the section area, T is the cable prestressing force, q is the cable weight per meter, and H is
the horizontal projection length of the cable.

3.3.2. Section Area of the Cables

The second modification is made on the section area of the cables. Instead of identify-
ing areas for each cable as a variable, 3 to 5 adjacent cables are grouped and share the same
section area. However, there are still too many area variables that hinder the optimization
efficiency. Therefore, an iterative method is adopted in this paper to estimate each cable
area with a certain designated safety factor and calculate the cable force changes caused by
the modification.

The steps are as follows:

1. Calculate objective cable stress σobj = σs/η, where σs is the design strength of cable
material and η is the designated safety factor (η = 3 in this paper).

2. Designate initial section area Ai0 for each cable. Initialize ∆A(k)
i = 0.

3. Get the cable force determined with the cable forces predictor qi.

4. Calculate the cable stress σ
(k)
id under dead load according to σ

(k)
id = qi/

(
Ai0 + ∆A(k)

i

)
.

5. Impose load cases, launch analysis and combine the results. Get the cable stress

response σ
(k)
il under live load.

6. Calculate ∆A(k+1)
i with:

(
Ai0 + ∆A(k+1)

i

)
· σobj = Ai0 ·

(
σ
(k)
id + σ

(k)
il

)
+ ∆A(k+1)

i · li · γ,
where li is the length of the cable and γ is the volumetric weight of the cable material.

7. Designate Ai0 + ∆A(k+1)
i for each cable area.
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8. Check convergence of ∆A(k+1)
i . If convergence is achieved, perform the last load case

analysis; otherwise, return to step 4 and update ∆A(k)
i with ∆A(k+1)

i .

The cable areas and stresses are supposed to converge after only a few iterations
(two times in our later example). This method benefits the optimization by cutting off
the design variables of cable section areas, thus reducing the complexity of the optimiza-
tion problem.

It is worth pointing out that the presented method causes a slight disturbance to the
prediction results due to the redistribution effect of stiffness change. This disturbance is
closely connected with the initial section area Ai0. The closer Ai0 is to its convergent value
Ai0 + ∆A(k)

i , the less the disturbance and the more desirable the corresponding completion
state will be.

3.4. The Proposed Optimization Framework

The optimum design of cable-stayed bridges concerning varieties of variables is typ-
ically a nonconvex problem. Gradient algorithms can often be trapped in local optima.
Therefore, it is advisable to use heuristic algorithms with global search strategies to obtain
the global optimum. Among the commonly used heuristic algorithms, Particle Swarm Algo-
rithm (PSO) stands out due to its fast convergence, few parameters, and easy-to-implement
formula. It is effective for high-dimensional optimization problems and converges quickly to
the optimum solution. Thus, PSO is chosen as the optimization method to solve Formula (3)
in Sp2. Based on the above considerations, the PSO-integrated overall procedure, presented
in Figure 5, is as follows.

1. Problem Definition. Basic information of the optimization problem is identified,
including variables, objective, and constraints. In this work, the problem is defined
as follows:

• Objective function—the total theoretical material cost of the towers and the cables;
• Design variables—several parameters determining the volume or the weight of

the towers and the cables;
• Constraints—variable boundaries to achieve practical design and strength, stiff-

ness and stability verifications;
• Load cases—dead load, vehicle load, wind load, as well as their combinations

according to Chinese Design Code.

2. Predictor Construction. The cable forces predictor is constructed with the surrogate
model method. Detailed construction steps can be found in Section 3.2.

3. Design Optimization. An optimization program is made based on PSO algorithm.
Readers can refer to Appendix A for the basic theory of PSO and Appendix B for the
detailed steps of the program. The program consists of three modules:

• Initialization module—particles are generated randomly within the search area.
Those that pass the constraint verification remain in the swarm. The Pbest, the
Gbest, and their fitness are initialized.

• Iteration module—velocity and position of each particle are updated in each iter-
ation round. Given that the objective function (cost) can be calculated explicitly
and directly by design variables, constraint verification is only performed for
particles whose cost is lower than the previously lowest. The improvement leads
to a reduction in verification times. If the updated particle passes the constraint
verification, the Pbest, the Gbest, and their fitness are updated.

• Structural analysis module—constraints relating to design code verifications are
verified by calling the structural analysis module. In the analysis module, a finite
element model is established, the desired completion state is obtained utilizing
the cable forces predictor, the responses under various load combinations are
analyzed, and finally, the constraints are verified according to the code.
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4. Implementation
4.1. Description

A (358 + 818 + 358)-meter-long cable-stayed bridge was chosen as the example to
implement our formula and methods, as shown in Figure 6. It was a five-span cable-stayed
bridge with two towers. The geometry of the vehicle lanes was planarly straight and
vertically circular (with a radius of 29,000 m). The towers were both in a typical H-shape.
As for the main girder, it was 38.9 m in width and 3.6 m in height.
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4.2. Objective Function

The material cost constitutes a large proportion of the total cost of a construction
project. The theoretical material cost of bridge towers and cables was taken as the objective
function in this paper. The cost of the beam was excluded, because its cross-section should
be designed with priority to satisfy the wind resistance performance. The objective function
is stated as

Φ = Φt + Φc = ∑Nt
i=1 CtLti Ati + ∑Nc

j=1 CcLcj Acjγc (6)

where C is the unit steel weight or concrete volume cost, L is the length of the member, A is
the section area of the member, γ is the volumetric weight of material, and N is the number
of elements.

It is worth noting that the theoretical cost only considers the raw material consumption,
and ignores the other costs including rebars, detailing, labor, and machinery.
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4.3. Design Variables

Parameters directly determining the volume or the weight were supposed to be chosen
as design variables, because the optimization objective was to reduce the total cost of towers
and cables. In the implementation, six variables were chosen for the example in Table 1.
These variables covered different variable formats and types and were a suitable example
for the optimum design problem.

Table 1. Design variables.

Illustration Variable Format Type Symbol
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Ratio of densification length Set φe = le

ls
= 0.65

Half count of mid-span cables Dependent N = round
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lm
2·ln

)
− 1

Count of symmetric cables Dependent Ns = round
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ls ·(1−φe)
ln

)
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(

lm−ld2
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lm−ld2
2ln

)
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)
· ln

Length of none-cable area in the middle Dependent ld2 = ln
Distance of densified anchorage Dependent ld3 =

ls ·φe
Ne
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4.4. Load Cases

To cover all the required verifications in the Chinese Design Code, corresponding load
and their combination cases were included in the example.

1. Dead Load (DL). The dead load consisted of the self-weight, the secondary loads, the
cable tension forces, and the counterweight in the side span.

2. Vehicle Load (VL). The vehicle loads consisted of uniformly distributed loads (q,
40.2 kN/m) and concentrated loads (P, 1377.1 kN). As simplified static loads, four
static load cases with different load layouts were adopted, as shown in Figure 7.
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3. Wind Load (WL). The wind speed for the bridge site was 30.1 m/s. Two wind loads
with different return periods were imposed as the equivalent static gust wind loads
on the main girder, the towers, and the cables, according to the Chinese Design Code.
The return period of the design wind speed of WL1 was 10 years, and that of WL2
was 100 years.

4. Load Combination (LCB). A total of 11 different combinations of the dead load, the ve-
hicle load, and the wind load were considered according to the Chinese Design Code.

4.5. Constraints

Constraints regarding the value ranges of the design variables could be selected
based on engineering experience. They were necessary to make sure the results did not
deviate too much from practical engineering sizes. Note that the ranges here also defined
the boundaries of the samples when constructing the predictor. The consistency ensures
the accuracy of the prediction results for cable forces. Meanwhile, constraints regarding
strength, stiffness, and stability were defined in accordance with the Chinese Design Code.
These constraints chosen to be applied here are the most important items in the preliminary
design of cable-stayed bridges. They are the most typical representatives of the strength,
stiffness, and stability of the bridge. The constraints are shown in Table 3.

Table 3. Constraints and boundaries.

Name Type Load Cases Boundary

X1 Variable All 0.20~0.26
X2 Variable All 12 m~18 m
X3 Variable All 13 m~14 m
X4 Variable All 0.65~0.79
X5 Variable All 0.15~0.29
X6 Variable All 0.5~0.9
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Table 3. Cont.

Name Type Load Cases Boundary

Concrete Design Strength of the towers Strength LCB1~LCB5 −22.4 MPa~1.83 MPa
Steel Design Strength of the main girder Strength LCB1~LCB5 −270 MPa~270 MPa

Safety Stress Factor of the cables Strength LCB1~LCB5 ≥2.5
Vertical Deflection of the main girder Stiffness VL1~VL4 ≤2.045 m

Elastic Buckling Stability Factor Stability LCB6~LCB11 ≥4

4.6. Cable Forces Predictor
4.6.1. Sampling

A modest number of 972 samples were generated from uniformly discretizing the
design variables listed in Table 1, as shown in Table 4.

Table 4. A total of 972 samples generated from design variables.

Variable Boundary Discretization Detail

X1 0.20~0.26 4 0.20, 0.22, 0.24, 0.26
X2 12 m~18 m 3 12 m, 15 m, 18 m
X3 13 m~14 m 3 13 m, 13.5 m, 14 m
X4 0.65~0.79 3 0.65, 0.72, 0.79
X5 0.15~0.29 3 0.15, 0.22, 0.29
X6 0.5~0.9 3 0.5, 0.7, 0.9

Constraints of the cable forces optimization problem mentioned in Section 3.1 included
the following: 1000 kN to 10,000 kN cable force boundary for all the cable forces derived
from variables d1 to d9; 0 to half side span length for variable d10; 0 to the load magnitude
when the main girder was filled with steel grit concrete for variable d11. After defining the
optimization problem, the fmincon function was called in MATLAB to solve it.

4.6.2. Training

The data (i.e., 972 samples including their optimized cable force and counterweight
results) were imported into MATLAB and trained with the Statistics and Machine Learning
Toolbox. The RMSE and training time of variable d1 are shown in Table 5. Results show that
Gaussian Process Regression should be the most suitable training model for our problem,
because the RMSE is the least among the four concerned models. Though the training time
of GPR is the longest, it was still acceptable in terms of absolute timespan. Polynomial
Regression was inadequate in terms of accuracy to deal with optimum design problems,
which further highlights the motivation of this work. Regression Tree was both relatively
accurate in prediction results and efficient in training time. The fast training advantage of
RT is rooted in its efficient binary tree data hierarchy, but it did not show up much because
of the modest number of training data. Support Vector Regression was also inaccurate in
predicting the results, demonstrated by its relatively large RMSE.

Table 5. Training model comparison.

Training Model RMSE Training Time (s)

PR 1964.4 5.8
RT 253.6 2.9

SVR 761.7 3.4
GPR 168.7 11.6
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4.6.3. Testing

Selecting a testing design distinguished from our samples (X1 = 0.23, X2 = 15 m,
X3 = 13.2 m, X4 = 0.69, X5 = 0.25, X6 = 0.85), a test was performed by comparing its predicted
results to individually optimized results. Results in Table 6 and Figure 8 show that the
predictor was accurate enough to determine the optimized cable forces and counterweight
of our example. The predicted bending moment was close to the optimized one over the
entire length. The maximum error of the moment did not exceed 5%, and the relatively large
errors were located at the positions where the moment was small in terms of absolute value.

Table 6. Prediction error of design variables for the testing design.

Design Variables Predicted Result Individually Optimized Result Error (%)

d1 2,690,799.02 N 2,693,537.33 N −0.102
d2 4,233,299.06 N 4,235,208.77 N −0.045
d3 6,032,463.85 N 6,032,898.59 N −0.007
d4 7,723,535.68 N 7,725,499.78 N −0.025
d5 2,033,779.01 N 2,033,014.80 N 0.038
d6 3,360,536.53 N 3,359,055.61 N 0.044
d7 5,259,640.37 N 5,259,081.00 N 0.011
d8 6,625,880.87 N 6,624,414.47 N 0.022
d9 3,557,614.41 N 3,557,905.04 N −0.008
d10 102.91 m 102.91 m −0.036
d11 162,867.39 N/m 162,925.93 N/m 0.005
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4.7. Optimization Settings

Problem-defining parameter settings for PSO (as shown in Table 7) were referenced
from Cao [30], who dealt with the cable-supported bridge optimization problem with PSO
as well.

Table 7. Problem-defining parameters settings for PSO algorithm.

Parameter Symbol Value

Population Np 30
Iteration Count Tmax 500
Learning Factor c c1 = 2.0, c2 = 2.0
Inertia Weight ω ωmax = 0.9, ωmin = 0.4



Appl. Sci. 2024, 14, 2007 15 of 22

The results recorded the Gbest (refer to Appendix A) during the 500 iteration rounds.
The values of variables were stable after around 320 iterations. Meanwhile, there were a to-
tal of 20 price decreases, as shown in Figure 9. After seven times of decrease, the theoretical
material cost nearly stopped decreasing. The results indicate the fast convergence speed of
PSO algorithm in optimum design problems.
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5. Results

The optimized results of the design variables are shown in Table 8. Compared to the
initial values, there was a significant decrease (32%) in the theoretical material cost of the
optimum design, demonstrating the efficiency of our improved formula.

Table 8. The optimum design.

Design Variable Boundary Initial Optimized

X1 0.20~0.26 0.253 0.244
X2 12 m, 15 m, 18 m 12 m 18 m
X3 13 m~14 m 13.5 m 13.012 m
X4 0.65~0.79 0.746 0.670
X5 0.15~0.29 0.256 0.150
X6 0.5~0.9 0.804 0.511

Objective Function Φ (Relative) - 1 0.68

The internal force distribution of the bridge in the obtained optimum solution was
checked to validate the rationality of the design. As shown in Figure 10, the predicted
moment of the main girder was in a jagged shape without any sudden changes. Therefore,
the completion stage of the optimum design was in the desired state.
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Checks were performed to identify if strength, stiffness, and stability constraints were
met in the optimum design. As shown in Table 9, all constraints were met. Meanwhile, the
stress of the towers served as the controlling structural factor in our optimization.

Table 9. Check of strength, stiffness, and stability constraints.

Constraints Boundary Load Cases Optimum Design

Concrete Design Strength
of the towers −22.4 MPa~1.83 MPa LCB1~LCB5 −18.6 MPa~1.83 MPa

Steel Design Strength of
the main girder −270 MPa~270 MPa LCB1~LCB5 −144.51 MPa~52.1 MPa

Safety Stress Factor of
the cables ≥2.5 LCB1~LCB5 2.7

Vertical Deflection of the
main girder ≤2.045 m VL 0.953 m

Elastic Buckling
Stability Factor ≥4 LCB6~LCB11 7.22

Detailed checks of strength, stiffness, and stability constraints under each load combi-
nation are listed in Table 10. The results show that the stress of towers under LCB3 was
close to the boundary (1.83 MPa), which means LCB3 (LCB3 = 1.1 × (1.2 × DL + 1.4 × VL3
+ 0.75 × 1.1 × WL1)) served as the controlling load factor of our optimization. This was
because the LCB3 was composed of all kinds of load types and the VL3 had a side-span
layout, which was unfavorable for the towers.

Table 10. Check of constraints under each load combination.

Type Verification Item Load Cases

Strength

LCB1 LCB2 LCB3 LCB4 LCB5
Tensile stress of the main girder (MPa) 32.26 49.2 52.1 36.45 17.11

Compressive stress of the main girder (MPa) −126.73 −129.43 −122.97 −144.51 −118.39
Tensile stress of the towers (MPa) 0.66 0 1.83 0.42 0.69

Compressive stress of the towers (MPa) −18.2 −18.13 −18.65 −18.66 −17.76
Maximum stress of the cables (MPa) 571.33 619.74 572.6 566.61 526.1

Stiffness
VL1 VL2 VL3 VL4

Maximum deflection of the main girder (m) 0.611 0.952 0.429 0.551

Stability LCB6 LCB7 LCB8 LCB9 LCB10 LCB11
Safe factor 8.13 7.63 7.44 7.79 7.22 8.13

The stresses and deflections were obtained as the maximum over the whole girder or towers. The safe factor of
stability was obtained as the elastic buckling stability factor that corresponds to the first modality. Elements of
were generated by meshing the line between geometry key points with a discretization number of five for the
girder and towers and one for the cables. (In Ansys 2022 R1) The element type of the girder and the towers was
Beam4. The element type of the cables was Link10.

Finally, the complexity of the optimization was evaluated and compared for the
improved formula. In this example, the particle swarm optimization algorithm consisted
of 30 particles and 500 iterations. If the routine method was adopted, the number of
cable forces optimization would be 15,000 times. By means of a surrogate-model-assisted
cable forces predictor, only 972 times were needed for the samples when constructing
the predictor before structural optimization. During the structural optimization process,
the optimum cable forces and counterweight of the particles were determined with the
predictor, eliminating the need for cable forces optimization.

6. Conclusions

In the preliminary design of cable-stayed bridges, it is strategically significant to prop-
erly determine the design parameters. However, it is challenging to obtain the optimum
design of a cable-stayed bridge because of numerous variables, multiple load cases, and
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diverse constraints. Integrated methods are adopted in this paper to enable efficient design
optimization of cable-stayed bridges:

• to simplify the complexity of the problem, an improved two-layer framework is
presented for cable-stayed bridge optimum design problems. The formula consists
of two mutually iterative sub-problems: optimizing the internal force distribution
by adjusting the cable prestressing forces and optimizing the sizing and geometrical
parameters. The sub-problems exhibit fewer variable coupling features, making them
easier to solve.

• to decrease the dimension of the design variables, B-spline interpolation curve is
adopted to condense the variables, instead of setting all cable forces as variables. B-
spline curve stands out when confronting large-span cable-stayed bridges with dense
cables, because it can fit cable force distribution in cable-stayed bridges with only a
few controlling points or fitting points.

• to improve optimization efficiency, a surrogate model-assisted predictor for optimum
cable forces is constructed. The predictor addresses the time-consuming problem of
determining the optimum cable prestressing forces in each of the iteration rounds in
the optimization problem. This predictor is expected to be the highlight of this paper.

• to deal with the nonconvex optimization problem, an optimization program consisting
of the initialization module, iteration module, and structural analysis module is made
based on PSO algorithm. PSO is well-known for its global searching ability. The global
searching ability is enhanced by the following measures: a moderate population
number of 30 which is five times to the number of the design variables; well-set
defining parameters of the algorithm; and the dual strategy (refer to Appendix B)
adopted when initializing particles.

Finally, the optimum design of a (358 + 818 + 358)-meter-long cable-stayed bridge was
chosen as the implementation of the proposed methods. First and foremost, the theoretical
material cost was set as the objective function. Six design parameters closely connected
with cost of the towers and the cables were identified as design variables. Constraints
were set consistently with the Chinese Design Code. Then, 972 samples were generated
by uniformly discretizing the design variables. After training and comparison, Gaussian
Process Regression was demonstrated as the best surrogate model for prediction. The cable
forces predictor was successfully constructed when GPR passed the testing. Afterward,
the optimization program was launched to obtain the optimum design of the variables.
The cable forces predictor was utilized to determine the optimum cable tensions and
counterweight in the program. The predictor eliminated the need to solve the cable forces
optimization problem in each of the iteration rounds, resulting in improved efficiency. The
results show that the theoretical material cost of the optimum design is 32% lower than the
original design. The feasibility and reliability of the structural optimization process were
verified by several checks.

Despite our proposed method demonstrated accuracy and efficiency in our example,
there are still some possible improvements when confronting larger scale problems. For
instance, the surrogate model is naturally a regression trained with given samples, which
indicates that if some new design variables are introduced, or if a wider searching range
is to be explored, the model needs to be updated for the sake of accuracy. Therefore, it
is beneficial to construct a larger version of the cable forces predictor covering a broader
range of potential design variables for cable forces optimization problems. In addition,
the sampling strategy and different surrogate models can also be more comprehensively
compared. These directions can be potentially investigated in future work.
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Appendix A. Basic Theory of Particle Swarm Method

The idea of Particle Swarm Method (PSO) [31] originated from the study of bird flock
foraging behavior. This enables the group to collectively share information and find the
optimum destination.

The most important iterative parameters are as follows:

• Position (xi): The values of the design variables for each particle.
• Velocity (vi): Moving distance and direction for each particle.
• Fitness ( fi): Magnitude of the objective function.
• Pfitness ( fpi): The fitness where the historical best was found for each particle.
• Gfitness ( fg): The fitness where the historical best was found within the whole swarm.
• Pbest (pi,pbest): The position where the Pfitness is for each particle.
• Gbest (pgbest): The position where the Gfitness is within the whole swarm.

The problem defining parameters are as follows:

• Population (Np): Count of the particles. A smaller population size may result in falling
into the local optimum, while a larger population size can improve convergence and
find the global optimum solution faster.

• Iteration Count (Tmax): Maximum number of generations, serving as the ending
criterion.

• Inertia Weight (ω): The influence of the previous generation’s velocity on the current
generation’s velocity, which was introduced by Eberhart [32]. A larger value of ω
enhances the particle’s ability to explore new regions and conduct global optimization
searches but weakens its ability to conduct local optimization searches.

• Learning Factor (c): c1 is the particle learning factor. c1 represents the weight of the
particle’s next action based on its own experience, indicating its attraction to its PBest.
c2 is the swarm learning factor. c2 represents that based on the others’ experience,
indicating its attraction to the Gbest.

The vi and xi are updated in the new generation for each particle as

v(k+1)
i = ωv(k)i + c1r1

(
p(k)i,pbest − x(k)i

)
+ c2r2

(
p(k)gbest − x(k)i

)
(A1)

x(k+1)
i = x(k)i + v(k+1)

i (A2)

where r1 and r2 are random numbers from 0 to 1 to increase the randomness of the search.
The update of particle’s velocity and position is illustrated in Figure A1.
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Appendix B. PSO-Based Optimization Program

A PSO-based optimization program consisting of three modules is made to realize
optimization design. Detailed steps in each module are shown in Figure A2.
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Appendix B.1. Initialization Module

Particle initialization is a crucial step that affects the speed and direction of convergence
in the optimization process. Selecting an appropriate initialization strategy can reduce the
optimization’s convergence time and prevent it from getting trapped in a local optimum.
To achieve this, a dual generation strategy is adopted. For any value xi ∈ R, xi ∈ [ai, bi], its
dual value is xO

i = ai + bi − xi.
Detailed steps of the initialization module are as follows:

1. Randomly generate particle Pi in the search area.
2. Generate the dual particle OPi. Each value within the variable vector of OPi is the

dual value of Pi.
3. Calculate the fitness of Pi and OPi.
4. Verify constraints for Pi and OPi. If both particles pass the verification, the particle

with better fitness is selected in the swarm. If only one of them passes the verification,
the passing particle is selected. If neither of them passes the verification, return to
step 1 and regenerate particle Pi.

5. Repeat step 1~step 4 until the target swarm population is reached.
6. Initialize Pbest, Gbest, Pfitness, and Gfitness.

Appendix B.2. Iteration Module

During the iterative process of the particle swarm optimization algorithm, it is essential
to confine all particles within the feasible region. This means that the constraints of each
particle must be checked. However, verifying the constraints with the finite element
analysis is time-consuming. To improve this, constraint verification is only performed for
particles whose cost is lower than the previously lowest, given that the objective function
(theoretical material cost) can be explicitly and directly calculated by design variables. The
improvement leads to a significant reduction in verification times.

Detailed steps of the iteration module are:

1. Initialize random velocity for each particle in the swarm.
2. Initialize Pfitness, Gfitness, Pbest, and Gbest.
3. Update velocity and position for each particle with Formula (A1) and (A2).
4. Calculate fitness for each particle. If the fitness is worse than Pfitness, undo the update

of position and wait for the next evolution. If the fitness is better than Pfitness and
verification is checked, then update Pbest. If the fitness is also better than Gfitness
with verification checked, then update Gbest.

5. Repeat step 3 and step 4 until each particle in the swarm has been updated.

Appendix B.3. Structural Analysis Module

During initialization and iteration, constraints relating to code verifications are verified
by calling the structural analysis module. The modeling and analysis are performed with
ANSYS 2022 R1 APDL.

Detailed steps of the structural analysis module are as follows:

1. Generate corresponding finite element model in ANSYS for particle.
2. Obtain the optimum cable forces with the predictor constructed in Section 3.2. Change

the initial strain of cable elements.
3. Modify elastic modulus and section areas of cables, with the strategy mentioned in

Section 3.3.
4. Impose loads, launch static analysis, and extract the results.
5. Combine the results according to combination cases.
6. Verify the constraints according to the code.



Appl. Sci. 2024, 14, 2007 21 of 22

References
1. Martins, A.M.B.; Simões, L.M.C.; Negrão, J.H.J.O. Optimization of Cable-Stayed Bridges: A Literature Survey. Adv. Eng. Softw.

2020, 149, 102829. [CrossRef]
2. Feder, D. Optimization of the Prestressing in the Cables of a Cable-Stayed Bridge. In Proceedings of the 10th Congress of IABSE,

Tokyo, Japan, 6–11 September 1976. [CrossRef]
3. Sung, Y.-C.; Chang, D.-W.; Teo, E.-H. Optimum Post-Tensioning Cable Forces of Mau-Lo Hsi Cable-Stayed Bridge. Eng. Struct.

2006, 28, 1407–1417. [CrossRef]
4. Baldomir, A.; Hernandez, S.; Nieto, F.; Jurado, J.A. Cable Optimization of a Long Span Cable Stayed Bridge in La Coruña (Spain).

Adv. Eng. Softw. 2010, 41, 931–938. [CrossRef]
5. Ha, M.-H.; Vu, Q.-A.; Truong, V.-H. Optimum Design of Stay Cables of Steel Cable-Stayed Bridges Using Nonlinear Inelastic

Analysis and Genetic Algorithm. Structures 2018, 16, 288–302. [CrossRef]
6. Lute, V.; Upadhyay, A.; Singh, K.K. Computationally Efficient Analysis of Cable-Stayed Bridge for GA-Based Optimization. Eng.

Appl. Artif. Intell. 2009, 22, 750–758. [CrossRef]
7. Gao, Q.; Yang, M.-G.; Qiao, J.-D. A Multi-Parameter Optimization Technique for Prestressed Concrete Cable-Stayed Bridges

Considering Prestress in Girder. Struct. Eng. Mech. 2017, 64, 567–577. [CrossRef]
8. Cid, C.; Baldomir, A.; Hernández, S. Optimum Crossing Cable System in Multi-Span Cable-Stayed Bridges. Eng. Struct. 2018, 160,

342–355. [CrossRef]
9. Hassan, M.M.; Nassef, A.O.; Damatty, A.A.E. Surrogate Function of Post-Tensioning Cable Forces for Cable-Stayed Bridges. Adv.

Struct. Eng. 2013, 16, 559–578. [CrossRef]
10. Hassan, M.M.; Nassef, A.O.; El Damatty, A.A. Optimal Design of Semi-Fan Cable-Stayed Bridges. Can. J. Civ. Eng. 2013, 40,

285–297. [CrossRef]
11. Li, Y.; Zou, C.; Berecibar, M.; Nanini-Maury, E.; Chan, J.C.-W.; Van Den Bossche, P.; Van Mierlo, J.; Omar, N. Random Forest

Regression for Online Capacity Estimation of Lithium-Ion Batteries. Appl. Energy 2018, 232, 197–210. [CrossRef]
12. Song, C.; Shafieezadeh, A.; Xiao, R. High-Dimensional Reliability Analysis with Error-Guided Active-Learning Probabilistic

Support Vector Machine: Application to Wind-Reliability Analysis of Transmission Towers. J. Struct. Eng. 2022, 148, 04022036.
[CrossRef]

13. Zhang, C.; Shafieezadeh, A. Nested Physics-Informed Neural Network for Analysis of Transient Flows in Natural Gas Pipelines.
Eng. Appl. Artif. Intell. 2023, 122, 106073. [CrossRef]

14. Han, Z.-H.; Görtz, S. Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling. AIAA J. 2012, 50, 1885–1896. [CrossRef]
15. Meert, P.; Pereira, F.; Willems, P. Surrogate Modeling-Based Calibration of Hydrodynamic River Model Parameters. J. Hydro-

Environ. Res. 2018, 19, 56–67. [CrossRef]
16. Furtney, J.K.; Thielsen, C.; Fu, W.; Le Goc, R. Surrogate Models in Rock and Soil Mechanics: Integrating Numerical Modeling and

Machine Learning. Rock Mech. Rock Eng. 2022, 55, 2845–2859. [CrossRef]
17. Song, C.; Xiao, R.; Sun, B.; Wang, Z.; Zhang, C. Cable Force Optimization of Cable-Stayed Bridges: A Surrogate Model-Assisted

Differential Evolution Method Combined with B-Spline Interpolation Curves. Eng. Struct. 2023, 283, 115856. [CrossRef]
18. Asgari, B.; Osman, S.A.; Adnan, A. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed

Bridges. Sci. World J. 2014, 2014, 503016. [CrossRef]
19. Sun, S.J.; Gao, J.; Huang, P.M. Forward-Calculating Optimization Method for Determining the Rational Construction State of

Cable-Stayed Bridges. Adv. Mater. Res. 2013, 671–674, 980–984. [CrossRef]
20. Guo, J.; Yuan, W.; Dang, X.; Alam, M.S. Cable Force Optimization of a Curved Cable-Stayed Bridge with Combined Simulated

Annealing Method and Cubic B-Spline Interpolation Curves. Eng. Struct. 2019, 201, 109813. [CrossRef]
21. Hassan, M.M. Optimization of Stay Cables in Cable-Stayed Bridges Using Finite Element, Genetic Algorithm, and B-Spline

Combined Technique. Eng. Struct. 2013, 49, 643–654. [CrossRef]
22. Song, C.; Xiao, R.; Sun, B. Optimization of Cable Pre-Tension Forces in Long-Span Cable-Stayed Bridges Considering the

Counterweight. Eng. Struct. 2018, 172, 919–928. [CrossRef]
23. Boggs, P.T.; Tolle, J.W. Sequential Quadratic Programming. Acta Numer. 1995, 4, 1–51. [CrossRef]
24. Weissman, S.A.; Anderson, N.G. Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org.

Process Res. Dev. 2015, 19, 1605–1633. [CrossRef]
25. Montgomery, D.C.; Peck, E.A. Introduction to Linear Regression Analysis, 2nd ed.; Wiley Series in Probability and Mathematical

Statistics Applied Probability and Statistics; Wiley: New York, NY, USA, 1992; ISBN 978-0-471-53387-0.
26. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998, 13,

455–492. [CrossRef]
27. Gordon, A.D.; Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Biometrics 1984, 40, 874.

[CrossRef]
28. Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New Support Vector Algorithms. Neural Comput. 2000, 12, 1207–1245.

[CrossRef]
29. Nazmy, A.S.; Abdel-Ghaffar, A.M. Three-Dimensional Nonlinear Static Analysis of Cable-Stayed Bridges. Comput. Struct. 1990,

34, 257–271. [CrossRef]

https://doi.org/10.1016/j.advengsoft.2020.102829
https://doi.org/10.5169/seals-10516
https://doi.org/10.1016/j.engstruct.2006.01.009
https://doi.org/10.1016/j.advengsoft.2010.05.001
https://doi.org/10.1016/j.istruc.2018.10.007
https://doi.org/10.1016/j.engappai.2009.04.001
https://doi.org/10.12989/SEM.2017.64.5.567
https://doi.org/10.1016/j.engstruct.2018.01.019
https://doi.org/10.1260/1369-4332.16.3.559
https://doi.org/10.1139/cjce-2012-0032
https://doi.org/10.1016/j.apenergy.2018.09.182
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003332
https://doi.org/10.1016/j.engappai.2023.106073
https://doi.org/10.2514/1.J051354
https://doi.org/10.1016/j.jher.2018.02.003
https://doi.org/10.1007/s00603-021-02720-8
https://doi.org/10.1016/j.engstruct.2023.115856
https://doi.org/10.1155/2014/503016
https://doi.org/10.4028/www.scientific.net/AMR.671-674.980
https://doi.org/10.1016/j.engstruct.2019.109813
https://doi.org/10.1016/j.engstruct.2012.11.036
https://doi.org/10.1016/j.engstruct.2018.06.061
https://doi.org/10.1017/S0962492900002518
https://doi.org/10.1021/op500169m
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.2307/2530946
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1016/0045-7949(90)90369-D


Appl. Sci. 2024, 14, 2007 22 of 22

30. Cao, H.; Qian, X.; Chen, Z.; Zhu, H. Layout and Size Optimization of Suspension Bridges Based on Coupled Modelling Approach
and Enhanced Particle Swarm Optimization. Eng. Struct. 2017, 146, 170–183. [CrossRef]

31. Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the MHS’95: Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

32. Eberhart, R.C.; Shi, Y. Comparison between Genetic Algorithms and Particle Swarm Optimization. In Evolutionary Programming
VII; Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1998; Volume 1447, pp. 611–616. ISBN 978-3-540-64891-8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engstruct.2017.05.048

	Introduction 
	Problem Formula 
	The Proposed Method 
	Cable Forces Optimization 
	Surrogate Model Assisted Predictor 
	Modification Strategies 
	Elastic Modulus of the Cables 
	Section Area of the Cables 

	The Proposed Optimization Framework 

	Implementation 
	Description 
	Objective Function 
	Design Variables 
	Load Cases 
	Constraints 
	Cable Forces Predictor 
	Sampling 
	Training 
	Testing 

	Optimization Settings 

	Results 
	Conclusions 
	Appendix A
	Appendix B
	Initialization Module 
	Iteration Module 
	Structural Analysis Module 

	References

