
Citation: Qiu, S.; Li, B.; Tong, R.;

He, X.; Tang, C. Efficient Path

Planning Based on Dynamic Bridging

Rapidly Exploring Random Tree.

Appl. Sci. 2024, 14, 2032.

https://doi.org/10.3390/app14052032

Academic Editor: Jonghoek Kim

Received: 2 February 2024

Revised: 22 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Efficient Path Planning Based on Dynamic Bridging Rapidly
Exploring Random Tree
Shulei Qiu 1,*, Baoquan Li 1, Ruiyang Tong 1, Xiaojing He 1 and Chuanjing Tang 2

1 School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;
libq@tiangong.edu.cn (B.L.); tong166159@163.com (R.T.); 2130081007@tiangong.edu.cn (X.H.)

2 School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China;
2222008055@stmail.ujs.edu.cn

* Correspondence: qslqer@163.com; Tel.: +86‑1886‑201‑3989

Abstract: In the domain ofmobile robotic navigation, the real‑time generation of low‑cost, executable
reference trajectories is crucial. This paper propounds an innovative path planning strategy, termed
Dynamic Bridging Rapidly Exploring Random Tree (DBR‑RRT), which endeavors to enable safe
and expedited path navigation. Initially, a heuristic discrimination method is engaged in the path
search phase, whereby the issue of sluggish search velocity is tackled by evaluatingwhether sampled
points reside at “bridging locations” within a free space, and by assessing the spatial–geometric rela‑
tionships between proximate obstacles and auxiliary points. Subsequently, by leveraging extended
speed, additional sampling points are generated in the vicinity of existing points to augment the
search’s efficacy. Ultimately, the path is optimized and pruned by synthesizing the local curvature
of the sampling points and the proximity to obstacles, assigning varied priorities to nodes, thus en‑
suring that the path’s quality and smoothness is upheld.

Keywords: RRT; path planning; dynamic sampling; path trimming; mobile robot

1. Introduction
Mobile robots have gained widespread application in fields such as industrial pro‑

duction, transportation, and the service industry, becoming a focal point in current tech‑
nological research [1,2]. Path planning refers to the process by which robots navigate au‑
tonomously based on environmental perception through their sensors [3,4], and its algo‑
rithm design and optimization cannot be separated from the effective deployment of sen‑
sors [5]. The autonomous navigation of mobile robots is an intelligent system encompass‑
ing technologies such as environmental perception, path planning, and navigation posi‑
tioning [6,7]. Path planning is a core research issue within this system, with its goal being
to find a path from a starting point to a destination while ensuring that the robot avoids
collisions with obstacles in the environment. Moreover, the path should meet one or more
criteria, such as shortest distance, least time, or minimum energy consumption [8], ensur‑
ing the efficiency and reliability of pathways is also critical to achieving a highly automated
urban transportation network [9]. Over the past few decades, numerous path planning al‑
gorithms have been proposed and widely applied in various fields, including, but not lim‑
ited to, autonomous driving, drone navigation, and industrial robots. The study of path
planning problems was initially carried out based on a grid‑based approach, which first
divides the environmental map into a series of grid cells. For example, graph search algo‑
rithms like A* [10,11] andD* [12], while theoretically robust and offering optimal solutions
at a consistent resolution, are hampered by a significant drawback due to the challenges
in selecting an appropriate a priori resolution. When the resolution is set too low, the qual‑
ity of the resultant paths tends to be suboptimal. Conversely, setting a high‑resolution
leads to an exponential increase in computational costs, especially in the context of high‑
dimensional space problems, necessitating prolonged processing times. Another issue is

Appl. Sci. 2024, 14, 2032. https://doi.org/10.3390/app14052032 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14052032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5227-3508
https://doi.org/10.3390/app14052032
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14052032?type=check_update&version=1

Appl. Sci. 2024, 14, 2032 2 of 24

their lack of real‑time efficiency, as these algorithms require re‑graphing and replanning,
resulting in reduced efficiency. Optimization‑based methods, such as artificial potential
field methods [13], are widely used due to their ease of implementation but may fall into
local minima.

With the advancement of technology, computing power has been greatly improved
and more complex algorithms have been developed, so geometry‑based methods have
begun to be studied and applied. For example, the Voronoi diagram [14]. The Voronoi
diagram divides the space into a series of polygonal regions; each region contains a gener‑
ating point, and the distance fromanypoint in the region to the generating point is less than
the distance to other generating points. The Voronoi diagram guides the mobile robot to
avoid obstacles by generating paths within a safe distance from the edges of obstacles, but
in highly complex environments, the Voronoi diagram may generate too many Voronoi
diagrams, and the generated paths tend to bypass the midpoint of the obstacle, making
it difficult to find an optimal solution. This is especially true in environments with many
small obstacles or obstacles with complex shapes.

Subsequently, sampling‑based path planning methods have received a lot of atten‑
tion. Sample‑based planning methods, due to their ability to provide feasible paths for
robots in the short term, have garnered considerable interest. For instance, the Rapidly
Exploring Random Tree (RRT) [15] method consistently samples independent states in the
search space and incrementally extends towards the goal state, offering the robot a path
around obstacles. Another approach, RRT‑Connect, proposed by Klemm et al. [16], im‑
proves the speed of finding feasible paths by expanding two search trees simultaneously
from the starting point and the endpoint. However, although RRT exhibits good computa‑
tional efficiency, the path it produces is often not optimal, causing the robot to take more
time to reach the target location. In [17], Kang et al. proposed an improved RRT‑Connect
algorithm, which enhances the efficiency of the traditional RRT algorithm by adopting a
rewire‑tree method based on the triangle inequality, effectively reducing the redundancy
commonly seen in paths generated by the standard RRT algorithm. Similarly, in [18],
Karaman et al. introduced the improved RRT* algorithm. By updating the tree through
reselecting parent nodes, it can find suboptimal paths. However, this approach is charac‑
terized by high computational costs and lower efficiency.

There are also artificial intelligence‑based path planning techniques such as the ant
colony algorithm [19], or the use of machine learning [20] and deep learning [21] models to
predict and optimize paths. The ant colony algorithm is computationally intensive and has
a slow convergence rate, although it can obtain a global optimal solution. Machine learn‑
ing and deep learning approaches learn strategies for path planning from large amounts of
data, andwhile they performwell in some scenarios, as shownWang et al. in [22], who pro‑
posed a convolutional neural network (CNN)‑based path planning algorithm that trains a
model of a CNN network capable of non‑uniform sampling, they typically require large
amounts of training data and have poorly interpreted models.

2. Related Work
To address these challenges, researchers have gradually introduced more sophisti‑

cated strategies. In [23], Kun et al. employed the strategy of the directed expansion of new
nodes, making the algorithmmore efficient, combined with curvature constraints for path
smoothing. However, this method’s drawback is the excessive path search time. Other
researchers also offered their solutions. Based on the RRT method, in [24], Karaman et al.
introduced a rewire process and path cost function to improve the nodes in the existing
search tree and their connections. This adjustment made RRT achieve an asymptotically
optimal performance, but the process of finding the optimal path can greatly increase
the time required for path planning. Gammell et al. proposed the improved algorithm
Informed‑RRT* in [25], which utilizes an elliptical heuristic search for optimal sampling.
This approach addresses the strong randomness inherent in the traditional RRT algorithm.
However, it tends to encounter local extremum issues in complex scenarios. Subsequently,

Appl. Sci. 2024, 14, 2032 3 of 24

in [26], Gammell et al. introduced Bi‑RRT*, which constrains the sampling range and em‑
ploys dual trees between the start and goal points to communicate information, thereby
further enhancing the overall convergence speed, but this method still suffers from the
problems of a low success rate for path planning under small samples, and the planning
efficiency still needs to be improved under large samples. In [27], Yin effectively reduces
the number of mobility simulations required for path planning by combining the RRT al‑
gorithm with adaptive surrogate modeling. Using the surrogate model to guide the ex‑
ploration of random trees under mobility reliability constraints, and then employing these
exploration trees and reliability assessments to refine the surrogate model. However, a
high dependence on the accuracy of the agent model can generate problems such as, for
example, insufficient preparation of the initial agent model or the inability to update it ef‑
ficiently during the exploration process. Islam et al. proposed RRT*‑Smart in [28], which,
after generating the initial path, improves RRT*’s convergence speed by removing redun‑
dant nodes and optimizing sampling. In [29], Dai proposed a novel algorithm based on
bidirectional Rapidly Exploring Random Trees and direct connection. Initially, an expan‑
sion strategy based on artificial potential fields was designed in the joint space, which was
then integratedwith theGB‑RRT algorithm. Additionally, a direct connection strategywas
developed to enhance the efficiency of expansion, ensuring larger safety margins between
the obstacles and the system.

In specific environments such as narrow spaces or areas with dense obstacles issues
like difficulty in node expansion and generation of convoluted paths arise. Ji proposed
the Ellipsoidal Rapidly exploring Random Tree (E‑RRT*) in [30]. This approach replaces
line segments with ellipsoids to connect adjacent nodes and introduces a slow informed
guidance method to optimize the sampling process, effectively addressing path planning
challenges in confined spaces. In [31], Zhang made distinct optimizations to the sampling
and proposed a flow‑based VF‑RRT* algorithm. This method quantifies the process of
feasible path countercurrent using a parameter called the up‑flow coefficient, constructs a
heuristic space based on the flow function, and adaptively rejects sampling nodes outside
the flow value range with an adjustable probability.

Another noteworthy method is the Fast‑Marching Tree (FMT*) method [32], which
combines probabilistic roadmap and RRT approaches by using a set + of sample points
for tree expansion. However, the FMT method has the particular issue of redundant ex‑
ploration, which leads to a decline in its path‑searching performance. To solve this prob‑
lem, Wu Zhen et al. proposed a direction‑selective heuristic function that can evaluate
the cost gradient of the samples, adjust the ordering of samples, and guide the expansion
of FMT. Furthermore, in [33], the Safe Tunnel‑based FMT* (ST‑FMT*) method generates a
preprocessed initial path before method expansion and then constructs a safe tunnel for
sampling, which accelerates the convergence speed of the algorithm. Among the sampling‑
based path planning algorithms, the RRT planning method with a better search capability
is suitable for use in complex environments, and the method only requires real‑time lo‑
cal data to dynamically construct the search tree. However, RRT node expansion slows
down its search efficiency due to the large number of collision detections required. In ad‑
dition, RRT‑generated paths are often redundant and convoluted, making them difficult
for mobile robots to execute.

To address these issues, an efficient path planning method based on Dynamic Bridg‑
ing RRT (DBR‑RRT) is proposed, aiming to optimize the efficiency of the RRT‑Connect
algorithm, and, at the same time, to reduce the speed mutation phenomenon that occurs
in the rapid operation of themobile robot, and to achieve a good balance between the speed
and the smoothness of the operation. The main contributions are as follows:
1. Firstly, a heuristic discrimination method is used in path planning to solve the prob‑

lem of a slow search speed due to node extension collision detection by evaluating
whether the sampling points are in free space and assessing the spatial location rela‑
tionship between neighboring obstacles and setup assistance points.

Appl. Sci. 2024, 14, 2032 4 of 24

2. Then, for the extended search phase, the sampling points with the slowest extension
speed are searched for, and the set of sampling points is generated in their vicinity to
improve the search efficiency.

3. Finally, for the path optimization and pruning phases, different priorities are as‑
signed to the nodes by comprehensively evaluating the sampling point connectivity
and proximity to obstacles, which ultimatelymakes the generated path smoother and
easier to execute.

3. Problem Formulation
Despite significant advancements in path planning algorithms, they still encounter

critical challenges. A primary issue is that tree expansion near obstacles involves extensive
collision detection, which significantly hampers search efficiency. Additionally, the gen‑
erated paths often lack smoothness and tend to be excessively tortuous. This shortcoming
contradicts the fundamental principles of vehicle kinematics. Consequently, the pressing
question is how to enhance path planning algorithms to meet the stringent requirements
of robot kinematics while addressing these inefficiencies and ensuring smoother trajecto‑
ries. This paper will delve deeply into this issue with the aim of balancing the generation
of efficient paths as well as the stability of robot operation.

The structure of this paper is as follows: the remaining part of this section reviews
the existing path planning methods and their advantages and disadvantages; the fourth
part details our method and its implementation process; the fifth part presents our ex‑
perimental results and compares the performance of our method with other methods; fi‑
nally, the sixth part summarizes the main contributions of this paper and discusses future
research directions.

3.1. Traditional Famework
This section will briefly review the RRT‑Connect path planning method. The RRT‑

Connect algorithm, a bidirectional version of the RRT algorithm, does not require pre‑
sampling and storage of the entire configuration space, but explores the entire state space
through function iteration.

The random tree growth process of RRT‑Connect is shown in Figure 1, with the spe‑
cific steps as follows:

1. Initialize the starting point qstart, the endpoint qgoal , and obstacles, and initialize the
starting search tree Tstart and the ending search tree Tgoal , as well as the step
length step.

2. A randomly selected sampling point qrand in space is used to guide the expansion of
the random tree. This point needs to satisfy motion constraints and capture collisions
with objects in the environment. Then, iterate over all the nodes on the random tree
Tstart, compute the distance between them and the sampling point qrand, and filter the
node qnearest1 that is closest to that point.

3. The node qnearest1 on the random tree Tstart grows a fixed number of steps in the direc‑
tion of the sampling point qrand to obtain a new leaf node qnew1. If there is no collision
with an obstacle during the movement in the direction from the node qnearest1 to the
new node qnew1, the node qnew1 will be added to the random tree Tstart. Otherwise,
the point will be discarded, and the process will revert to step 2.

4. Then, iterate over all the nodes on the random tree Tgoal , and calculate their distances
to the new node qnew2. Perform the same process as in step 3 on the random tree Tgoal
to obtain the new node qnew2 on it.

5. Using the greedy search algorithm, step 4 is repeated on the random tree Tgoal . When
an obstacle is encountered during the growth of the random tree, the growth
is stopped.

6. Then, exchange the two random trees and repeat step 2–step 6. Within the specified
number of searches, when qnew1 and qnew2 are the same, a path connecting the initial
point and the goal point can be obtained, indicating successful path planning.

Appl. Sci. 2024, 14, 2032 5 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 25

5. Using the greedy search algorithm, step 4 is repeated on the random tree goalT .
When an obstacle is encountered during the growth of the random tree, the growth
is stopped.

6. Then, exchange the two random trees and repeat step 2–step 6. Within the specified

number of searches, when 1newq and 2newq are the same, a path connecting the in-
itial point and the goal point can be obtained, indicating successful path planning.

startq

step

1nearestq 1newq

2newq
2nearestq

goalq
randq

Figure 1. RRT-Connect extension steps. The nodes in startT are displayed as black nodes, while

the nodes in goalT are displayed as red nodes.

3.2. Proposed Famework for Path Planning Algorithm

Like the RRT-Connect algorithm, the DBR-RRT algorithm uses two trees, startT and

goalT , growing correspondingly from the starting state and target state. What differenti-
ates our new algorithm is the use of heuristic sampling and dynamic sampling strategies.

The DBR-RRT algorithm proposed in this paper is composed of a path search (Bridge
Test [34]) strategy. Firstly, DBR-RRT introduces a heuristic method to determine whether
a sample point is in the free space “Bridge”. This method evaluates the expansion value
of the sampled point based on the relationship between the auxiliary point’s location and
obstacles. The tree is only expanded when the Bridge Test concept is passed, to solve the
problem of slow search due to extension collision detection. Moreover, DBR-RRT intro-
duces a dynamic sampling strategy based on expansion speed, generating sampling
points set around nodes with slower expansion speed. This allows the tree to expand into
obstacle-dense areas or areas with complex shapes at a faster rate, thus enhancing the
search efficiency. Finally, rapid path smoothing is applied to the path generated by this
technique. Through continuous iterations, the original path is optimized to produce a
smoother and higher-quality path.

For initialization, two empty trees are initialized and expanded from the start node
and goal node respectively. DynamicRandomNode() is used to generate an adaptive ran-
dom sampling point. This function considers the current structure of the starting tree

startT and the goal tree goalT , thereby more intelligently choosing sampling points.
The following is the Pseudocode of the DBR-RRT algorithm:

Algorithm 1. DBR-RRT
Notation: start point S , goal point G , obstacle O , vertices and edges of tree startT ,

goalT , startV , startE , goalV , goalE , random node rX , nearest node nearX , new node newX , con-

nect node conX , path P .
1:   (,) { },{}; { }; {}a a b bV E S V G E
2: while LocalPlanning() do
3: rX GenerateRandomNode()

Figure 1. RRT‑Connect extension steps. The nodes in Tstart are displayed as black nodes, while the
nodes in Tgoal are displayed as red nodes.

3.2. Proposed Famework for Path Planning Algorithm
Like the RRT‑Connect algorithm, the DBR‑RRT algorithm uses two trees, Tstart and

Tgoal , growing correspondingly from the starting state and target state. What differentiates
our new algorithm is the use of heuristic sampling and dynamic sampling strategies.

The DBR‑RRT algorithm proposed in this paper is composed of a path search
(Bridge Test [34]) strategy. Firstly, DBR‑RRT introduces a heuristic method to determine
whether a sample point is in the free space “Bridge”. This method evaluates the expansion
value of the sampled point based on the relationship between the auxiliary point’s loca‑
tion and obstacles. The tree is only expanded when the Bridge Test concept is passed, to
solve the problem of slow search due to extension collision detection. Moreover, DBR‑RRT
introduces a dynamic sampling strategy based on expansion speed, generating sampling
points set around nodes with slower expansion speed. This allows the tree to expand
into obstacle‑dense areas or areas with complex shapes at a faster rate, thus enhancing
the search efficiency. Finally, rapid path smoothing is applied to the path generated by
this technique. Through continuous iterations, the original path is optimized to produce a
smoother and higher‑quality path.

For initialization, two empty trees are initialized and expanded from the start node
and goal node respectively. DynamicRandomNode() is used to generate an adaptive ran‑
dom sampling point. This function considers the current structure of the starting tree Tstart
and the goal tree Tgoal , thereby more intelligently choosing sampling points.

The following is the Pseudocode of the DBR‑RRT algorithm (Algorithm 1):

Algorithm 1. DBR‑RRT

Notation: start point S, goal point G, obstacle O, vertices and edges of tree
Tstart,Tgoal ,Vstart,Estart,Vgoal ,Egoal , random node Xr, nearest node Xnear, new node Xnew, connect
node Xcon, path P.
1: (Va, Ea)← {S}, {}; Vb = {G}; Eb = {}
2: while LocalPlanning() do
3: Xr ←GenerateRandomNode()
4: Xnear ←FindNearestPoint()
5: Xnew ←BridgeTest()
6: if Xnew! = NULL and IsFree(Xnew) then
7: Vstart ← Vstart ∪ {Xnew} ;Estart ← Estart ∪ {(Xnear, Xnew)}
8: UpdateExpandSpeed()
9: Xcon ←FindNearestPoint()
10: if Xcon! = NULL then
11: (Egoal , Vgoal)←ConnectTrees()
12: if TreesConnected() then
13: P←ConstructPath()
14: return PathSmoothing()
15: end if
16: end if
17: end if
18: end while
19: if Vgoal.size() < Vstart.size() then
20: Swap(Vstart, Vgoal); Swap(Estart, Egoal)
21: end if
22: GenerateExtraSamples()

Appl. Sci. 2024, 14, 2032 6 of 24

The algorithm will attempt to identify areas in the search space that have not been
fully explored (i.e., where node expansion is slow), and generate sampling points in these
areas. In addition, if the starting tree and the goal tree are close to each other in space,
the function may be more inclined to generate sampling points in the area between the
two trees to increase the chance of tree connection.

4. Methodology
In this section, the method proposed in this paper for improving the RRT‑Connect al‑

gorithm will be detailed, including the improved Bridge Test, dynamic sampling strategy,
and path‑smoothing techniques. Our goal is to achieve efficient, high‑quality
path planning.

4.1. Bridge Test
The Bridge Test is a heuristic method used to assess the likelihood of a sampling point

being in the “bridge” concept of free space. The core principle of the Bridge Test is based
on Voronoi diagram heuristics. Voronoi diagram is a graphical structure that partitions
space into several regions, each containing a seed point, and any point within that region
is closer to the seed point than to other seed points. In path planning, the Voronoi diagram
can help find a path that is as far away from obstacles as possible.

The basic idea of the Bridge Test is to identify sampling points located on the edge of
the free space Voronoi diagram [35], as these points are more likely to be part of an excel‑
lent path. To achieve this, a geometric analysis method is adopted, combining the spatial
relationships between the sampling points, nearby obstacles, and auxiliary test points, to
determine whether the sampling points align with the conditions of the Voronoi edge.

The theoretical concept of the Bridge Test is shown in Figure 2. A passage exists from
the A direction to B direction. Pc represents a random sampling point on the map. Pd
represents the nearest point in the known tree. Pe and Pf represent newly generated test
points in two directions. Bridge Test is an algorithmic test method for quickly recognizing
and passing through narrow passages (which we call “bridges”) in complex environments.
As shown in Figure 2, in the test we follow several steps to evaluate whether a new sam‑
pling point (Pc) can help find and enter these narrow passages. The steps in the Bridge Test
are as follows:

1. Find the line between the sampled point Pc and the nearest neighbor point Pd in the
search tree and calculate angle θ of this line with respect to the horizontal.

2. Depending on the angle θ, the sampling point Pc is offset by a fixed angle in each of
the positive and negative directions, thus constructing two predetermined test points
Pe and Pf that explore two different directions from Pc.

3. Collision detection is used to verify that the path between the test points, Pc, Pe, Pf is
not blocked by obstacles.

4. If the Pc’s path to one of the test points is open (i.e., unobstructed) and the path to
the other test points is blocked, this indicates that the Pc is located at the entrance to
a potentially narrow channel.

5. Pc is considered to have passed the Bridge Test and will be added to the current
search tree.

In Figure 2b, there is an unobstructed path from Pc to Pe, which means that there are
no narrow passages obstructing passage in this direction. On the contrary, the path from
Pc to Pf partially enters inside the obstacle. This observation suggests that, if the path from
Pc to one test point is blocked by an obstacle while the path to another test point is open,
it can be determined that the point Pc passed the Bridge Test. By this means of creating
handling points, the tree expansion can enter the narrow passagemore quickly. This result
suggests that the sampling point may be located on the Voronoi boundary of free space,
and therefore has a higher expansion priority. During the search process, this priority
allocation helps the algorithm to explore those possible effective paths which lead more

Appl. Sci. 2024, 14, 2032 7 of 24

efficiently to the target and pushes the nodes into the usually neglected narrow passages
with a biasing concept, thus significantly improving search efficiency.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 25

environments. As shown in Figure 2, in the test we follow several steps to evaluate
whether a new sampling point (cP) can help find and enter these narrow passages. The
steps in the Bridge Test are as follows:

1. Find the line between the sampled point cP and the nearest neighbor point dP in
the search tree and calculate angle  of this line with respect to the horizontal.

2. Depending on the angle  , the sampling point cP is offset by a fixed angle in each
of the positive and negative directions, thus constructing two predetermined test
points eP and fP that explore two different directions from cP .

3. Collision detection is used to verify that the path between the test points, cP , eP ,

fP is not blocked by obstacles.

4. If the cP ’s path to one of the test points is open (i.e., unobstructed) and the path to

the other test points is blocked, this indicates that the cP is located at the entrance
to a potentially narrow channel.

5. cP is considered to have passed the Bridge Test and will be added to the current
search tree.



A

B

eP

cP
dP

3
π

fP

A

B

dP
cP

fP

eP

(a) (b)

Figure 2. Bridge Test theory: (a) Generate additional sampling points near the sampling points at
angleθ (b) Connect and detect any obstacles between the newly generated two paths.

In Figure 2b, there is an unobstructed path from cP to eP , which means that there
are no narrow passages obstructing passage in this direction. On the contrary, the path
from cP to fP partially enters inside the obstacle. This observation suggests that, if the

path from cP to one test point is blocked by an obstacle while the path to another test

point is open, it can be determined that the point cP passed the Bridge Test. By this
means of creating handling points, the tree expansion can enter the narrow passage more
quickly. This result suggests that the sampling point may be located on the Voronoi
boundary of free space, and therefore has a higher expansion priority. During the search
process, this priority allocation helps the algorithm to explore those possible effective
paths which lead more efficiently to the target and pushes the nodes into the usually ne-
glected narrow passages with a biasing concept, thus significantly improving search effi-
ciency.

Here is the Pseudocode of the Bridge Test:

Figure 2. Bridge Test theory: (a) Generate additional sampling points near the sampling points at
angle θ (b) Connect and detect any obstacles between the newly generated two paths.

Here is the Pseudocode of the Bridge Test (Algorithm 2):

Algorithm 2. Bridge Test

Notation: sample Xs, angle α, angleOffset αo,distance d, testPoint1 Pe, testPoint2 Pf .
1: α←ComputeAngleXs
2: Pe ←ComputeTestPoint(Xs, α + αo, d)
3: Pf ←ComputeTestPoint(Xs, α− αo, d)
4: if testPass←IsBlocked(Pe, Xs) XOR IsBlocked(Pf , Xs) then
5: return testPass
6: else
7: return false
8: end if

The functions ComputeAngle and ComputeTestPoint have been defined, where the
TestPoint function is used to generate test points.

ComputeAngle: This function calculates the angle between the line from the nearest
node to the current sample (Xs) and the horizontal direction. The resulting angle is used
as a basis for calculating the test points in subsequent steps.

ComputeTestPoint: This function takes the result of ComputeAngle and adds and
subtracts a given angleOffset (αo) to it to produce two new angles. Using these two new
angles and a given distance (d), i.e., the distance from the sampling point to the test point,
the two preset test points are calculated.

IsBlocked: This function checks if the path from the sample point (Xs) to both test
points is blocked by obstacles. This is handled by performing a logical XOR operation on
the results of the obstacle detection at both test points, i.e., if only one test point’s path
is blocked by an obstacle, then the test is considered to have passed (testPass is true).
This indicates that the sampling point successfully passed the Bridge Test. If the paths
to both test points are blocked or neither of them are blocked, then the sampling point is
considered to have failed the Bridge Test and the function will return false.

In the fourth step of the pseudo‑code, the returned result of the IsBlocked function is
used to determine whether the test point passes the Bridge Test, and the result of testPass
is returned in the fifth step.

Appl. Sci. 2024, 14, 2032 8 of 24

4.2. Dynamic Sampling Strategy
To overcome the dilemma of the slow expansion speed of the tree structure when the

traditional RRT‑Connect algorithm deals with high‑density environments and areas with
many obstacles, an innovative dynamic sampling strategy based on node expansion speed
is proposed. In each iteration cycle, the expansion speed of each node is meticulously
calculated. This is an insightful metric that accurately reflects the expansion of the search
tree in a specific area, which is positively correlated with the priority of the node in the
search process. In each iteration, the node with the most lethargic expansion speed xslowest
is selected to generate a batch of additional sample points N around it, taking the expansion
speed (expandSpeed) as a key evaluation criterion.

This unique strategy significantly reduces the ineffective sampling points caused by
random sampling. Particularly when the robot is in a dense environment and trapped in
a local minimum, the tree’s growth can be steered by tweaking the node generation range,
allowing the robot to quickly leave the dangerous area. This strategy not only greatly im‑
proves the efficiency of the algorithm, but also enhances its adaptability to
complex environments.

It is hypothesized that there is a collision‑free path from the start point to the target
point. Even if this path is not located in the initial iteration, the algorithm will still select
the node with the slowest expansion speed according to the rules (Algorithm 1) and take
this node as the center to construct a sector with a certain radius. Within this sector, the
algorithm will generate a series of sub‑nodes, and then enter the next round of iteration.
In Figure 3, yellow nodes represent failure to pass the collision detection, and green nodes
represent successful passage. The newly generated nodes in the figure are crucial for con‑
necting the start and target points.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 25

the node with the slowest expansion speed according to the rules (Algorithm 1) and take
this node as the center to construct a sector with a certain radius. Within this sector, the
algorithm will generate a series of sub-nodes, and then enter the next round of iteration.
In Figure 3, yellow nodes represent failure to pass the collision detection, and green nodes
represent successful passage. The newly generated nodes in the figure are crucial for con-
necting the start and target points.

passed
failed
slowest
random

r

goalx

newx

slowestx

slowestx

startx

goalx
Figure 3. Generate new nodes within the slowest node region.

Generating additional sample points can be regarded as an efficient optimization
strategy, which aims to further improve the execution efficiency of the algorithm on an
existing basis. In each iteration cycle, the algorithm first tries to execute normal extension
steps (Algorithm 1, steps 3–14). Only when the normal extension steps fail to find the path,
and the set size of the target point is smaller than the set size of the start point (i.e., the
tree range starting from the target point is still relatively small), does the algorithm need
to generate additional sample points at the node with the slowest expansion speed to ac-
celerate the expansion of the tree. This implies that, barring the inability to pinpoint un-
explored regions, additional sampling will not be conducted, but regular search steps will
continue to be executed.

This method achieves effective management of the search range, allowing us to rea-
sonably allocate and optimize unexplored areas while ensuring efficiency, avoiding inva-
lid searches and waste of resources, and further improving the efficiency and effects of
path planning. The steps for Dynamic Sampling are as follows:

Algorithm 3. Dynamic Sampling
Notation: number of extra samples eN , the slowest expand node seX , extra samples

eS , tree of samples sT
1: Initialize eN N
2: if seX NULL then
3: eN StaticCast ()eN

4: eS GenerateExtraSamples ()eN

5: for each sample X in eS do
6: if IsAnyObstacleInPath ()X then

7: Insert X into sT

Figure 3. Generate new nodes within the slowest node region.

Generating additional sample points can be regarded as an efficient optimization strat‑
egy, which aims to further improve the execution efficiency of the algorithm on an existing
basis. In each iteration cycle, the algorithm first tries to execute normal extension steps (Al‑
gorithm 1, steps 3–14). Only when the normal extension steps fail to find the path, and the
set size of the target point is smaller than the set size of the start point (i.e., the tree range
starting from the target point is still relatively small), does the algorithm need to generate
additional sample points at the node with the slowest expansion speed to accelerate the
expansion of the tree. This implies that, barring the inability to pinpoint unexplored re‑
gions, additional sampling will not be conducted, but regular search steps will continue to
be executed.

Appl. Sci. 2024, 14, 2032 9 of 24

This method achieves effective management of the search range, allowing us to rea‑
sonably allocate and optimize unexplored areaswhile ensuring efficiency, avoiding invalid
searches and waste of resources, and further improving the efficiency and effects of path
planning. The steps for Dynamic Sampling are as follows (Algorithm 3):

Algorithm 3. Dynamic Sampling

Notation: number of extra samples Ne, the slowest expand node Xse, extra samples Se, tree of
samples Ts
1 : Initialize Ne ← N
2 : if Xse ̸= NULL then
3： Ne ←StaticCast(Ne)
4： Se ←GenerateExtraSamples(Ne)
5: for each sample X in Se do
6: if ¬IsAnyObstacleInPath(X) then
7: Insert X into Ts
8: end if
9: end for
10: else
11: skip to the next iteration
12: end if

Initialize Ne← N : The number of dynamic sampling points is first set to N. This is
the initial setting for dynamic sampling, preparing for subsequent additional sampling.

GenerateExtraSample: The function verifies if a node with the slowest expansion
speed exists (perhaps in an insufficiently explored area), if there is such a node, extra sam‑
pling points N are produced at this node. This step achieves addingmore sampling points
in unexplored areas, thereby improving the depth and breadth of the search.

isAnyObstacleInPath: these extra sampling points are processed individually.
For each sample point, an initial check determines if obstacles exist in the path from the
slowest expanding node to this sample point. If the path is clear (i.e., there are no obsta‑
cles), this sample point is added to the search tree. This step ensures that the extra sampling
points generated have relevance, meaning they can be directly reached from the current
node. (Algorithm 1. 5–9)

If there is no node with the slowest expansion speed, the current iteration is skipped,
moving to the subsequent iteration. This means that, without a clear determination of
unexplored areas, no additional sampling will be carried out, but regular search steps will
continue to be performed. This step is carried out to ensure the robustness of the algorithm,
which can function normally even in special circumstances. (Algorithm 1. 11–15)

While there is a need to spend time calculating the expansion speed of existing nodes
in the tree to find the node with the slowest expansion speed, this also allows us to concen‑
trate our resources on the most promising nodes. With this strategy, our tree expansion
strategy can effectively avoid falling into local optimal solutions, and, to some extent, this
also accelerates the search process.

In addition, this adaptive optimization method aims to dynamically adjust the sam‑
pling strategy according to the information obtained during the search process and the
current environment, to improve the efficiency of the path planning algorithm in complex
environments and improve the quality of the generated path. This is an optimized alloca‑
tion of computational resources, aiming tomaximize the possibility of global optimization,
reduce search time, and provide strong support for robot navigation in complex environ‑
ments. It helps to improve the efficiency of the path planning algorithm in complex envi‑
ronments and the quality of the generated path. This strategy can adaptively adjust the
sampling distribution, making the search process more focused on difficult‑to‑expand ar‑
eas, thereby improving the efficiency and quality of path planning given the updated node
expansion speeds in each iteration, and ensuring that the search process always focuses on
the most challenging area currently.

Appl. Sci. 2024, 14, 2032 10 of 24

4.3. Path Smoothing
To solve the problems of redundant turns and frequent oscillations in path planning,

a prominent path‑smoothing strategy has been incorporated. This strategy uses an itera‑
tive optimizationmethod to gradually optimize the original path through continuous itera‑
tions. This phase weights both local geometric contains and overarching path
optimization indicators.

In the path‑smoothing procedure, two non‑adjacent nodes from the original path
nodes are chosen. An attempt is then made to directly connect these two nodes to con‑
struct a potential new path to replace the path segment between these two nodes in the
original path. This procedure must ensure that the fresh path segment does not intersect
with any obstacles, preserving the path’s validity. Only when the new path segment meets
this criterion is it approved to replace the original path section.

Path smoothing is a key part of this research, aiming to improve the initial path gen‑
erated by the search algorithm, making it more continuous, smooth, and efficient while
meeting the requirements of feasibility and safety. This method helps to optimize the al‑
gorithm by directly connecting non‑adjacent nodes, eliminating redundant bends in the
original path, and finally generating a relatively smooth and high‑quality path. The pro‑
cess continues until it reaches a predetermined number of iterations or the path converges.
This method aims to gradually achieve global path optimization by adjusting the non‑
optimized parts of the path, thereby improving the navigation efficiency of robots in
complex environments.

4.3.1. Curvature Calculation
It is known that the tangent vector or normal deflection angle of the curve’s start and

end equals the integral of the curvature length. For the polyline in Figure 4 below, the
normal vector only changes at each vertex, so our goal is to find out the curvature at each
vertex, but the change in the normal vector at the vertex jumps, as shown in Figure 4;
the gray arrow denotes the discernible change in the vertex on the line segment, recording
the turning angle of the curve.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 25

Path smoothing is a key part of this research, aiming to improve the initial path gen-
erated by the search algorithm, making it more continuous, smooth, and efficient while
meeting the requirements of feasibility and safety. This method helps to optimize the al-
gorithm by directly connecting non-adjacent nodes, eliminating redundant bends in the
original path, and finally generating a relatively smooth and high-quality path. The pro-
cess continues until it reaches a predetermined number of iterations or the path converges.
This method aims to gradually achieve global path optimization by adjusting the non-
optimized parts of the path, thereby improving the navigation efficiency of robots in com-
plex environments.

4.3.1. Curvature Calculation
It is known that the tangent vector or normal deflection angle of the curve’s start and

end equals the integral of the curvature length. For the polyline in Figure 4 below, the
normal vector only changes at each vertex, so our goal is to find out the curvature at each
vertex, but the change in the normal vector at the vertex jumps, as shown in Figure 4; the
gray arrow denotes the discernible change in the vertex on the line segment, recording the
turning angle of the curve.

Figure 4. Normal changes at vertices record the turning angle.

The path-smoothing strategy employs a local optimization-based approach to recal-
ibrate pivotal points in the path, minimizing its curvature. Its initial task is to scrutinize
the produced preliminary path and identify possible redundant nodes and discontinuous
parts. Eradicating these nodes can diminish the path’s complexity while preserving essen-
tial nodes that ensure the path’s feasibility.

An initial step involves assessing the local curvature between various nodes to gen-
erate our newx ; if the local curvature is below our preset value, then the node is deemed
promising. The curvature at the vertices of a folded line is approximated by applying the
Gauss–Bonnet theorem. For a simple closed curve in the plane, the total curvature and the
sum of the angles at all vertices are equal to 2π . Applying this principle to the folded line
model, the folded line is regarded as a polygon consisting of straight-line segments, with
a corner iα defined at each vertex, which can be found by calculating the angle between
the vectors of the two neighboring sides.

The length of its arc is 0, and, drawing from the Gauss–Bonnet theorem, the simple
loop formed by curves on the plane satisfies the equation:

1

0 0
2

k ki
i

i
kds θ π


   (1)

where, k is the curvature function and iθ is the angle of turn at vertex i . For a single
simple closed curve, it is:

 2kds π (2)

If this simple closed curve is discretized into a polyline, it still satisfies the Gauss–
Bonnet theorem; that is, the sum of the turning angles of all vertices is 2π :

Figure 4. Normal changes at vertices record the turning angle.

The path‑smoothing strategy employs a local optimization‑based approach to recal‑
ibrate pivotal points in the path, minimizing its curvature. Its initial task is to scrutinize
the produced preliminary path and identify possible redundant nodes and discontinuous
parts. Eradicating these nodes can diminish the path’s complexity while preserving essen‑
tial nodes that ensure the path’s feasibility.

An initial step involves assessing the local curvature between various nodes to gen‑
erate our xnew; if the local curvature is below our preset value, then the node is deemed
promising. The curvature at the vertices of a folded line is approximated by applying the
Gauss–Bonnet theorem. For a simple closed curve in the plane, the total curvature and the
sum of the angles at all vertices are equal to 2π. Applying this principle to the folded line
model, the folded line is regarded as a polygon consisting of straight‑line segments, with a
corner αi defined at each vertex, which can be found by calculating the angle between the
vectors of the two neighboring sides.

Appl. Sci. 2024, 14, 2032 11 of 24

The length of its arc is 0, a drawing from the Gauss‑Bonnet theorem, the simple loop
formed by curves on the plane satisfies the equation:

k

∑
0

∫ i+1

i
kds +

k

∑
0

θi = 2π (1)

where, k is the curvature function and θi is the angle of turn at vertex i. For a single simple
closed curve, it is: ∮

kds = 2π (2)

If this simple closed curve is discretized into a polyline, it still satisfies the Gauss‑
Bonnet theorem, that is, the sum of the turning angles of all vertices is 2π:

n

∑
1

αi = 2π (3)

where αi is the corner at vertex i, and n is the total number of vertices, which represents
the integral of mean curvature to arc length on a segment of the real curve, namely:

αi =
∫

kids = ki Ai (4)

Among these terms, ki is the curvature at the vertex, and Ai is the arc length of the
curve. Consequently, once the arc length Ai is discerned, ki can be determined. A reason‑
able Ai value is the sum of half of the two edges of a vertex, as shown in the following
Figure 5:

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 25

 1
2n

iα π (3)

where iα is the corner at vertex i , and n is the total number of vertices, which repre-
sents the integral of mean curvature to arc length on a segment of the real curve, namely:

 i i i iα k ds k A (4)

Among these terms, ik is the curvature at the vertex, and iA is the arc length of
the curve. Consequently, once the arc length iA is discerned, ik can be determined. A
reasonable iA value is the sum of half of the two edges of a vertex, as shown in the
following Figure 5:

1A 2A
1

2

Figure 5. The folded line is formed by joining vertices 1A and 2A to form two interior angles

1α and 2α .

Leading to a specific result:

1 2

2i i
i

i i i

α αk
A l l

 


 (5)

where ik is the local curvature at vertex i , iα is the angle formed by the two neighbor-
ing edges, and iA is the length of the path from vertex i to the next vertex, i.e., the sum
of the halves of the two edges.

4.3.2. Candidate Node Sorting
In this schematic, a succession of green dots marks candidate nodes. Priority is set

for these adjacent candidate nodes. Every candidate node undergoes an evaluation, which
includes measuring its local curvature and its proximity to the closest obstacle. According
to our algorithm, candidate nodes with lower local curvature and further distance from
obstacles will be assigned a higher priority.

Moreover, the color of these candidate nodes also symbolizes their priority: the
brighter the color, the higher the corresponding priority. Based on this priority, and given
this hierarchy, these nodes are prioritized and integrated into the tree structure. As shown
in Figure 6, the newly generated 1newX and 2newX will be inserted into the original path,
providing more possibilities for path planning.

Figure 5. The folded line is formed by joining vertices A1 and A2 to form two interior angles
α1 and α2.

Leading to a specific result:

ki =
αi
Ai

=
2αi

li1 + li2
(5)

where, ki is the local curvature at vertex i, αi is the angle formed by the two neighboring
edges, and Ai is the length of the path from vertex i to the next vertex, i.e., the sum of the
halves of the two edges.

4.3.2. Candidate Node Sorting
In this schematic, a succession of green dots marks candidate nodes. Priority is set

for these adjacent candidate nodes. Every candidate node undergoes an evaluation, which
includes measuring its local curvature and its proximity to the closest obstacle. According
to our algorithm, candidate nodes with lower local curvature and further distance from
obstacles will be assigned a higher priority.

Moreover, the color of these candidate nodes also symbolizes their priority:
the brighter the color, the higher the corresponding priority. Based on this priority, and
given this hierarchy, these nodes are prioritized and integrated into the tree structure.

Appl. Sci. 2024, 14, 2032 12 of 24

As shown in Figure 6, the newly generated Xnew1 and Xnew2 will be inserted into the origi‑
nal path, providing more possibilities for path planning.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 25

startx
1parentx

1nearestx

1newx 2newx 2nearestx

2parentx

goalx

Figure 6. Prioritized selection of candidate nodes. The nodes in both startT and goalT are repre-
sented as black nodes, and the green nodes are represented with different brightness according to
their distance from the obstacle, the brighter the color, the higher the priority.

For each reachable new node in the path, the angle between adjacent paths is calcu-
lated. For startT , the turning angle α at the new node is composed of


1 1new nearestX X and


1 2new newX X ; For goalT ; the turning angle β at the new node is composed of


2 1new newX X

and


2 2new nearestX X . The formula for calculating the startT vector is shown in (7) and (8),
and the formulas for calculating the steering angle α and β are shown in (9) and (10).

 


1 1 [(,) (,)]new nearest nearest newX X X x y X x y (6)

 


2 2 2 2[(,) (,)]new nearest nearest newX X X x y X x y (7)

           

 
 1 1 1 2

1 1 1 2

cos new nearest new new

new neaarest new new

X X X Xα ar
X X X X

 (8)

           

 
 2 1 2 2

2 1 2 2

cos new new new nearest

new new new nearest

X X X Xβ ar
X X X X

 (9)

With a specified maximum handover constraint of θ defined as  0 90θ . For startT ,
when  α π θ passes the handover constraint, a new node can be injected into startT . If
  0 α π θ the algorithm abandons the new node. Next, enter the extension of goalT ,

pass through when  β π θ , and inject the new node into goalT .
Employing this smoothing approach enables the generation of more fluid, superior-

quality paths that adhere to the robot’s motion stipulations. This method can not only
improve the feasibility of the path, but also reduce the cost of controlling the robot during
execution. In the following section, the effectiveness of the proposed method will be show-
cased across diverse different environments and scenarios. The following is the fast-
smoothing pseudocode.

Algorithm 4. PathSmoothing
Notation: node N , candidate C , candidate nodes cN , number of candidate nodes

cQ , curcatureThreshold K .
1: for each N in path
2: if curvature of node K
3: cN GenerateCandidateNodes (,)cN Q

Figure 6. Prioritized selection of candidate nodes. The nodes in both Tstart and Tgoal are represented
as black nodes, and the green nodes are represented with different brightness according to their
distance from the obstacle, the brighter the color, the higher the priority.

For each reachable new node in the path, the angle between adjacent paths is calcu‑
lated. For Tstart, the turning angle α at the new node is composed of

→
Xnew1Xnearest1 and

→
Xnew1Xnew2; For Tgoal , the turning angle β at the new node is composed of

→
Xnew2Xnew1 and

→
Xnew2Xnearest2. The formula for calculating the Tstart vector is shown in (7) and (8), and the
formulas for calculating the steering angle α and β are shown in (9) and (10).

⇀
Xnew1Xnearest1 = [Xnearest(x, y)− Xnew(x, y)] (6)

→
Xnew2Xnearest2 = [Xnearest2(x, y)− Xnew2(x, y)] (7)

α = ar cos


→

Xnew1Xnearest1 ·
→

Xnew1Xnew2∥∥∥∥ →
Xnew1Xneaarest1

∥∥∥∥∥∥∥∥ →
Xnew1Xnew2

∥∥∥∥
 (8)

β = ar cos


→

Xnew2Xnew1 ·
→

Xnew2Xnearest2∥∥∥∥ →
Xnew2Xnew1

∥∥∥∥∥∥∥∥ →
Xnew2Xnearest2

∥∥∥∥
 (9)

With a specifiedmaximum handover constraint of θ defined as 0 ≤ θ ≤ 90
◦ . For Tstart,

when α ≥ π − θ, passes the handover constraint, a new node can be injected into Tstart.
If 0 ≤ α < π− θ, the algorithm abandons the new node. Next, enter the extension of Tgoal ,
pass through when β ≥ π − θ, and inject the new node into Tgoal .

Employing this smoothing approach enables the generation of more fluid, superior‑
quality paths that adhere to the robot’s motion stipulations. This method can not only
improve the feasibility of the path, but also reduce the cost of controlling the robot dur‑
ing execution. In the following section, the effectiveness of the proposed method will be
showcased across diverse different environments and scenarios. The following is the fast‑
smoothing pseudocode (Algorithm 4).

Appl. Sci. 2024, 14, 2032 13 of 24

Algorithm 4. PathSmoothing

Notation: node N, candidate C, candidate nodes Nc, number of candidate nodes Qc,
curcatureThreshold K.
1: for each N in path
2: if curvature of node > K
3: Nc ←GenerateCandidateNodes(N, Qc)
4: for each C in Nc
5: AssignPriority(C)
6: N ←HighestPriority
7: end for
8: end if
9: end for
10: return P

5. Simulation and Experimental Results
5.1. General Framework of ROS

The system framework of ROS is divided into three main parts: the file system level,
the computational graph level, and the open‑source community level, with each part rep‑
resenting a hierarchical concept.

1. File system level: Different components in the ROS program are to be placed in dif‑
ferent folders, and each folder also has its corresponding function. Usually we name
the workspace catkin_ws, which is a folder containing function packages, compiled
packages, and compiled executables. A function package is a combination of a spe‑
cific file structure and a folder containing running nodes, configuration files, etc. We
use the command catkin_make to compile theworkspace. A function packagemainly
contains the files shown on the rightmost side of Figure 7, in which the src is the place
where we store the source files, the build folder includes the project cache informa‑
tion, configurations and other intermediate files, and the devel folder is used to save
the compiled program.

2. Computational graph level: The ROS creates a network to connect all of the nodes,
through which any node can interact with other nodes, obtain information published
by other nodes, and send its own data to the network. The basic concepts at this
level include nodes, node managers, parameter servers, messages, services, topics,
and message logs.

3. Open‑source community level: The open‑source community level of the ROS shares
software and knowledgemainly through independent online communities, including
ROS distributions, software repositories, ROS wiki, ROS Answer, blogs, and so on.

In Figure 8, The core of our navigation architecture is themove_base node, which fully
integrates global path planning, local path planning, global cost maps, and local cost map
features. These different functions are jointly implemented by subscribing to /tf,/odom,
/map topics and publishing the /cmd_vel topic formotion control under specific conditions.
Figure 8 shows that move_base is the core of robot navigation, providing an interface for
the ROS for configuration and the operation of and interaction with navigation. The robot
encounters obstacles in the environment and recalculates the path by subscribing to data
from LiDAR,map information, andMonte Carlo localization to convert the path into robot
velocity information and plan a new path. Figure 8 shows a diagram of the navigation
function architecture which can be found on the left side of the tf information through the
ROS navigation and localization module. The command amcl releases the robot pose for
use with move_base; below it, odom is the robot’s odometer information. The upper right
corner shows the the map_server which operates through the analysis of the slam built
maps released; the mainstream slam algorithms are gmapping, hector, and cartographer.
The sensor in the lower right corner plays a role in local path planning. In this framework,
the DWA algorithm serves as the tool for local path planning, while the DBR‑RRT algo‑
rithm is utilized for global path planning.

Appl. Sci. 2024, 14, 2032 14 of 24Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 25

Figure 7. File system-level architecture for ROS.

In Figure 8, The core of our navigation architecture is the move_base node, which
fully integrates global path planning, local path planning, global cost maps, and local cost
map features. These different functions are jointly implemented by subscribing to
/tf,/odom,/ map topics and publishing the /cmd_vel topic for motion control under spe-
cific conditions. Figure 8 shows that move_base is the core of robot navigation, providing
an interface for the ROS for configuration and the operation of and interaction with navi-
gation. The robot encounters obstacles in the environment and recalculates the path by
subscribing to data from LiDAR, map information, and Monte Carlo localization to con-
vert the path into robot velocity information and plan a new path. Figure 8 shows a dia-
gram of the navigation function architecture which can be found on the left side of the tf
information through the ROS navigation and localization module. The command amcl
releases the robot pose for use with move_base; below it, odom is the robot’s odometer
information. The upper right corner shows the the map_server which operates through
the analysis of the slam built maps released; the mainstream slam algorithms are gmap-
ping, hector, and cartographer. The sensor in the lower right corner plays a role in local
path planning. In this framework, the DWA algorithm serves as the tool for local path
planning, while the DBR-RRT algorithm is utilized for global path planning.

Figure 7. File system‑level architecture for ROS.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 25

/odom

/sensor_msgs

/map_server

Sensor
information

Global Path
Planning

local path
planning

 refactoring

Global Cost
Map

Local cost map

Motion control
commands

Move_base

/cmd_vel

Navigation
target

/goal

/tf

Map

Figure 8. Navigation Framework.

5.2. Simulation I
To validate the simulation experiment, a series of simulation experiments were con-

ducted using the above-mentioned navigation architecture on the TurtuleBot3 Waffle mo-
bile robot platform. These experiments aim to verify whether the robot can still maintain
a fast path planning speed and robustness in different obstacle environments. Simulation
experiments were crafted based on the Ubuntu 20.04-ROS-Neotic system, with the estab-
lishment of a densely populated obstacle environment to simulate point-to-point naviga-
tion tasks. In simulation I, the simulation environment was 13.2 × 10.8 m in size, and two
rectangular obstacles of 4.8 × 1.2 × 2 m and an L-shaped obstacle composed of two rectan-
gular obstacles were placed, with dimensions of 8.4 × 0.2 × 2 m and 1.8 × 0.3 × 2 m, respec-
tively. There were also a number of irregularly shaped obstacles in the environment. We
used a TurtleBot3 Waffle Pi robot with dimensions of 281 × 306 × 141 mm, maxv = 0.26
m/s, and maxw = 1.82 rad/s. The model of the laser ranging sensor used is LDS-01; the
scanning range of the laser radar is set to 3.0 m, the expansion radius is set to 1.0 m, and
the cost scaling factor is set to 3.0. By comparing the traditional RRT-Connect algorithm
with our improved algorithm, and recording the speed curve, motion trajectory, and time
consumption of the mobile robot, a deeper understanding of the convergence speed and
robustness of our improved algorithm emerges. The simulation experiment platform used
was Gazebo, as shown in Figure 9a,b.

(a) (b)

Figure 9. Under the L-shaped obstacle environment. (a) Gazebo environment in simulation I; (b)
RVIZ environment in simulation I.

Figure 8. Navigation Framework.

Appl. Sci. 2024, 14, 2032 15 of 24

5.2. Simulation I
To validate the simulation experiment, a series of simulation experiments were con‑

ducted using the above‑mentioned navigation architecture on the TurtuleBot3 Waffle mo‑
bile robot platform. These experiments aim to verify whether the robot can still main‑
tain a fast path planning speed and robustness in different obstacle environments. Sim‑
ulation experiments were crafted based on the Ubuntu 20.04‑ROS‑Neotic system, with
the establishment of a densely populated obstacle environment to simulate point‑to‑point
navigation tasks. In simulation I, the simulation environment was 13.2 × 10.8 m in size,
and two rectangular obstacles of 4.8 × 1.2 × 2 m and an L‑shaped obstacle composed
of two rectangular obstacles were placed, with dimensions of 8.4 × 0.2 × 2 m and 1.8 ×
0.3 × 2 m, respectively. Therewere also a number of irregularly shaped obstacles in the en‑
vironment. We used a TurtleBot3 Waffle Pi robot with dimensions of 281× 306× 141 mm,
vmax = 0.26 m/s, and wmax = 1.82 rad/s. The model of the laser ranging sensor used is
LDS‑01; the scanning range of the laser radar is set to 3.0 m, the expansion radius is set to
1.0 m, and the cost scaling factor is set to 3.0. By comparing the traditional RRT‑Connect
algorithmwith our improved algorithm, and recording the speed curve, motion trajectory,
and time consumption of the mobile robot, a deeper understanding of the convergence
speed and robustness of our improved algorithm emerges. The simulation experiment
platform used was Gazebo, as shown in Figure 9a,b.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 25

/odom

/sensor_msgs

/map_server

Sensor
information

Global Path
Planning

local path
planning

 refactoring

Global Cost
Map

Local cost map

Motion control
commands

Move_base

/cmd_vel

Navigation
target

/goal

/tf

Map

Figure 8. Navigation Framework.

5.2. Simulation I
To validate the simulation experiment, a series of simulation experiments were con-

ducted using the above-mentioned navigation architecture on the TurtuleBot3 Waffle mo-
bile robot platform. These experiments aim to verify whether the robot can still maintain
a fast path planning speed and robustness in different obstacle environments. Simulation
experiments were crafted based on the Ubuntu 20.04-ROS-Neotic system, with the estab-
lishment of a densely populated obstacle environment to simulate point-to-point naviga-
tion tasks. In simulation I, the simulation environment was 13.2 × 10.8 m in size, and two
rectangular obstacles of 4.8 × 1.2 × 2 m and an L-shaped obstacle composed of two rectan-
gular obstacles were placed, with dimensions of 8.4 × 0.2 × 2 m and 1.8 × 0.3 × 2 m, respec-
tively. There were also a number of irregularly shaped obstacles in the environment. We
used a TurtleBot3 Waffle Pi robot with dimensions of 281 × 306 × 141 mm, maxv = 0.26
m/s, and maxw = 1.82 rad/s. The model of the laser ranging sensor used is LDS-01; the
scanning range of the laser radar is set to 3.0 m, the expansion radius is set to 1.0 m, and
the cost scaling factor is set to 3.0. By comparing the traditional RRT-Connect algorithm
with our improved algorithm, and recording the speed curve, motion trajectory, and time
consumption of the mobile robot, a deeper understanding of the convergence speed and
robustness of our improved algorithm emerges. The simulation experiment platform used
was Gazebo, as shown in Figure 9a,b.

(a) (b)

Figure 9. Under the L-shaped obstacle environment. (a) Gazebo environment in simulation I; (b)
RVIZ environment in simulation I.

Figure 9. Under the L‑shaped obstacle environment. (a) Gazebo environment in simulation I;
(b) RVIZ environment in simulation I.

Figure 9 shows that the physical platform is built in Gazebo; the mapwas constructed
by the Gmapping algorithm and visualized using Rviz to simulate a real environmentwith
different shapes of obstacles in the scene, forming a large concave obstacle. The robot had
to bypass the obstacles and move to the target location in the lower left corner.

Pre‑designed scripts were employed to establish and publish the target coordinates
of the mobile robot, replacing the process of manually selecting the target point through
the Rviz visualization tool. This ensures the consistency of the target point’s position in
each experiment, thereby reducing the error within the experimental results. In this ex‑
periment, our script set the target point in the lower left corner of the image. A total of
30 simulation experiments were conducted this time, and the statistical indicators used for
the comparative evaluation are as follows:

Four different global path planning algorithms are thoroughly evaluated in Simula‑
tion 1: Informed‑RRT*, RRT‑Connect, RRT*, and the modified DBR‑RRT. To ensure the
fairness and accuracy of the comparison, all algorithms were run in the same test environ‑
ment, and their running times and standardized speed deviation calculations are metic‑
ulously documented in Table 1, and Figure 10 shows a detailed record of each of the
four speed profiles.

Appl. Sci. 2024, 14, 2032 16 of 24

Table 1. Comparison between Informed‑RRT*, RRT‑Connect, RRT*, and proposed method in terms
of time, average velocity, maximum velocity, and standard deviation of executed velocities.

Planner
Vel. (m/s)

STD Vel. Time (s)
Avg Max

Informed‑RRT* 0.163 0.253 0.051 25.03
RRT‑Connect 0.154 0.276 0.043 21.83

RRT* 0.157 0.256 0.039 24.16
DBR‑RRT 0.189 0.301 0.037 22.53

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 25

Figure 9 shows that the physical platform is built in Gazebo; the map was constructed

by the Gmapping algorithm and visualized using Rviz to simulate a real environment

with different shapes of obstacles in the scene, forming a large concave obstacle. The robot

had to bypass the obstacles and move to the target location in the lower left corner.

Pre-designed scripts were employed to establish and publish the target coordinates

of the mobile robot, replacing the process of manually selecting the target point through

the Rviz visualization tool. This ensures the consistency of the target point’s position in

each experiment, thereby reducing the error within the experimental results. In this ex-

periment, our script set the target point in the lower left corner of the image. A total of 30

simulation experiments were conducted this time, and the statistical indicators used for

the comparative evaluation are as follows:

Four different global path planning algorithms are thoroughly evaluated in Simula-

tion 1: Informed-RRT*, RRT-Connect, RRT*, and the modified DBR-RRT. To ensure the

fairness and accuracy of the comparison, all algorithms were run in the same test environ-

ment, and their running times and standardized speed deviation calculations are meticu-

lously documented in Table 1, and Figure 10 shows a detailed record of each of the four

speed profiles.

Table 1. Comparison between Informed-RRT*, RRT-Connect, RRT*, and proposed method in terms

of time, average velocity, maximum velocity, and standard deviation of executed velocities.

Planner
Vel.(m/s)

STD Vel. Time (s)
Avg Max

Informed-RRT* 0.163 0.253 0.051 25.03

RRT-Connect 0.154 0.276 0.043 21.83

RRT* 0.157 0.256 0.039 24.16

DBR-RRT 0.189 0.301 0.037 22.53

30 40 50 60 70 80
t (s)

0

0.1

0.2

RRT-Connect

30 40 50 60 70 80
t (s)

0

0.1

0.2

DBR-RRT

t (s)

RRT*

30 40 50 60 70 80
t (s)

0

0.1

0.2

V
(m

/s
)

Informed-RRT*

30 40 50 60 70 80
0

0.1

0.2

)
V

(m
/s

V
(m

/s
)

)
V

(m
/s

Figure 10. Speed curves generated by the Informed-RRT*, RRT-Connect, RRT*, and DBR-RRT algo-

rithms in simulation I.
Figure 10. Speed curves generated by the Informed‑RRT*, RRT‑Connect, RRT*, and DBR‑RRT algo‑
rithms in simulation I.

In Table 1 and Figure 10, it is shown that DBR‑RRT shows an improvement of 15.95%
in average speed and a 27.45% improvement in speed standard deviation compared to
Informed‑RRT*. Compared to RRT‑Connect, DBR‑RRT shows a 22.73% improvement in
average speed and a 13.95% improvement in speed standard deviation. In addition, DBR‑
RRT results in 20.38% improvement in average speed and 5.13% improvement in standard
deviation compared to RRT*. These results indicate that the proposed algorithm exhibits
a high consistency and low speed fluctuations over multiple runs. In addition, DBR‑RRT
achieves a maximum speed of 0.301 m/s, which is slightly higher than the 0.276 m/s of
RRT‑Connect, indicating that the proposed algorithm maintains stability without sacrific‑
ing navigation performance.

The experimental results show that the RRT‑Connect algorithm takes the least amount
of time among all the reference algorithms, this is due to the bidirectional search strat‑
egy adopted by the RRT‑Connect algorithm, which can quickly discover effective paths
from the starting point to the end point. However, its standard deviation is large, and the
speed profile shown in Figure 10 is rugged, and the excessively fast search speed sacrifices
some stability. In addition, the proposed DBR‑RRT algorithm inherits the bidirectional
search strategy of RRT‑Connect, and although the average running time is slightly longer
than that of the initial RRT‑Connect algorithm, the speed has a smaller standard deviation
and possesses the largest maximum speed, which indicates that the speed fluctuation be‑

Appl. Sci. 2024, 14, 2032 17 of 24

tween each run is small, and it achieves a balance between increasing the average speed
and maintaining less speed fluctuations. Although the RRT algorithm needs to consider
more candidate paths in the process of finding the optimal path, and thus consumes the
longest time, it is clearly unnecessary to sacrifice time to find the optimal path in a simple
L‑shaped environment. Compared with DBR‑RRT, Informed RRT* can theoretically im‑
prove the efficiency of path planning through conducting a more informed search, but in
this test environment, its efficiency does not exceed that of the other algorithms, and the
large fluctuations in the velocity curves shown in Figure 10. indicate that the algorithm
has a large variation in the robot’s velocity when planning paths.

5.3. Simulation II
In simulation II, the simulation environment is 12 × 10.8 m in size, with three rectan‑

gular obstacles of 4.8 × 1.2 × 2 m and five circular obstacles with a diameter of 0.5 m. The
robot and other environmental parameters are the same as in simulation I. Five smaller ob‑
stacles were strategically placed to surround the robot in a dense environment. The robot’s
task was to move to the bottom right corner of the image while avoiding these obstacles.
To better simulate obstacles that may suddenly appear in the real environment, these hin‑
drances were intentionally excluded from grid maps constructed using SLAM technology.

Figure 11 shows a path planning process using the DBR‑RRT algorithm. This design
makes the robot unaware of these obstacles at the beginning of the initial navigation task.
However, when the robot approaches these obstacles, its internal LiDAR can effectively
detect them and successfully use our algorithm to plan new paths to avoid these obstacles.
Real‑time robot planning trajectories were acquired and visualized by subscribing to perti‑
nent topics, offering a clear perspective of the robot’s current state. In this experiment, the
target point was set in the lower right corner. In this case, the robot had to detour around
five “suddenly appearing” obstacles. By incorporating such challenges, the robot was pre‑
disposed to encounter obstacles early on, positioning itself in potentially hazardous zones
surrounded by impediments. This setting allows us to visually observe and compare the
robustness and planning efficiency of the two algorithms.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25

Figure 11. One experiment of DBR-RRT algorithm for path planning.

RBG color mapping was employed to vividly convey the robot’s speed information
on its travel path. As shown in Figure 12b, the proposed algorithm enabled the robot to
have a faster average speed compared to the RT-Connect algorithm, and the speed could
be smoothly transitioned during the overall path planning process. In Figure 12a, there
are meanders in the robot path and there are multiple instances of sudden velocity muta-
tions. The traditional RRT-Connect algorithm exhibits serious problems when dealing
with local optimal solutions, causing the robot to fall into a state of spinning in place. In
this case, the robot’s speed exhibits an extremely unstable acceleration and deceleration
process, even approaching zero. Therefore, the repeated rotation of the robot resulted in
a significant increase in the overall path planning time.

0 1 2 3 4 5
X(m)

-1

0

1

2

3

4

5

6

7

8

Y
(m

)

RRT−Connect

0 m/s

0.7 m/s

0 1 2 3 4 5
X(m)

-1

0

1

2

3

4

5

6

7

8

Y
(m

)

DBR−RRT

0 m/s

0.7 m/s

start

end end

start

(a) (b)

Figure 12. Trajectory velocity curves of two algorithms: (a) RRT−Connect and (b) DBR−RRT.

Figure 13 shows a comparison of the trajectories generated by the two algorithms.
The robot using the RRT-Connect algorithm for path planning had three detours in the
trajectory from (1.7, 1.3) to (3.5, 1.0), and there was a large slewing behavior at (3.5, 1.0),
which greatly increased the path length. For unknown obstacles in a known environment,
traditional algorithms perform inefficient mass collision detection and inefficiently

Figure 11. One experiment of DBR‑RRT algorithm for path planning.

RBG color mapping was employed to vividly convey the robot’s speed information
on its travel path. As shown in Figure 12b, the proposed algorithm enabled the robot to
have a faster average speed compared to the RT‑Connect algorithm, and the speed could
be smoothly transitioned during the overall path planning process. In Figure 12a, there are
meanders in the robot path and there are multiple instances of sudden velocity mutations.
The traditional RRT‑Connect algorithm exhibits serious problems when dealing with local
optimal solutions, causing the robot to fall into a state of spinning in place. In this case, the

Appl. Sci. 2024, 14, 2032 18 of 24

robot’s speed exhibits an extremely unstable acceleration and deceleration process, even
approaching zero. Therefore, the repeated rotation of the robot resulted in a significant
increase in the overall path planning time.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25

Figure 11. One experiment of DBR-RRT algorithm for path planning.

RBG color mapping was employed to vividly convey the robot’s speed information
on its travel path. As shown in Figure 12b, the proposed algorithm enabled the robot to
have a faster average speed compared to the RT-Connect algorithm, and the speed could
be smoothly transitioned during the overall path planning process. In Figure 12a, there
are meanders in the robot path and there are multiple instances of sudden velocity muta-
tions. The traditional RRT-Connect algorithm exhibits serious problems when dealing
with local optimal solutions, causing the robot to fall into a state of spinning in place. In
this case, the robot’s speed exhibits an extremely unstable acceleration and deceleration
process, even approaching zero. Therefore, the repeated rotation of the robot resulted in
a significant increase in the overall path planning time.

0 1 2 3 4 5
X(m)

-1

0

1

2

3

4

5

6

7

8

Y
(m

)

RRT−Connect

0 m/s

0.7 m/s

0 1 2 3 4 5
X(m)

-1

0

1

2

3

4

5

6

7

8

Y
(m

)

DBR−RRT

0 m/s

0.7 m/s

start

end end

start

(a) (b)

Figure 12. Trajectory velocity curves of two algorithms: (a) RRT−Connect and (b) DBR−RRT.

Figure 13 shows a comparison of the trajectories generated by the two algorithms.
The robot using the RRT-Connect algorithm for path planning had three detours in the
trajectory from (1.7, 1.3) to (3.5, 1.0), and there was a large slewing behavior at (3.5, 1.0),
which greatly increased the path length. For unknown obstacles in a known environment,
traditional algorithms perform inefficient mass collision detection and inefficiently

Figure 12. Trajectory velocity curves of two algorithms: (a) RRT−Connect and (b) DBR−RRT.

Figure 13 shows a comparison of the trajectories generated by the two algorithms.
The robot using the RRT‑Connect algorithm for path planning had three detours in the
trajectory from (1.7, 1.3) to (3.5, 1.0), and there was a large slewing behavior at (3.5, 1.0),
which greatly increased the path length. For unknown obstacles in a known environment,
traditional algorithms perform inefficient mass collision detection and inefficiently gener‑
ate paths in real time. In contrast, the algorithm proposed in this paper will first perform
a Bridging Test for obstacles, select the points surrounded by obstacles, and generate a vir‑
tual node set in the iterative process to quickly guide the robot away from the dangerous
area surrounded by obstacles.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 25

generate paths in real time. In contrast, the algorithm proposed in this paper will first
perform a Bridging Test for obstacles, select the points surrounded by obstacles, and gen-
erate a virtual node set in the iterative process to quickly guide the robot away from the
dangerous area surrounded by obstacles.

0 1 2 3 4 5
X(m)

-1

0

1

2

3

4

5

6

7

8

Y
(m

)

RRT−Connect
DBR−RRT

start

end

Figure 13. Comparison of trajectories of the two algorithms.

Therefore, the algorithm proposed in this paper performs better in this trap environ-
ment and can quickly plan a new path when a sudden obstacle is detected. In addition,
the overall planning process maintains a stable speed, allowing for stable acceleration and
deceleration even during unavoidable steering processes. As shown in Figures 12 and 13,
the robot’s movement trajectory is a smooth curve that remains stable after turning, and
the final trajectory approaches a straight line.

5.4. Real-World Experiment I
After the navigation architecture was successfully configured, not only was a precise

local area network constructed, but a rigorous network configuration for the robot was
also implemented. Particular attention was given to ensuring that both the host and the
mobile robot operate within the same network segment, prioritizing communication reli-
ability and efficiency. With this robust foundation, the phase of experimental verification
commenced. The size of the experimental environment was 4.2 × 5.2 m. A 281 × 306 × 141
mm TurtleBot3 (Waffle Pi) robot was selected for algorithm experiments. The safety dis-
tance l = 0.25 m was chosen for the experiment, and the maximum allowable linear and
angular velocities of the robot were 0.26 m/s and 1.82 rad/s, respectively, and the peak
parameters maxv = 0.23 m/s and maxw = 1.5 rad/s were set for this experiment.

This experiment was conducted to validate the scenario simulated in Experiment 1:
avoiding unknown obstacles in a known map. A physical experimental environment was
set up, where black objects represent known obstacles in the known environment, and
brown obstacles represent the unknown obstacles. The experimental site contained four
black rectangular obstacles of 20 × 20 × 30 cm, two black rectangular obstacles of 26 × 8 ×
16 cm, one black rectangular obstacle of 30 × 13 × 40 cm, one black rectangular obstacle of
35 × 15 × 30 cm, and two brown obstacles of 20 × 35 × 30 cm. Additionally, the robot’s
navigation process was captured in a sequence of 80 frames, documenting the real robot’s
trajectory.

Figure 13. Comparison of trajectories of the two algorithms.

Appl. Sci. 2024, 14, 2032 19 of 24

Therefore, the algorithm proposed in this paper performs better in this trap environ‑
ment and can quickly plan a new path when a sudden obstacle is detected. In addition,
the overall planning process maintains a stable speed, allowing for stable acceleration and
deceleration even during unavoidable steering processes. As shown in Figures 12 and 13,
the robot’s movement trajectory is a smooth curve that remains stable after turning, and
the final trajectory approaches a straight line.

5.4. Real‑World Experiment I
After the navigation architecture was successfully configured, not only was a precise

local area network constructed, but a rigorous network configuration for the robot was
also implemented. Particular attention was given to ensuring that both the host and the
mobile robot operate within the same network segment, prioritizing communication reli‑
ability and efficiency. With this robust foundation, the phase of experimental verification
commenced. The size of the experimental environment was 4.2 × 5.2 m. A 281 × 306 ×
141 mm TurtleBot3 (Waffle Pi) robot was selected for algorithm experiments. The safety
distance l = 0.25 m was chosen for the experiment, and the maximum allowable linear and
angular velocities of the robot were 0.26 m/s and 1.82 rad/s, respectively, and the peak
parameters vmax = 0.23 m/s and wmax = 1.5 rad/s were set for this experiment.

This experiment was conducted to validate the scenario simulated in Experiment 1:
avoiding unknown obstacles in a known map. A physical experimental environment was
set up, where black objects represent known obstacles in the known environment, and
brown obstacles represent the unknown obstacles. The experimental site contained four
black rectangular obstacles of 20 × 20 × 30 cm, two black rectangular obstacles of 26 ×
8 × 16 cm, one black rectangular obstacle of 30 × 13 × 40 cm, one black rectangular obsta‑
cle of 35 × 15 × 30 cm, and two brown obstacles of 20 × 35 × 30 cm. Additionally, the
robot’s navigation process was captured in a sequence of 80 frames, documenting the real
robot’s trajectory.

Figures 14 and 15 show thatDBR‑RRT algorithm can avoid obstacleswith stability and
relatively high speed in environments with unknown obstacles. It exhibits fewer sudden
changes in speed and maintains stability even in situations requiring turns, while also
planning a smooth path.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 25

Figures 14 and 15 show that DBR-RRT algorithm can avoid obstacles with stability
and relatively high speed in environments with unknown obstacles. It exhibits fewer sud-
den changes in speed and maintains stability even in situations requiring turns, while also
planning a smooth path.

Figure 14. Avoiding unknow obstacles in a known environment.

2 3 4 5 6 7 8
X(m)

-1

-0.5

0

0.5

1

Y(
m

)

DBR−RRT

0 m/s

0.3 m/s

Figure 15. Speed–trajectories diagram for robots in experiments.

5.5. Real-World Experiment II
To test the effectiveness of the proposed algorithm in path planning over long peri-

ods of time, an environment full of obstacles was designed. In this experimental site, as
shown in Figure 16, four rectangular obstacles of 20 × 20 × 30 cm, one L-shaped obstacle
consisting of two long rectangles of 100 × 6 × 30 cm, and two L-shaped obstacles consisting
of 85 × 6 × 30 cm and 60 × 6 × 30 were placed. The parameters and environmental param-
eters set by the robot are consistent with Experiment 1. The starting point was anchored
in the map’s bottom right corner. To enhance the evaluation of the robot’s performance in
the real environment, goal commands were issued at strategic points on the map to enable
the robot to navigate once in the complex environment.

Figure 16. Experiment environment.

Figure 14. Avoiding unknow obstacles in a known environment.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 25

Figures 14 and 15 show that DBR-RRT algorithm can avoid obstacles with stability
and relatively high speed in environments with unknown obstacles. It exhibits fewer sud-
den changes in speed and maintains stability even in situations requiring turns, while also
planning a smooth path.

Figure 14. Avoiding unknow obstacles in a known environment.

2 3 4 5 6 7 8
X(m)

-1

-0.5

0

0.5

1

Y(
m

)

DBR−RRT

0 m/s

0.3 m/s

Figure 15. Speed–trajectories diagram for robots in experiments.

5.5. Real-World Experiment II
To test the effectiveness of the proposed algorithm in path planning over long peri-

ods of time, an environment full of obstacles was designed. In this experimental site, as
shown in Figure 16, four rectangular obstacles of 20 × 20 × 30 cm, one L-shaped obstacle
consisting of two long rectangles of 100 × 6 × 30 cm, and two L-shaped obstacles consisting
of 85 × 6 × 30 cm and 60 × 6 × 30 were placed. The parameters and environmental param-
eters set by the robot are consistent with Experiment 1. The starting point was anchored
in the map’s bottom right corner. To enhance the evaluation of the robot’s performance in
the real environment, goal commands were issued at strategic points on the map to enable
the robot to navigate once in the complex environment.

Figure 16. Experiment environment.

Figure 15. Speed–trajectories diagram for robots in experiments.

Appl. Sci. 2024, 14, 2032 20 of 24

5.5. Real‑World Experiment II
To test the effectiveness of the proposed algorithm in path planning over long periods

of time, an environment full of obstacles was designed. In this experimental site, as shown
in Figure 16, four rectangular obstacles of 20 × 20 × 30 cm, one L‑shaped obstacle con‑
sisting of two long rectangles of 100 × 6 × 30 cm, and two L‑shaped obstacles consisting
of 85 × 6 × 30 cm and 60 × 6 × 30 cm were placed. The parameters and environmen‑
tal parameters set by the robot are consistent with Experiment 1. The starting point was
anchored in the map’s bottom right corner. To enhance the evaluation of the robot’s per‑
formance in the real environment, goal commands were issued at strategic points on the
map to enable the robot to navigate once in the complex environment.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 25

Figures 14 and 15 show that DBR-RRT algorithm can avoid obstacles with stability
and relatively high speed in environments with unknown obstacles. It exhibits fewer sud-
den changes in speed and maintains stability even in situations requiring turns, while also
planning a smooth path.

Figure 14. Avoiding unknow obstacles in a known environment.

2 3 4 5 6 7 8
X(m)

-1

-0.5

0

0.5

1

Y(
m

)

DBR−RRT

0 m/s

0.3 m/s

Figure 15. Speed–trajectories diagram for robots in experiments.

5.5. Real-World Experiment II
To test the effectiveness of the proposed algorithm in path planning over long peri-

ods of time, an environment full of obstacles was designed. In this experimental site, as
shown in Figure 16, four rectangular obstacles of 20 × 20 × 30 cm, one L-shaped obstacle
consisting of two long rectangles of 100 × 6 × 30 cm, and two L-shaped obstacles consisting
of 85 × 6 × 30 cm and 60 × 6 × 30 were placed. The parameters and environmental param-
eters set by the robot are consistent with Experiment 1. The starting point was anchored
in the map’s bottom right corner. To enhance the evaluation of the robot’s performance in
the real environment, goal commands were issued at strategic points on the map to enable
the robot to navigate once in the complex environment.

Figure 16. Experiment environment. Figure 16. Experiment environment.

The actual mobile robot’s going and returning using the two algorithms are shown in
Figure 17, respectively. Given the overlap between the robot’s outbound and return paths,
to prevent any visual confusion within a singular image, the decision was made to sep‑
arate the actual trajectories of the two path‑planning methods. These are represented in
two distinct images, showcased through frame extraction and overlay. An optimal selec‑
tion of 80 frames was made to authentically depict the robot’s movement trajectory.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 25

The actual mobile robot’s going and returning using the two algorithms are shown
in Figure 17, respectively. Given the overlap between the robot’s outbound and return
paths, to prevent any visual confusion within a singular image, the decision was made to
separate the actual trajectories of the two path-planning methods. These are represented
in two distinct images, showcased through frame extraction and overlay. An optimal se-
lection of 80 frames was made to authentically depict the robot’s movement trajectory.

(a) (b)

(c) (d)

Figure 17. One-time path planning using the RRT-Connect and DBR-RRT algorithm. (a) RRT-Con-
nect to planned outbound; (b) RRT-Connect planned return trip; (c) DBR-RRT to planned outbound;
(d) DBR-RRT planned return trip.

In Figure 18, the robot’s movement trajectory is displayed on the Rviz visualization
platform. The actual motion path of the DBR-RRT robot is represented by green lines,
while the actual motion path of the RRT-Connect robot is represented by red lines.

Upon close examination of the red trajectory, it was discerned that a judgment error
occurred at the first turn. Rather than making a left at the intersection, the robot chose to
proceed straight, causing an unnecessary path extension. In addition, at the point where
the robot is about to enter a turn, its trajectory shows a series of obvious twists and turns,
revealing that the path planning is not smooth enough. And being too close to the obstacle
in the upper right corner may cause potential safety issues.

(a)

(b)

Figure 18. The trajectory generated by the RRT- Connect and DBR-RRT algorithms are displayed in
Rviz: (a) RRT-Connect. (b) DBR-RRT.

Figure 17. One‑time path planning using the RRT‑Connect and DBR‑RRT algorithm. (a) RRT‑
Connect to planned outbound; (b) RRT‑Connect planned return trip; (c) DBR‑RRT to planned out‑
bound; (d) DBR‑RRT planned return trip.

In Figure 18, the robot’s movement trajectory is displayed on the Rviz visualization
platform. The actual motion path of the DBR‑RRT robot is represented by green lines,
while the actual motion path of the RRT‑Connect robot is represented by red lines.

Appl. Sci. 2024, 14, 2032 21 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 25

The actual mobile robot’s going and returning using the two algorithms are shown
in Figure 17, respectively. Given the overlap between the robot’s outbound and return
paths, to prevent any visual confusion within a singular image, the decision was made to
separate the actual trajectories of the two path-planning methods. These are represented
in two distinct images, showcased through frame extraction and overlay. An optimal se-
lection of 80 frames was made to authentically depict the robot’s movement trajectory.

(a) (b)

(c) (d)

Figure 17. One-time path planning using the RRT-Connect and DBR-RRT algorithm. (a) RRT-Con-
nect to planned outbound; (b) RRT-Connect planned return trip; (c) DBR-RRT to planned outbound;
(d) DBR-RRT planned return trip.

In Figure 18, the robot’s movement trajectory is displayed on the Rviz visualization
platform. The actual motion path of the DBR-RRT robot is represented by green lines,
while the actual motion path of the RRT-Connect robot is represented by red lines.

Upon close examination of the red trajectory, it was discerned that a judgment error
occurred at the first turn. Rather than making a left at the intersection, the robot chose to
proceed straight, causing an unnecessary path extension. In addition, at the point where
the robot is about to enter a turn, its trajectory shows a series of obvious twists and turns,
revealing that the path planning is not smooth enough. And being too close to the obstacle
in the upper right corner may cause potential safety issues.

(a)

(b)

Figure 18. The trajectory generated by the RRT- Connect and DBR-RRT algorithms are displayed in
Rviz: (a) RRT-Connect. (b) DBR-RRT.
Figure 18. The trajectory generated by the RRT‑ Connect and DBR‑RRT algorithms are displayed in
Rviz: (a) RRT‑Connect. (b) DBR‑RRT.

Upon close examination of the red trajectory, it was discerned that a judgment error
occurred at the first turn. Rather than making a left at the intersection, the robot chose to
proceed straight, causing an unnecessary path extension. In addition, at the point where
the robot is about to enter a turn, its trajectory shows a series of obvious twists and turns,
revealing that the path planning is not smooth enough. And being too close to the obstacle
in the upper right corner may cause potential safety issues.

As can be seen in Figure 19, after mapping the robot’s speed onto the trajectory for
depth comparison, the traditional RRT‑Connect algorithm exhibits significant speed fluc‑
tuations in multiple key areas. Particularly in areas requiring turns, a marked difference
in robot speed was observed. Moreover, on sections devoid of significant turns, the speed
presented unstable fluctuation characteristics. The speed parameters used in this experi‑
ment are as follows:

Appl. Sci. 2024, 14, x FOR PEER REVIEW 23 of 25

As can be seen in Figure 19, after mapping the robot’s speed onto the trajectory for
depth comparison, the traditional RRT-Connect algorithm exhibits significant speed fluc-
tuations in multiple key areas. Particularly in areas requiring turns, a marked difference
in robot speed was observed. Moreover, on sections devoid of significant turns, the speed
presented unstable fluctuation characteristics. The speed parameters used in this experi-
ment are as follows:

1 2 3 4 5 6
X(m)

-5

-4

-3

-2

Y
(

m
)

RRT−Connect

0 m/s

0.3 m/s

1 2 3 4 5 6
X(m)

-5

-4

-3

-2

Y
(

m
)

DBR−RRT

0 m/s

0.3 m/s

start end
start

end

(a) (b)

Figure 19. Speed–trajectory curves of RRT−Connect and DBR−RRT. (a) RRT−Connect (b) DBR
−RRT.

Following the experimental verification, Table 2 shows that the proposed DBR-RRT
shows higher efficiency than the traditional RRT-Connect algorithm. Firstly, its average
completion time is 9 s faster than the traditional RRT-Connect algorithm. Secondly, the
average running speed of the DBR-RRT algorithm is also higher than that of the traditional
algorithms, indicating that the robot can maintain higher operating efficiency throughout
the entire operation process. Finally, it is worth noting that the standard deviation of the
DBR-RRT algorithm is relatively low, which means that the robot’s operating speed
changes are more stable and less susceptible to sudden factors, thus maintaining a good
driving performance in different environments and conditions.

Table 2. Comparison between RRT-Connect and proposed method in terms of time, max velocity,
average velocity, and standard deviation of executed velocities.

Planner Times (s) Max Vel. (m/s) Avg Vel. (m/s) STD Vel.
RRT-Connect 106 0.230 0.100 0.103

DBR-RRT 97 0.230 0.139 0.097

6. Conclusions
In this paper, an advanced path-planning method based on Dynamic Bridging RRT

was successfully developed and demonstrated, dedicated to addressing the limitations of
existing strategies in complex environments and real-time requirements. The research re-
sults indicate that, based on the dynamic sampling strategy of expanding speed, key
achievements include faster search speeds in regions with dense obstacles or intricate bot-
tleneck shapes. Meanwhile, in the concluding path-generation phase, a swift path-
smoothing strategy was adopted, which further optimized the path, producing a more
streamlined and high-quality route. This approach makes path planning for mobile robots
in complex environments more efficient and is a useful complement to existing path-plan-
ning algorithms. However, due to time and resource constraints, we were not able to in-
dependently demonstrate the potential improvement effect that the path-smoothing com-
ponent may have on the RRT-Connect algorithm. This is an important dimension of com-
parison that will be added in future work. Future research will include applying the

Figure 19. Speed–trajectory curves of RRT−Connect and DBR−RRT. (a) RRT−Connect
(b) DBR‑RRT.

Following the experimental verification, Table 2 shows that the proposed DBR‑RRT
shows higher efficiency than the traditional RRT‑Connect algorithm. Firstly, its average
completion time is 9 s faster than the traditional RRT‑Connect algorithm. Secondly, the av‑
erage running speed of the DBR‑RRT algorithm is also higher than that of the traditional
algorithms, indicating that the robot can maintain higher operating efficiency throughout
the entire operation process. Finally, it is worth noting that the standard deviation of
the DBR‑RRT algorithm is relatively low, which means that the robot’s operating speed
changes are more stable and less susceptible to sudden factors, thus maintaining a good
driving performance in different environments and conditions.

Appl. Sci. 2024, 14, 2032 22 of 24

Table 2. Comparison between RRT‑Connect and proposed method in terms of time, max velocity,
average velocity, and standard deviation of executed velocities.

Planner Times (s) Max Vel. (m/s) Avg Vel. (m/s) STD Vel.

RRT‑Connect 106 0.230 0.100 0.103
DBR‑RRT 97 0.230 0.139 0.097

6. Conclusions
In this paper, an advanced path‑planning method based on Dynamic Bridging RRT

was successfully developed and demonstrated, dedicated to addressing the limitations of
existing strategies in complex environments and real‑time requirements. The research
results indicate that, based on the dynamic sampling strategy of expanding speed, key
achievements include faster search speeds in regions with dense obstacles or intricate bot‑
tleneck shapes. Meanwhile, in the concluding path‑generation phase, a swift
path‑smoothing strategy was adopted, which further optimized the path, producing a
more streamlined and high‑quality route. This approach makes path planning for mobile
robots in complex environmentsmore efficient and is a useful complement to existing path‑
planning algorithms. However, due to time and resource constraints, we were not able
to independently demonstrate the potential improvement effect that the path‑smoothing
component may have on the RRT‑Connect algorithm. This is an important dimension of
comparison that will be added in future work. Future research will include applying the
smoothing strategy to RRT‑Connect individually under the same conditions and perform‑
ing a careful comparative performance analysis to fully assess the impact of the smoothing
approach. Through such work, we hoped to provide deeper insights and further validate
the stability and efficiency of the methods, providing a more complete performance eval‑
uation framework.

Author Contributions: Conceptualization, S.Q. and R.T.; methodology, S.Q.; software, S.Q. and R.T.;
validation, S.Q. and B.L.; formal analysis, S.Q.; investigation, S.Q., R.T. and C.T.; resources, S.Q., B.L.,
and X.H.; data curation, S.Q. and R.T.; writing—original draft preparation, S.Q.; writing—review
and editing, S.Q., B.L. and C.T.; visualization, S.Q. and C.T.; supervision, B.L.; project administration,
S.Q. and B.L.; funding acquisition, B.L.; All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (grant num‑
ber 61973234 and 62203326), and in part by the Tianjin Natural Science Foundation (grant number
20JCYBJC00180).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code presented in this study is available on request from
the corresponding author.

Acknowledgments: The authors would like to thank Tiangong University for technical support and
allmembers of our team for their contribution to themobile robot experiments. The authors acknowl‑
edge the anonymous reviewers for their helpful comments on the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques:

Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [CrossRef]
2. Zhang, H.‑y.; Lin, W.‑m.; Chen, A.‑x. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
3. Sánchez‑Ibáñez, J.R.; Pérez‑del‑Pulgar, C.J.; García‑Cerezo, A. Path Planning for AutonomousMobile Robots: A Review. Sensors

2021, 21, 7898. [CrossRef] [PubMed]
4. Li, X.; Tong, Y. Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Appl. Sci. 2024, 14, 25. [CrossRef]
5. Owais, M. Traffic Sensor Location Problem: Three Decades of Research. Expert Syst. Appl. 2022, 208, 118134. [CrossRef]

https://doi.org/10.3390/electronics10182250
https://doi.org/10.3390/sym10100450
https://doi.org/10.3390/s21237898
https://www.ncbi.nlm.nih.gov/pubmed/34883899
https://doi.org/10.3390/app14010025
https://doi.org/10.1016/j.eswa.2022.118134

Appl. Sci. 2024, 14, 2032 23 of 24

6. Silva Ortigoza, R.; Marcelino‑Aranda, M.; Silva Ortigoza, G.; Hernandez Guzman, V.M.; Molina‑Vilchis, M.A. Wheeled Mobile
Robots: A Review. IEEE Lat. Am. Trans. 2012, 10, 2209–2217. [CrossRef]

7. Gao, X.; Li, J.; Fan, L.; Zhou, Q.; Yin, K.; Wang, J.; Song, C.; Huang, L.; Wang, Z. Review of Wheeled Mobile Robots’ Navigation
Problems and Application Prospects in Agriculture. IEEE Access 2018, 6, 49248–49268. [CrossRef]

8. Khaksar, W.; Vivekananthen, S.; Saharia, K.S.M.; Yousefi, M.; Ismail, F.B. A Review on Mobile Robots Motion Path Planning
in Unknown Environments. In Proceedings of the IEEE International Symposium on Robotics and Intelligent Sensors (IRIS),
Langkawi, Malaysia, 18–20 October 2015; pp. 295–300.

9. Owais, M.; Alshehri, A. Pareto Optimal Path Generation Algorithm in Stochastic Transportation Networks. IEEE Access 2020,
8, 58970–58981. [CrossRef]

10. Dong, G.; Yang, F.; Tsui, K.‑L.; Zou, C. Active Balancing of Lithium‑Ion Batteries Using Graph Theory and A‑Star Search Algo‑
rithm. IEEE Trans. Ind. Inform. 2021, 17, 2587–2599. [CrossRef]

11. Zhang, H.; Tao, Y.; Zhu, W. Global Path Planning of Unmanned Surface Vehicle Based on Improved A‑Star Algorithm. Sensors
2023, 23, 6647. [CrossRef] [PubMed]

12. Wang, S.J.; Hu, L.K.; Wang, Y.F. Path Planning of Indoor Mobile Robot Based on Improved D* Algorithm. Comput. Eng. Des.
2020, 41, 1118–1124.

13. Warren, C.W. Multiple Robot Path Coordination Using Artificial Potential Fields. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Cincinnati, OH, USA, 13–18 May 1990; pp. 500–505.

14. Wang, J.; Meng, M.Q.‑H. Optimal Path Planning Using Generalized Voronoi Graph and Multiple Potential Functions. IEEE
Trans. Ind. Electron. 2020, 67, 10621–10630. [CrossRef]

15. LaValle, S.M.; Kuffner, J.J., Jr. Randomized Kinodynamic Planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
16. Kuffner, J.J.; LaValle, S.M. RRT‑Connect: An Efficient Approach to Single‑Query Path Planning. In Proceedings of the 2000

ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA,
24–28 April 2000; pp. 995–1001.

17. Kang, J.G.; Lim, D.W.; Choi, Y.S. Improved RRT‑Connect Algorithm Based on Triangular Inequality for Robot Path Planning.
Sensors 2021, 21, 333. [CrossRef] [PubMed]

18. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime Motion Planning Using the RRT*. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 1478–1483.

19. Qi, J.; Yang, H.; Sun, H. MOD‑RRT*: A Sampling‑Based Algorithm for Robot Path Planning in Dynamic Environment. IEEE
Trans. Ind. Electron. 2021, 68, 7244–7251. [CrossRef]

20. Sarker, I.H. Machine Learning: Algorithms, Real‑World Applications and Research Directions. Comput. Sci. 2021,
2, 160. [CrossRef]

21. Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Markets 2021, 31, 685–695. [CrossRef]
22. Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.H. Neural RRT*: Learning‑Based Optimal Path Planning. IEEE Trans. Autom. Sci.

Eng. 2020, 17, 1748–1758. [CrossRef]
23. Kun, W.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an

Improved RRT Algorithm. Sensors 2018, 18, 571–586.
24. Karaman, S.; Frazzoli, E. Sampling‑Based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2011,

30, 846–894. [CrossRef]
25. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling‑Based Path Planning Focused via Direct Sam‑

pling of an Admissible Ellipsoidal Heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

26. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Batch Informed Trees (BIT*): Sampling‑Based Optimal Planning via the Heuristically
Guided Search of Implicit Random Geometric Graphs. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3067–3074.

27. Yin, J.; Hu, Z.; Mourelatos, Z.P.; Gorsich, D.; Singh, A.; Tau, S. Efficient Reliability‑Based Path Planning of Off‑Road Au‑
tonomous Ground Vehicles Through the Coupling of Surrogate Modeling and RRT*. IEEE Trans. Intell. Transp. Syst. 2023,
24, 15035–15050. [CrossRef]

28. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. RRT*‑Smart: Rapid convergence implementation of RRT* towards optimal
solution. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Chengdu, China, 5–8
August 2012; pp. 1651–1656.

29. Dai, J.; Zhang, Y.; Deng, H. Novel Potential Guided Bidirectional RRT* With Direct Connection Strategy for Path Planning of
Redundant Robot Manipulators in Joint Space. IEEE Trans. Ind. Electron. 2024, 71, 2737–2747. [CrossRef]

30. Ji, H.; Xie, H.; Wang, C.; Yang, H. E‑RRT*: Path Planning for Hyper‑Redundant Manipulators. IEEE Robot. Autom. Lett. 2023,
8, 8128–8135. [CrossRef]

31. Zhang,W.; Shan, L.; Chang, L.; Dai, Y. SVF‑RRT*: A Stream‑BasedVF‑RRT* forUSVs Path PlanningConsideringOceanCurrents.
IEEE Robot. Autom. Lett. 2023, 8, 2413–2420. [CrossRef]

32. Janson, L.; Schmerling, E.; Clark, A. Fast marching tree: A fast marching sampling‑based method for optimal motion planning
in many dimensions. Int. J. Robot. Res. 2015, 34, 883–921. [CrossRef] [PubMed]

https://doi.org/10.1109/TLA.2012.6418124
https://doi.org/10.1109/ACCESS.2018.2868848
https://doi.org/10.1109/ACCESS.2020.2983047
https://doi.org/10.1109/TII.2020.2997828
https://doi.org/10.3390/s23146647
https://www.ncbi.nlm.nih.gov/pubmed/37514941
https://doi.org/10.1109/TIE.2019.2962425
https://doi.org/10.1177/02783640122067453
https://doi.org/10.3390/s21020333
https://www.ncbi.nlm.nih.gov/pubmed/33419005
https://doi.org/10.1109/TIE.2020.2998740
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1109/TASE.2020.2976560
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/TITS.2023.3296651
https://doi.org/10.1109/TIE.2023.3269462
https://doi.org/10.1109/LRA.2023.3325716
https://doi.org/10.1109/LRA.2023.3245409
https://doi.org/10.1177/0278364915577958
https://www.ncbi.nlm.nih.gov/pubmed/27003958

Appl. Sci. 2024, 14, 2032 24 of 24

33. Wu, Z.; Chen, Y.; Liang, J. ST‑FMT*: A fast optimal global motion planning for mobile robot. IEEE Trans. Ind. Electron. 2021,
69, 3854–3864. [CrossRef]

34. Lee, J.; Kwon, O.; Zhang, L.; Yoon, S. SR‑RRT: Selective Retraction‑based RRT Planner. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 2543–2550.

35. Chi, W.; Ding, Z.; Wang, J.; Chen, G.; Sun, L. A Generalized Voronoi Diagram‑Based Efficient Heuristic Path Planning Method
for RRTs in Mobile Robots. IEEE Trans. Ind. Electron. 2022, 69, 4926–4937. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIE.2021.3075852
https://doi.org/10.1109/TIE.2021.3078390

	Introduction
	Related Work
	Problem Formulation
	Traditional Famework
	Proposed Famework for Path Planning Algorithm

	Methodology
	Bridge Test
	Dynamic Sampling Strategy
	Path Smoothing
	Curvature Calculation
	Candidate Node Sorting

	Simulation and Experimental Results
	General Framework of ROS
	Simulation I
	Simulation II
	Real-World Experiment I
	Real-World Experiment II

	Conclusions
	References

