The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Experimental Procedure
2.3. Numerical Procedure
3. Results and Discussion
3.1. Temperature Distribution
3.2. Experimental Validation
3.2.1. Experimental Temperature Validation
3.2.2. Macroscopic Morphology Validation
3.3. Effect of Friction Force on Interface Temperature
3.4. Effect of Friction Force on Axial Shortening
3.5. Effective Stress Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Welding Society. Specifications and standards. In Recommended Practice for Friction Welding; American Welding Society: Miami, FL, USA, 1989. [Google Scholar]
- Withers, P.J.; Preuss, M. Simulation of Rotational Welding Operations; Metals Process Simulation, ASM Handbook; ASM International: Materials Park, OH, USA, 2010; Volume 22B. [Google Scholar]
- Vill, V.I. Friction Welding of Metals; AWS: New York, NY, USA, 1962. [Google Scholar]
- Rich, T.; Roberts, R. Thermal Analysis for Basic Friction Welding. Met. Constr. Br. Weld. J. 1971, 3, 93–98. [Google Scholar]
- Imshennik, K.P. Heating in Friction Welding. Weld. Prod. 1973, 20, 76–79. [Google Scholar]
- Cheng, C.J. Transient temperature distribution during friction welding of two similar materials in tubular form. Weld. J. 1963, 12, 223–240. [Google Scholar]
- Healy, J.; Mcmullan, D.J.; Bahrani, A.S. Analysis of Frictional Phenomena in Friction Welding of Mild Steel. Wear 1976, 37, 279–289. [Google Scholar] [CrossRef]
- Kinley, W. Inertia Welding: Simple in Principle and Application. Weld. Met. Fabr. 1979, 585–589. [Google Scholar]
- Murti, K.; Sundaresan, G.; Parameter, S. Optimization in Friction Welding Dissimilar Materials. Met. Constr. Br. Weld. J. 1983, 15, 331–335. [Google Scholar]
- Kleiber, M.; Służalec, A. Finite element analysis of heat flow in friction welding. Eng. Trans. 1984, 32, 107–113. [Google Scholar]
- Służalec, A. Thermal Effects in Friction Welding. Int. J. Mech. Sci. 1990, 32, 467–478. [Google Scholar] [CrossRef]
- Służalec, A. Solution of thermal problems in friction welding. Int. J. Heat Mass Transf. 1993, 36, 1583–1587. [Google Scholar] [CrossRef]
- Sahin, Z.; Yilbas, B.S.; Al-Garni, A.Z. Friction welding of Al–Al, Al–steel, and steel–steel samples. J. Mater. Eng. Perform. 1996, 5, 89–99. [Google Scholar] [CrossRef]
- Bendzsak, G.J.; North, T.H.; Li, Z. Numerical Model for Steady-State Flow in Friction Welding. Acta Mater. 1997, 45, 1735–1745. [Google Scholar] [CrossRef]
- Fu, L.; Duan, L. The Coupled Deformation and Heat Flow Analysis by Finite Element Method during Friction Welding. Weld. Res. Suppl. 1998, 77, 202–207. [Google Scholar]
- Alvise, L.D.; Massoni, E.; Walloe, S.J. Finite Element Modelling of the Inertia Friction Welding Process between Dissimilar Materials. J. Mater. Process. Technol. 2002, 125, 387–391. [Google Scholar]
- Balasubramanian, V.; Li, Y.; Stotler, T.; Crompton, J.; Soboyejo, A.; Katsube, N.; Soboyejo, W.A. New Friction Law for the Modelling of Continuous Drive Friction Welding: Applications to 1045 Steel Welds. Mater. Manuf. Process. 1999, 14, 845–860. [Google Scholar] [CrossRef]
- Zimmerman, J.; Włosiński, W.; Lindemann, Z.R. Thermo-mechanical and diffusion modelling in the process of ceramic-metal friction welding. J. Mater. Process. Technol. 2009, 209, 1644–1653. [Google Scholar] [CrossRef]
- Ambroziak, A. Temperature distribution in friction welded joints of dissimilar refractory metals. Adv. Manuf. Sci. Technol. 2002, 26, 39–54. [Google Scholar]
- Maalekian, M.; Kozeschnik, E.; Brantner, H.P.; Cerjak, H. Comparative analysis of heat generation in friction welding of steel bars. Acta Mater. 2008, 56, 2843–2855. [Google Scholar] [CrossRef]
- Xiong, J.T.; Li, J.L.; Wei, Y.N.; Zhang, F.S.; Huang, W.D. An analytical model of steady-state continuous drive friction welding. Acta Mater. 2013, 61, 1662–1675. [Google Scholar] [CrossRef]
- Winiczenko, R.; Goroch, O.; Krzyńska, A.; Kaczorowski, M. Friction welding of tungsten heavy alloy with aluminium alloy. J. Mater. Process. Technol. 2017, 246, 42–55. [Google Scholar] [CrossRef]
- Winiczenko, R.; Kaczorowski, M.; Krzyńska, A.; Goroch, O.; Skibicki, A.; Skoczylas, P. TEM Microstructure, Mechanical Properties and Temperature Estimation in the 5XXX Series Al-Mg-Si Aluminum Alloy with W-Ni-Fe Tungsten Composite Friction-Welded Joints. Materials 2022, 15, 1162. [Google Scholar] [CrossRef]
- Perovic, N.L.; Maglic, K.D.; Stanimirovic, A.M.; Vukovic, G.S. Transport and calorimetric properties of AISI 321 by pulse thermal diffusivity and calorimetric techniques. High Temp. High Press 1995, 1, 53–58. [Google Scholar] [CrossRef]
- Hazman, S.; Ismail, A.I.M.; Endri, R.; Zainal, A.H. Mechanical evaluation and thermal modeling of friction welding of mild steel and aluminium. J. Mater. Process. Technol. 2010, 210, 1209–1216. [Google Scholar]
- Zang, Q.Z.; Zhang, L.W.; Liu, W.W.; Zhang, V.G.; Qu, S. 3D rigid viscoplastic FE modelling of continuous drive friction welding process. Sci. Technol. Weld. Join. 2006, 11, 737–743. [Google Scholar] [CrossRef]
- Shailesh, K.; Singh, K.; Chattopadhyay, G.; Phanikumar, K.; Dutta, P. Experimental and numerical studies on friction welding of thixocast A356 aluminum alloy. Acta Mater. 2014, 73, 177–185. [Google Scholar]
- Le, W.S.; Xiea, G.L.; Lin, C.F. The strain rate and temperature dependence of the dynamic impact response of tungsten composite. Mater. Sci. Eng. 1998, 257, 256–267. [Google Scholar] [CrossRef]
- Li, W.; Wang, F. Modeling of continuous drive friction welding of mild steel. Mater. Sci. Eng. A. 2011, 528, 5921–5926. [Google Scholar] [CrossRef]
- Geng, P.; Qin, G.; Zhou, J. Numerical and experimental investigation on friction welding of austenite stainless steel and middle carbon steel. J. Manuf. Process. 2019, 47, 83–97. [Google Scholar] [CrossRef]
- Wang, F.F.; Li, W.Y.; Li, J.L.; Vairis, A. Process parameter analysis of inertia friction welding nickel-based superalloy. Int. J. Adv. Manuf. Technol. 2014, 71, 1909–1918. [Google Scholar] [CrossRef]
- Nu, H.; Le, T.; Minh, L.; Loc, N. A Study on Rotary Friction Welding of Titanium Alloy (Ti6Al4V). Adv. Mater. Sci. Eng. 2019, 2019, 4728213. [Google Scholar]
Chemical composition | |||||||
Material | Al | W | Fe | Ni | Mg | Mn | Si |
THA | - | Bal. | 2.25 | 5.25 | - | - | - |
AA | Bal. | - | 0.194 | 0.002 | 2.95 | 0.265 | 0.1 |
Mechanical properties | |||||||
Material | Tensile Strength (MPa) | Yield strength (MPa) | Elongation (%) | Hardness (HB) | |||
THA | 960 | 680 | 27 | 285 | |||
AA | 276 | 207 | 22 | 83 |
Material | AA | THA |
---|---|---|
Density (kg/m3) | 2690 | 18,000 |
Young modulus (GPa) | 69 | 385 |
Poisson ratio | 0.33 | 0.28 |
Thermal expansion (1/C) | 2.2 × 10−5 | 5.2 × 10−6 |
Specific heat (J/kg K) | 528 | 134 |
Thermal conductivity (W/m K) | 135 | 90 |
Melting point (°C) | 640 | 2173 |
Flash Dimensions | Shortening, mm | ||
---|---|---|---|
Width, mm | Height, mm | ||
Measurement | 33.66 | 16.84 | 16.61 |
Predicted | 32.16 | 16.34 | 16.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiczenko, R.; Skibicki, A.; Skoczylas, P. The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy. Appl. Sci. 2024, 14, 2038. https://doi.org/10.3390/app14052038
Winiczenko R, Skibicki A, Skoczylas P. The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy. Applied Sciences. 2024; 14(5):2038. https://doi.org/10.3390/app14052038
Chicago/Turabian StyleWiniczenko, Radosław, Andrzej Skibicki, and Paweł Skoczylas. 2024. "The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy" Applied Sciences 14, no. 5: 2038. https://doi.org/10.3390/app14052038
APA StyleWiniczenko, R., Skibicki, A., & Skoczylas, P. (2024). The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy. Applied Sciences, 14(5), 2038. https://doi.org/10.3390/app14052038