Properties and Durability of Cementitious Composites Incorporating Solid-Solid Phase Change Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Analytical Techniques
2.2.3. Durability
- -
- Heating phase (heat charging): temperature increasing from 15 °C to 40 °C through a heating rate of 1 °C/min (for 25 min). After such heating period, the temperature is kept constant at 40 °C during 125 min.
- -
- Cooling phase (heat discharging): temperature decreasing from 40 °C to 15 °C through a cooling rate of 1 °C/min (for 25 min). Finally after this cooling period, the temperature is kept constant at 15 °C during 125 min.
3. Results
3.1. Mortar Proprieties
3.1.1. Rheological Properties
3.1.2. Microstructure Properties
3.1.3. Structural Properties
3.1.4. Mechanical Properties
3.1.5. Thermal Properties
3.2. Durability of Cementitious Composites Incorporating SS-PCM
3.2.1. Volume Stability: Drying Shrinkage
3.2.2. Chemical Stability: Carbonation
3.2.3. Mechanical Stability: Reversibility over Thermal Cycles
4. Conclusions
- -
- The increase of SS-PCM content in the fresh mortar induces a better workability and increases the total porosity, hence a drop in mechanical strength and thermal conductivity. However, the mechanical performance of SS-PCM composite mortars remains sufficient (27–18 MPa) for most building applications.
- -
- The drying shrinkage amplitude decreases with its SS-PCM content. This result should be related to the compressibility of the SS-PCM amortizing the local capillary pressure, leading to less measurable bulk deformation.
- -
- An increase in mechanical strength with the carbonation rate was noted. The mechanical stability of SS-PCM composite mortars over the heat storage cycles is confirmed. This should be explained by the volume stability of SS-PCM during phase change unlike classic SL-PCM.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fallahi, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Appl. Therm. Eng. 2017, 127, 1427–1441. [Google Scholar] [CrossRef]
- Ndiaye, K.; Ginestet, S.; Cyr, M. Thermal energy storage based on cementitious materials: A review. AIMS Energy 2018, 6, 97–120. [Google Scholar] [CrossRef]
- Šavija, B. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review. Materials 2018, 11, 654. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Deng, Y.; Yang, Z.; Huang, K.; Zhao, S. Optimal design of multi-layer structure composite containing inorganic hydrated salt phase change materials and cement: Lab-scale tests for buildings. Constr. Build. Mater. 2021, 275, 122125. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef]
- Jayalath, A.; Mendis, P.; Gammampila, R.; Aye, L. Applications of phase change materials in concrete for sustainable built environment: A Review. In Proceedings of the International Conference on Structural Engineering, Construction and Management, Kandy, Sri Lanka, 16–18 December 2011; Available online: http://dl.lib.mrt.ac.lk/handle/123/9349 (accessed on 8 March 2023).
- Snoeck, D.; Priem, B.; Dubruel, P.; De Belie, N. Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater. Struct. 2014, 49, 225–239. [Google Scholar] [CrossRef]
- Adesina, A.; Awoyera, P.; Sivakrishna, A.; Kumar, K.R.; Gobinath, R. Phase change materials in concrete: An overview of properties. Mater. Today Proc. 2020, 27, 391–395. [Google Scholar] [CrossRef]
- Ren, M.; Wen, X.; Gao, X.; Liu, Y. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material. Constr. Build. Mater. 2021, 273, 121714. [Google Scholar] [CrossRef]
- Asimakopoulou, E.K.; Kolaitis, D.I.; Founti, M.A. Fire safety aspects of PCM-enhanced gypsum plasterboards: An experimental and numerical investigation. Fire Saf. J. 2015, 72, 50–58. [Google Scholar] [CrossRef]
- Essid, N.; Loulizi, A.; Neji, J. Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material. Constr. Build. Mater. 2019, 222, 254–262. [Google Scholar] [CrossRef]
- Šavija, B.; Zhang, H.; Schlangen, E. Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste. Materials 2017, 10, 863. [Google Scholar] [CrossRef]
- Halamickova, P.; Detwiler, R.J.; Bentz, D.P.; Garboczi, E.J. Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter. Cem. Concr. Res. 1995, 25, 790–802. [Google Scholar] [CrossRef]
- Dehdezi, P.K.; Hall, M.R.; Dawson, A.R.; Casey, S.P. Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int. J. Pavement Eng. 2013, 14, 449–462. [Google Scholar] [CrossRef]
- Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. The direct incorporation of microencapsulated Phase Change Materials in the concrete mixing process. In Proceedings of the CMS 2009 Conference on Life Cycle Design of Building Systems and Materials, Enschede, The Netherlands, 12–15 June 2009; Available online: https://www.academia.edu/22180396 (accessed on 8 September 2023).
- Wei, Z.; Falzone, G.; Wang, B.; Thiele, A.; Puerta-Falla, G.; Pilon, L.; Neithalath, N.; Sant, G. The durability of cementitious composites containing microencapsulated phase change materials. Cem. Concr. Compos. 2018, 81, 66–76. [Google Scholar] [CrossRef]
- Drissi, S.; Ling, T.-C. Thermal and durability performances of mortar and concrete containing phase change materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 062001. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, E.; Li, G. Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer 2002, 43, 117–122. [Google Scholar] [CrossRef]
- Alkan, C.; Günther, E.; Hiebler, S.; Ensari, Ö.F.; Kahraman, D. Polyurethanes as solid-solid phase change materials for thermal energy storage. Sol. Energy 2012, 86, 1761–1769. [Google Scholar] [CrossRef]
- Tang, B.; Yang, Z.; Zhang, S. Poly(polyethylene glycol methyl ether methacrylate) as Novel Solid-Solid Phase Change Material for Thermal Energy Storage. J. Appl. Polym. Sci. 2012, 125, 1377–1381. [Google Scholar] [CrossRef]
- Yanshan, L.; Shujun, W.; Hongyan, L.; Fanbin, M.; Huanqing, M.; Wangang, Z. Preparation and characterization of melamine/formaldehyde/polyethylene glycol crosslinking copolymers as solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 2014, 127, 92–97. [Google Scholar] [CrossRef]
- Harlé, T.; Ledesert, B.; Nguyen, T.M.G.; Hebert, R.; Melinge, Y. Phase-Change Material for Storing Thermal Energy, Manufacturing Method and Uses of Such a Material. WO 2017198933 A1, 23 November 2017. Available online: https://patents.google.com/patent/WO2017198933A1 (accessed on 2 October 2023).
- Plancher, L.; Pierre, A.; Nguyen, G.T.M.; Hébert, R.L.; Ledésert, B.A.; Di Martino, P.; Mélinge, Y. Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials. Materials 2022, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- NF EN 196-1, Méthodes D’essais des Ciments, Partie 1: Détermination des Résistances Mécaniques 2016. Available online: https://www.boutique.afnor.org/norme/nf-en-196-1/methodes-d-essais-des-ciments-partie-1-determination-des-resistances/article/866862/fa184622 (accessed on 12 October 2023).
- Benabed, B.; Kadri, E.-H.; Azzouz, L.; Kenai, S. Properties of self-compacting mortar made with various types of sand. Cem. Concr. Compos. 2012, 34, 1167–1173. [Google Scholar] [CrossRef]
- The French National Research Project PERFDUB. Approche Performantielle de la Durabilité des Ouvrages en Béton. Available online: https://www.perfdub.fr/en/ (accessed on 14 October 2020).
- Zhang, Y.; Yang, Z.; Ye, G. Dependence of unsaturated chloride diffusion on the pore structure in cementitious materials. Cem. Concr. Res. 2020, 127, 105919. [Google Scholar] [CrossRef]
- Samson, G.; Phelipot-Mardelé, A.; Lanos, C.; Alogla, K.; Weekes, L.; Augusthus-Nelson, L.; Arora, S.; Singh, S.P.; Zhang, J.; Ma, H.; et al. A review of thermomechanical properties of lightweight concrete. Mag. Concr. Res. 2017, 69, 201–216. [Google Scholar] [CrossRef]
- Narain, J.; Jin, W.; Ghandehari, M.; Wilke, E.; Shukla, N.; Berardi, U.; El-Korchi, T.; Van Dessel, S. Design and Application of Concrete Tiles Enhanced with Microencapsulated Phase-Change Material. J. Arch. Eng. 2016, 22, 05015003. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Rodriguez, J.F.; Carmona, M.; Al-Manasir, N.; Kjøniksen, A.-L. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers. Manag. 2017, 133, 56–66. [Google Scholar] [CrossRef]
- Lura, P.; Jensen, O.M.; van Breugel, K. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 2003, 33, 223–232. [Google Scholar] [CrossRef]
- Grasley, Z.C.; Leung, C.K. Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response. Cem. Concr. Res. 2011, 41, 77–89. [Google Scholar] [CrossRef]
- Di Bella, C.; Wyrzykowski, M.; Lura, P. Evaluation of the ultimate drying shrinkage of cement-based mortars with poroelastic models. Mater. Struct. 2017, 50, 52. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 4th ed.; Pearson Higher Education, Prentice Hall: Englewood Cliffs, NJ, USA, 1995; Available online: https://www.technicalbookspdf.com/properties-of-concrete-fifth-edition-a-m-neville/ (accessed on 28 November 2023).
- Chuang, C.-W.; Chen, T.-A.; Huang, R. Effect of Finely Ground Coal Bottom Ash as Replacement for Portland Cement on the Properties of Ordinary Concrete. Appl. Sci. 2023, 13, 13212. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Labrincha, J.; Leonelli, C.; Palomo, A.; Chindaprasirt, P. Handbook of Alkali-Activated Cements, Mortars and Concretes, 1st ed.; Abington Hall: Cambridge, UK, 2015; Available online: https://www.sciencedirect.com/book/9781782422761 (accessed on 5 October 2023).
- Stefan, L.; Boulay, C.; Torrenti, J.-M.; Bissonnette, B.; Benboudjema, F. Influential factors in volume change measurements for cementitious materials at early ages and in isothermal conditions. Cem. Concr. Compos. 2018, 85, 105–121. [Google Scholar] [CrossRef]
- Gilbert, R. Time Effects in Concrete Structures; Elsevier: Amsterdam, The Netherlands, 1988; Available online: https://trid.trb.org/view/311317 (accessed on 3 February 2024).
- Rusch, H.; Jungwirth, D.; Hilsdorf, D.H. Creep and Shrinkage, Their Effect on the Behaviour of Concrete Structures; Springer: New York, NY, USA, 1983; Available online: https://www.springer.com/gp/book/9781461254263 (accessed on 7 September 2023).
- Medvedev, V.; Pustovgar, A.; Adamtsevich, A.; Adamtsevich, L. Concrete Carbonation of Deep Burial Storage Constructions under Model Aging Conditions. Buildings 2023, 14, 8. [Google Scholar] [CrossRef]
Oxide | SiO2 | Al2O3 | CaO | MgO | SO3 | K2O | Na2O | Fe2O3 |
---|---|---|---|---|---|---|---|---|
% | 21.53 | 3.59 | 65.47 | 0.70 | 3.49 | 0.26 | 0.6 | 0.22 |
Mortars | SS-PCM (%wt Cement) | Water/Cement | Cement (kg.m−3) | Water (kg.m−3) | Sand (kg.m−3) | SS-PCM (kg.m−3) |
---|---|---|---|---|---|---|
M0 | 0 | 0.5 | 512 | 256 | 1535 | 0 |
M5 | 5 | 0.5 | 503 | 251 | 1483 | 25 |
M10 | 10 | 0.5 | 494 | 247 | 1433 | 49 |
M15 | 15 | 0.5 | 486 | 243 | 1385 | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rmili, Y.; Ndiaye, K.; Plancher, L.; Tahar, Z.E.A.; Cousture, A.; Melinge, Y. Properties and Durability of Cementitious Composites Incorporating Solid-Solid Phase Change Materials. Appl. Sci. 2024, 14, 2040. https://doi.org/10.3390/app14052040
Rmili Y, Ndiaye K, Plancher L, Tahar ZEA, Cousture A, Melinge Y. Properties and Durability of Cementitious Composites Incorporating Solid-Solid Phase Change Materials. Applied Sciences. 2024; 14(5):2040. https://doi.org/10.3390/app14052040
Chicago/Turabian StyleRmili, Yosra, Khadim Ndiaye, Lionel Plancher, Zine El Abidine Tahar, Annelise Cousture, and Yannick Melinge. 2024. "Properties and Durability of Cementitious Composites Incorporating Solid-Solid Phase Change Materials" Applied Sciences 14, no. 5: 2040. https://doi.org/10.3390/app14052040
APA StyleRmili, Y., Ndiaye, K., Plancher, L., Tahar, Z. E. A., Cousture, A., & Melinge, Y. (2024). Properties and Durability of Cementitious Composites Incorporating Solid-Solid Phase Change Materials. Applied Sciences, 14(5), 2040. https://doi.org/10.3390/app14052040