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Abstract: The purpose of this study was to determine the mineral-associated organic carbon (MOC)
and its relationship to clay minerals under different temperatures and precipitation. We selected three
typical grassland transects in China: Titanium Plate (TP), Mongolian Plate (MP), and Loess Plate
(LP) with natural temperature gradients. Along the transect, there is a gradient in the precipitation
between the various types of grasslands. The surface soil (0-10 cm) was sampled to determine
the MOC. Clay minerals were charactered by X-ray diffraction (XRD). According to the findings,
the MOC content increased with decreasing temperature (5.41-14.89 g/kg). MOC had a positive
correlation (r = 0.67) with the amount of clay mineral content. In the large-scale study of transects,
precipitation masks the effect of temperature change on the MOC to a certain extent. It indirectly
affected the MOC content by affecting the mixed-layer illite/smectite (I/Sme) content, and this effect
was strongest at the lowest temperature TP (r = —0.73). Except for precipitation, CaO in the soil can
affect soil organic carbon (SOC) stability by influencing the pH and I/Sme. The amount of bacteria
increased as a result of I/Sme, and the influence of bacteria on the MOC was surpassed only by the
soil pH. Climate and clay mineral composition characteristics affected the MOC to a certain extent.
Among them, the effect of precipitation change on the MOC is higher than temperature, but it has
little effect on soil with a higher weathering degree and CaO content.

Keywords: climate; mineral-associated organic carbon; clay mineralogy; spatial variation; grassland
transects

1. Introduction

Grasslands make up nearly 20% of the land surface area [1] and 12% of the Earth’s
organic matter [2]. Ecosystems of grasslands are crucial to the cycling and neutralization
of carbon dioxide [3,4]. China’s grassland area accounts for about 7% of the world’s
grassland area [5] and its carbon storage accounts for about 9-16% of the world’s carbon
storage [6]. Therefore, changes in soil organic carbon (SOC) stocks in Chinese grasslands are
important for earth climate change and carbon cycle impact [7,8]. In general, SOC stability
is directly related to endogenous soil properties (e.g., texture, clay minerals, organic matter,
oxides) and is also influenced by exogenous factors (e.g., climate, land use, vegetation
type, etc.) [9-11].

SOC is generally classified as reactive organic carbon and mineral-associated organic
carbon (MOC) [12,13] linked to particles [14,15]. MOC is organic carbon complexed with
soil mineral particles [16]. It is more stable [17] and has a longer turnover time. It accounts
for a larger proportion of SOC [18]. Numerous factors, including the soil nutrient content,
nutrient input, and land management practices, affect the concentration of MOC [19-22].
Among the main influencing factors are soil texture and mineral types [23,24]. Soil minerals
have a large specific surface area and cation exchange capacity and soil texture is considered
to be the dominant factor controlling MOC dynamics [17]. The soil microstructure and pore
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system affect the stability of SOC [25]. In addition, clay minerals as soil skeletons [26] can
influence the stability of SOC through surface interactions [27,28]. Different clay minerals
have different abilities to adsorb and complex SOC [29]. Layered silicate minerals are effec-
tive in protecting SOC [30], with 2:1 minerals being more advantageous for SOC adsorption
compared to 1:1 minerals [31]. The combination of clay minerals and oxides can promote
the formation of aggregates [32] and improve the adsorption capacity of SOC [33]. A high
soil pH can reduce the binding of minerals to SOC by affecting the electrical charge [30].
The effect of different grassland types on MOC varies, especially in the temperate zone and
alpine grasslands, where there are differences in hydrothermal conditions and vegetation
types [34,35]. The temperate zone and alpine grasslands provided the best environment to
explore the influence of layered silicate mineralogy on MOC [36].

Gradient studies are an effective way to explore the influence of environmental con-
ditions (i.e., climate, vegetation, soil) on the ecosystem [37]. While previous studies have
focused on changes in a single grassland type or grassland SOC stocks, studies of temper-
ature and precipitation gradients need to cover a large area. It is difficult to draw broad
conclusions from small-scale field studies. Large-scale soil samples were gathered for
this investigation along a gradient of temperature and precipitation. Natural gradients
were used to explore the characteristics of MOC under different climates and its relation-
ship with clay minerals. The influence of clay minerals on the stability of MOC under
natural gradients was revealed. The relative contributions and interactions of different
influences at large scales were considered. We hypothesized that soil clay minerals had
an important impact on MOC content under large-scale studies. The correlation between
soil clay minerals and MOC content was the result of multiple environmental variables.
The purpose of the study was the following: (1) to determine the characteristics of the clay
mineral composition and MOC of natural grassland transects in China; (2) to determine
the correlation between clay minerals and MOC content in grassland soil on a large scale;
(3) to quantitatively assess the important effects of environmental variables (climate, soil,
bacteria) on clay minerals and MOC.

2. Materials and Methods
2.1. Studied Sites

Three typical transects in China were selected: the Tibetan Plateau (TP), Mongolian
Plateau (MP), and Loess Plateau (LP) (Figure 1). The transects were selected as natural
grasslands free from human activities (Table 1). The MP spans about 1000 km at 141-1249 m
above sea level, with a mean annual temperature (MAT) of about 2.64 °C. The MP has a
mean annual precipitation (MAP) from 168.29 to 448.47 mm. MP soil is mainly chestnut soil.
The TP spans about 1600 km at 4037-4592 m above sea level. The MAT is about —2.91 °C
and the MAP spans from 191.71 to 619.86 mm. TP soil is mainly brown soil. The LP spans
about 800 km at an altitude of 792-1684 m above sea level. The MAT is about 8.70 °C and
the MAP spans from 215.50 to 591.18 mm. LP soil is mainly cinnamon soil. Each transect
covers meadow steppe (MS), typical steppe (TS), and desert steppe (DS) gradients with
increased precipitation from west to east. The microorganism data (bacteria and fungi) are
from Yang [38,39].

Ten representative sample areas were selected for each grassland transect. Eight
sample quadrats (20 m x 20 m) were set up in each sample area. For every sampling
quadrat, four randomly chosen plots (1 m x 1 m) were taken. A soil auger was used to
gather soil samples ranging from 0 to 10 cm, which were then merged to create a composite
sample. Soil samples were preserved after a 2 mm sieve.
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Figure 1. Location of grassland sampling sites in China. TP: Tibetan Plateau; MP: Mongolian Plateau;
LP: Loess Plateau.

Table 1. Information on the study sites.

Transects Grassland Type Altitude (m) MAP (mm) MAT (°C) pH
MP MS 344 405.78 4.87 8.18
TS 1108 362.39 0.96 7.59

DS 1029 220.88 2.09 7.96

TP MS 4292 552.67 —1.82 6.92

TS 4640 433.99 —4.04 8.16

DS 4415 266.75 —2.89 8.23

LP MS 834 573.73 10.82 8.05

TS 1291 466.37 8.23 8.09

DS 1553 256.58 7.047 8.22

MAT: Mean annual temperature; MAP: Mean annual precipitation. TP: Tibetan Plateau; MP: Mongolian Plateau;
LP: Loess Plateau. MS: Meadow steppe; TS: Typical steppe; DS: Desert steppe.

2.2. Soil Physicochemical Analyses

For the determination of the soil particle composition, 30% H,O, was used to remove
organic matter in <2 mm soil samples. Then the carbonate was removed with 10% HCI
solution. The samples washed with deionized water were separated by the siphon method
(according to Stokes’ law). The separated samples were weighed after centrifugation and
drying, and four particle grades were obtained: clay (<0.002 mm), sand (0.02-0.002 mm),
and sand (2-0.02 mm). The combined percentages were used to classify soils using the
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textural triangular coordinate map. The soil pH was measured with a pH meter by using a
1:5 (soil:water ratio) pH meter: Model PHS-3C (Yi Electrical Scientific Instrument Co., Ltd.,
Shanghai, China) [40]. The soil elements were determined using an X-ray fluorescence (XRF)
spectrometer (XRF-1800, Shimadzu, Kyoto, Japan). The equipment was calibrated using
the national standard GBW02103 [41,42]. The silica-alumina ratio (Sa) was expressed by
n(5i0;)/n(AlO3). The silica-sesquioxide ratio (Saf) is expressed by SiO, /(Al,O3 + FeyO3).

2.3. SOC and MOC Analysis

An N/C Macro Elemental Analyzer 2100S (Analytik Jena AG, Jena, Germany) was
used to measure the SOC content. The formula for calculating MOC concentration was
MOC = SOC — Particulate organic carbon (POC) [43]. The POC content was determined
with the Cambardella and Elliott method (1992) [44]. The 10 g sample was immersed in
30 mL 5 g/L of sodium hexaphosphate solution. Then it was dispersed on a reciprocating
shaker at a low speed for 15 h (200 oscillations per minute). The sample was dispersed
and passed through a 53 um sieve and washed with distilled water until the water was
completely clean. The soil particles retained on the sieve (representing particulate organic
matter) were dried (60 °C) and weighed. Then, the soil was ground and sieved through a
150 um sieve for the determination of organic carbon to determine the content of POC.

2.4. XRD Analyses

The dithionite-citrate-bicarbonate (DCB) method was used to remove iron from clay
fraction (<2 um). The iron-removed clay was saturated with 1 mol/L of CH3COOK to
make K-saturated air-dried film (K-air) and saturated with 1 mol/L Mg(CH3COO), to
make Mg-saturated air-dried (Mg-air). The Mg-air was saturated with C3HgO3 to make
Mg-glycerol (Mg-gly). The K-air was heated in a mulffle furnace at 300 °C and 550 °C
for 2 h to make K-300 and K-550. The above samples were scanned using an XRD-7000
diffractometer (Shimadzu, Kyoto, Japan) under the following conditions: CuKa radiation
(30.0 mA, 40.0 kV), scan range of 3-30°, and scan step of 0.02° [45]. Peak value extraction
and semi-quantitative calculations were performed on the X-ray diffraction pattern using
MID Jade 6.0. The relative content of minerals is evaluated based on the ratio between
the characteristic reflection areas and the corresponding weight coefficient (Biscaye 1965;
National Development and Reform Commission, 2006 [46]).

2.5. Statistical Analyses

We tested the significance of SOC, MOC, major element chemistry, and clay minerals
under different grasslands transected by ANOVA using SPSS 22.0. A bubble diagram was
created using the Origin 2019. Semi-quantitative calculations were carried out by MID
Jade 6.0. The correlation coefficients between the MOC and clay minerals in several grass-
land transects, as well as the correlation between the MOC and environmental parameters
(soil and climate), were clarified using Pearson’s correlation (RStudio 4.0.3.). To investi-
gate the impact of climate variables on MOC at a large scale, partial correlation analysis
(SPSS 22.0) was used to control the influencing factors (MAP, pH, clay) to explore the rela-
tionship between the MOC and MAT. Regression models were used to screen and prelimi-
narily determine the simple correlation relationships between influencing factors. Structural
equation modeling (SEM) was further established after the regression analysis was used to
eliminate the unimportant factors. SEM was used to test the causal relationship between
the climate, soil properties, mineral species, and MOC. The degree of freedom (df), the
p value, and the x? test were used to assess the fit of this SEM model.

3. Results
3.1. Soil Physicochemical Properties

The classification of soil texture, based on various particle portions, is presented in
Figure 2. The soil texture of the three grassland transects was between loamy and sandy,
except for LP-MS (loamy) and MP-DS (sandy loam). The MP soil texture is loamy sandy
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loam and sandy loam, the TP is loamy sandy loam, and the LP is sandy loam and loam.
LP soil had the lowest soil texture dispersion compared to the other transects’ soil. The
texture of the different grassland types changes from sand to clay as the precipitation
gradient increases. MP: MS-DS (sand = 71.92-84.20%), LP: MS-DS (sand = 32.98-61.61%),
and TP: MS-DS (sand = 51.00-70.81%). MP: MS-DS (clay = 3.56-2.03%), LP: MS-DS
(clay = 5.23-1.98%), and TP: MS-DS (clay = 3.08-4.54%). The texture of the three grass-
land transects changed from sandy to clay loam with increasing temperature. Clay: LP
(7.92 £ 3.45%, CV% = 43.59) > MP (9.84 + 5.38%, CV% = 54.70) > TP (10.68 £ 6.28%,
CV% =58.84). Sand: LP (63.67 £ 16.47%, CV% = 25.88) > MP (75.80 & 12.15%, CV% = 16.03)
> TP (50.48 £ 17.40%, CV% = 34.48).

//S“ty “/ Clay loam
clay loar

Silty loam

0 20 40 60 80
sand (2-0.02mm) %

Figure 2. Soil textural classification of soil samples. TP: Tibetan Plateau; MP: Mongolian Plateau;
LP: Loess Plateau; MS: Meadow steppe; TS: Typical steppe; DS: Desert steppe.

The soil chemical composition was dominated by SiO,, Al;O3, and Fe,Oj3 in the
MP and TP and by SiO,, CaO, and Al,Os in the LP (Table 2). The highest S5iO, content
(67.50 £ 4.10%) was found in the MP among the three transects. The lowest content of SiO,
and Al,Oj3 in the three transects was LP soil (55.76 £ 3.01, 12.97 & 1.42%). The highest
content of CaO was LP soil (13.73 4+ 3.19%). The coefficient of variation of LP soil chemical
composition was the lowest among the three transects, except Al;O3 and NayO. Sa and Saf
are important indicators to evaluate soil chemical weathering [47]. The MP had the highest
Sa and Saf (8.33 4+ 1.37, 6.77 + 1.35), and the coefficient of variation of Sa and Saf was also
the highest (16.44, 20.00). Therefore, the weathering degree of the MP is the lowest among
the three transects.

Table 2. Major element chemistry of soil samples (%).

Transect SiO, Al,O3 Fe, O3 TiO; MnO CaO MgO K,O Na,O P,05 Sa Saf

MP Mean 67.50 + 14.00 + 5.30 + 0.96 + 0.31 + 3.28 + 1.56 + 476 + 2.03 + 0.20 + 8.33 + 6.77 +
410a 153 a 1.58 b 024 c 0.17 a 1.57 c 0.35b 0.36 a 0.35a 0.05 a 137 a 1.35a

CV% 6.08 10.91 29.80 24.82 55.29 47.88 22.36 7.64 17.33 26.94 16.44 20.00

™ Mean 59.21 + 14.36 + 8.13 + 0.97 + 0.16 + 8.53 + 2.34 + 4.09 + 1.50 £+ 0.24 + 7.10 £+ 5.26 +
5.19b 1.86 a 2.58 a 0.20 ab 0.06 b 731b 0.86 a 0.82b 0.54b 0.09 a 1.04b 093 b

CV% 8.77 12.98 31.73 21.10 36.68 85.72 37.00 20.02 35.80 39.59 14.69 17.67

LP Mean 55.76 + 12.97 + 8.32 + 1.17 + 0.16 + 13.73 + 2.60 + 3.34 + 1.55 + 0.18 + 7.39 + 5.26 +
3.01b 142 a 1.23a 0.12a 0.03b 3.19a 0.29 a 0.18 ¢ 0.30b 0.03a 0.94b 0.77b

CV% 5.41 10.92 14.73 10.04 18.83 23.25 11.21 5.29 19.12 16.94 12.72 14.66

Lowercase letters indicate differences among the three transect soils at p < 0.05 level. TP: Tibetan Plateau;
MP: Mongolian Plateau; LP: Loess Plateau. Sa: silica-alumina ratio; Saf: silica-sesquioxide ratio. CV%: Coefficient
of variation among transects. Means =+ standard errors.
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3.2. SOC and MOC in Different Grassland Transect Soils

The average content of SOC from the three grassland transects was TP 21.08 g/kg,
MP 12.39 g/kg, and LP 8.12 g/kg. The average content of MOC was TP (14.89 g/kg) > MP
(8.07 g/kg) > LP (5.41 g/kg) (Figure 3a). The average value of MOC/SOC in LP soil was the
highest (66.67%), and the average value of MOC/SOC in MP was the lowest (65.33%), while
the TP was 65.99% (Figure 3b). Generally, the MOC content of the tested soil decreased with
the increase in the temperature gradient. The highest MOC content in the three transects
was the TP transect MS (36.63 g/kg), and the lowest was the TP transect DS (2.60 g/kg).
The grassland type with the lowest MOC content in each transect was the DS.

100
a O soc b = I;’[SS
O moc 90 MP
L © ~mp Lp I DS
o LP MS a a
Y ~_~ 80 -
LP TS Q TP
LP DS s
U a
MP MS O 70F b b I ab b
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° 35
L TP DS o 19 L |
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Mean annual precipitation (mm)

Three grassland transects

Figure 3. SOC and MOC content of grassland transects soil (a) SOC and MOC, (b) MOC/SOC.
Lowercase letters indicate differences among the three grassland type MOC/SOC value at p < 0.05
level. TP: Tibetan Plateau; MP: Mongolian Plateau; LP: Loess Plateau; MS: Meadow steppe; TS: Typical
steppe; DS: Desert steppe; SOC: soil organic carbon; MOC: mineral-associated organic carbon.

3.3. Clay Minerals Component Characteristics

The main minerals in the three grassland transects were smectite (Sme) (29.31-40.37%),
illite (It) (37.27-60.82%), vermiculite (Ver) (0.72-9.34%), mixed-layer illite/smectite (I/Sme)
(2.06-33.27%), kaolinite (Kao), and chlorite (Chl) (Figure 4). Kao and Chl contents were less
than 1%. The highest contents of Sme and It in the LP were 34.54 & 3.71% and 53.00 = 9.16%,
respectively. The highest contents of Ver and I/Sme in the MP were 4.96 £+ 7.94% and
21.75 £ 9.84%, respectively.

100

3
(=}

D
(=]

40

Clay mineral composition (%)

1553
(=]

S O L O P e & ®
P R Q\Sﬁ‘\g, Y

KU N S N

Figure 4. Spatial variation in mineralogy in the clay fraction. Sme: smectite; It: illite; Ver: vermiculite;
I/Sme: mixed-layer illite /smectite.
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3.4. Linking MOC to Clay Minerals and Other Factors

The MOC content was positively correlated with the environmental factor MAP
(r=0.53), clay (r = 0.67), silt (r = 0.47), bacteria (r = 0.67), and fungi (r = 0.56). MOC content
with pH (r = —0.58), Sa (r = —0.40), Saf (r = —0.42), and sand (r = —0.58) was negatively
correlated (Table 3). The correlation between the above indicators and MOC was stronger
than SOC (except bacteria and fungi).

Table 3. Pearson’s correlation among soil physical-chemical, environmental factors, and MOC.

SOC MOC pH Clay Silt Sand MAP MAT SiO, Al,O3 Fe, O3 CaO Sa Saf Bacteria Fungi
SOC 0.99 —0.70 0.64 0.43 —0.55 0.57 —0.08 0.01 0.43 0.38 -028 —-033 —037 0.70 0.60
MOC —0.69 0.67 0.47 —0.58 0.53 —-0.07 —0.03 0.48 0.43 -027 —-040 042 0.67 0.56
pH —0.22 0.06 0.04 —0.21 0.20 —0.50 —0.36 —0.07 0.74 —-0.02 —0.01 —0.54 —0.51
Clay 0.63 —0.78 0.37 0.18 —0.33 0.54 0.55 0.06 —0.61 —0.60 0.33 0.32
Silt —0.95 0.59 0.36 —0.72 0.17 0.86 0.40 -059 —-0.79 0.16 0.10
Sand —-057 —-0.37 0.64 —0.26 —0.82 —0.32 0.61 0.76 —0.20 —0.15
MAP 0.18 -0.29 0.03 0.46 0.17 -0.19 —-038 0.40 0.34
MAT —0.30 —0.31 0.19 0.29 0.02 —0.09 —0.65 —0.69
5iO, 0.08 —0.65 —0.84 0.62 0.70 0.08 0.17
Al O3 0.41 -037 —071 —0.56 0.33 0.45
Fe, O3 0.20 —-0.75 —0.93 0.17 0.18
CaO —-026  —027 —0.22 —0.30
Sa 091 -0.17 -0.20
Saf —0.18 —0.19
Bacteria 0.92

Fungi

Significant correlations (p < 0.05). SOC: soil organic carbon; MOC: mineral-associated organic carbon. MAP: mean
annual precipitation; MAT: mean annual temperature. Sa: silica-alumina ratio; Saf: silica-sesquioxide ratio.

The correlation between the MOC and minerals gradually increased with decreasing
temperature (Table 4). Only Ver (r = 0.42) was significantly correlated with MOC in the
highest temperature LP. Ver was the next most significantly correlated with MOC in the MP
(r=0.66). Chl (r = 0.75), Sme (r = 0.83), and It (r = 0.41) were significantly correlated with
the MOC in the TP with the lowest temperature, and I/Sme (r = —0.73) was significantly
negatively correlated with MOC.

Table 4. Pearson’s correlation coefficients (r) among the MOC and clay minerals in different grass-
land transects.

Kao Chl Sme It Ver I/Sme
MP -0.17 0.47 —0.24 —0.01 0.66 * 0.14
TP 0.62 0.75* 0.83 ** 0.41 —0.05 —0.73 **
LP 0.32 -0.13 0.12 0.10 0.42* —-0.22

*p < 0.05, ** p < 0.01, significant correlations. Sme: smectite; It: illite; Ver: vermiculite; I/Sme: mixed-layer
illite /smectite; Kao: kaolinite; Chl: chlorite.

The findings of the partial correlation study confirmed the significance of the MAP
and MAT (Table 5). After controlling the effect of MAP, the relationship between the MOC
and MAT changes from an insignificant to a significant negative correlation.

Table 5. Partial correlations between the SOC fractions and MAT after controlling the related soil
properties in grassland transects.

Zero-Order MAP pH Clay
50C —0.25 —0.40* —0.08 —0.33
MOC —0.26 —0.41* —0.10 —0.34

Zero-order: without controlling any factors. * p < 0.05, significant correlations. SOC: soil organic carbon; MOC:
mineral-associated organic carbon. MAP: mean annual precipitation.

As for the spatial variation in different grassland transects, MOC accounted for 75%
(Figure 5). The direct effect of the MAT and MAP on MOC is greater than the indirect
effect. The MAT indirectly affects soil carbon stability by affecting CaO, clay particles,
bacteria, etc. pH and Sa had negative effects on MOC. MAP, clay particles, and bacteria had
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positive effects on MOC. The most significant factor influencing SOC was the pH, which
was followed by bacteria.

-0.73
\0‘76’
emﬁ“l Bacteria MOF'
053 : -0.36

—
0.46 0.52 |__'Sa

b: R2=0.75, x>=91.7, P<0.0001, df=32, RMSEA=0.025,
GFI=0.75, NFI=0.58

Figure 5. Structural equation model of the influence of environmental and soil factors on MOC. The
numbers next to the path arrows indicate the standardized effect estimates and the direction of their
relationship (Red for positive values, blue for negative values). MAP: mean annual precipitation;
MAT: mean annual temperature; I/Sme: mixed-layer illite/smectite; MOC: minera-associated organic
carbon; Sa: silica-alumina ratio.

4. Discussion
4.1. SOC and MOC in Grassland Soil Samples

Both the SOC and MOC contents of grassland soils decreased with increasing tempera-
ture (Figure 3a) [48]. This result was consistent with the findings that alpine grasslands are
more likely to accumulate SOC [49]. Higher temperatures lead to higher soil temperatures,
which activated microbial activity and accelerated the rate of SOC decomposition [50,51].
The SOC and MOC contents of grasslands other than the MP transect MS increased with
increasing precipitation gradients in different grassland transects [52]. The study showed
that precipitation has a positive effect on SOC accumulation. The impact of the kind
of grassland on the variance in organic carbon storage was further examined in Wang's
study [7]. The temperature precipitation gradient between the MP transect MS and the TS
was less different compared to other transects. It has also been shown that the correlation
between the loss of SOC and the increase in the MAT and MAP was stronger. However, the
increase in SOC input was not sufficient to offset the loss due to more favorable decom-
position conditions [53]. Therefore, the LP had the highest percentage of MOC and high
SOC stability. However, its uptake was constrained by SOC. The MOC content was not the
highest among the three sample strips. The lower the temperature is, the more sensitive
the MOC content of the grassland transects was to changes in precipitation. The MOC
content of MS soils in the MP was lower compared to other meadow grasslands. This was
partly because changes in MOC may be related to the level of carbon input [9,33,54]. For
example, precipitation can also increase SOC sequestration by promoting plant growth
under certain conditions [8]. On the other hand, it may be related to a combination of
conditions, such as the associated decomposition environment [54]. In arid and semi-arid
grasslands, high soil water content can accelerate the rate of soil respiration, leading to
SOC loss. The amount of water in the soil is a major factor in determining how the carbon
cycle responds [16]. A recent study showed that under wet conditions, warming stimulates
soil carbon uptake; under very dry conditions, warming inhibits carbon absorption [55].
The MOC/SOC content ranged from 65.33 to 66.67%, which is consistent with the results of
Cai [23]. MOC/SOC increased with decreasing precipitation for the MP and LP and vice
versa for the TP. The decomposition of soil organic carbon in high temperature and humid
areas is usually not limited by soil water availability [53]. Therefore, water deficiency will
limit carbon uptake and soil respiration, thus reducing MOC content [16].
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4.2. Influence of Soil Physicochemical Properties on MOC

The pH in different grassland types increased with the decrease in the MAP except
the MP transect MS. The pH increased with increasing temperature in all three grassland
transects. The MOC content was negatively correlated with the pH (r = —0.69). To some
extent, it explained the pattern of less MOC content in MP-MS. In terms of soil texture,
we found significant differences in the clay content in the three transects. The MOC and
SOC were positively correlated with the proportion of clay in the soil [56,57]. The MOC
content can be enhanced by increasing carbon input. The moist soil with a higher fine silt
content (soil, sand, and clay content) was more favorable for the accumulation of organic
carbon. LP soils with high Sa and Saf values had the lowest weathering intensity. The
content of clay grains and Fe/Al oxides gradually increased with increasing weathering
intensity, which is in concordance with the findings in [58]. Also, metal oxides have been
shown to be particularly effective in the sorption and stabilization of SOC [59,60]. The CaO
content in LP soil was higher than the other two transects, which may be the reason for
the highest MOC/SOC value in the LP transect. When CaO dissolves, calcium ions are
released, which attach to soil particles and improve flocculation. Microaggregates may be
formed in soils with a high clay content and cation exchange capacity [61], thus indirectly
promoting organic carbon binding to minerals and improving SOC stability [62]. Also, the
interaction between the pH and CaO had a positive effect on the stabilization of SOC [63].
It has been shown that the increase in calcium concentration in soils with a higher pH
could effectively increase the attraction between clay and organic matter. Colloids could
flocculate to a large extent due to electrostatic forces, which were the basis for the formation
of agglomerates [64]. In agriculture, lime had been used to improve slabby soils [65,66], and
CaO had also been added as an exogenous substance to soil amendments for application,
thereby increasing the carbon sequestration capacity of soils [67].

4.3. Relationship between Clay Minerals and MOC

Among the three grassland transects, the highest content of Sme (2:1 swelling clay
minerals) and It (2:1 non-swelling clay mineral) was the LP, and the lowest was the MP.
The contents of Ver (2:1 swelling clay mineral) and I/Sme were the highest in MP soil.
Studies have shown that soil (It, Sme, Ver) dominated by 2:1 type minerals has higher
MOC content than soil (Kao) dominated by the 1:1 type [17]. Sme enhances SOC stability
through its cationic bridge [68]. Ver as a 2:1 swelling mineral could improve SOC stability
by stabilizing agglomerates [69]. The intercrystalline space of illite is full of low-hydrated
K*, and it is difficult to expand in water. Therefore, the ability to fix organic carbon is
lower than Ver [70]. In contrast, I/Sme indirectly affected the MOC content by influencing
the pH, clay content, and bacteria content (Figure 5). However, the correlation between
MOC and mineral species differed at different temperature gradients, and the correlation
between MOC and minerals gradually increased as the temperature decreased. Only Ver
was positively correlated with MOC in the LP with the highest temperature. Therefore, the
low Ver content was one of the reasons affecting the lowest MOC content in the LP. Ver was
positively correlated with MOC in the MP. MOC in the TP with the lowest temperature
was positively correlated with Sme and It. MOC was negatively correlated with I/Sme. To
some extent, this explained the pattern of the highest MOC content in TP soils.

4.4. Comprehensive Effects of Climate, Soil Properties, and Minerals on MOC

SEM showed the formation of MOC because of physical and chemical interactions.
One of the factors that had the greatest direct effect on MOC was the soil pH. An increase
in the pH will lead to an increase in organic matter desorption and colloid mobilization,
which may affect the stability of microaggregates [71]. The SOC in soil agglomerates was
physically protected by the binding of minerals, leading to the inability of microorganisms
to decompose them, thus increasing the MOC content [15]. SEM has shown that tempera-
ture has a significant impact on the dynamics of bacterial populations [72]. In addition, the
composition of bacterial communities is closely related to MOC [73]. I/Sme can promote



Appl. Sci. 2024, 14, 2061

10 of 13

the formation of MOC by influencing bacteria. Meanwhile, a few studies have noted that
minerals were beneficial to the accumulation of soil microbial necrotic carbon, which was
an important source of stable organic carbon [74]. The importance of climatic factors in
controlling MOC has been recognized in a previous study [17]. Our results showed the
strongest effect of the MAP on MOC [75]. Adequate soil moisture sustained plant growth
so that plants further fixed SOC. On one hand, it ensures the input of carbon sources. On
the other hand, it provides organic acids for root growth and microbial oxidative decom-
position, reducing the pH value. It can be seen that there is a strong dependence between
soil moisture, biomass production, and soil pH [76]. However, the effect of precipitation
on MOC seems to obscure the role of other potential factors, such as the temperature,
mineralogy, etc. [77]. I/Sme affected MOC by influencing clay mineral content in addition
to the pH. The structure of clay minerals led to variable charges at their edges and these
edges could form strong interactions with organic groups. Soils with a higher CaO content
also had a higher pH, and CaO indirectly affected MOC by influencing the pH. In addition,
soil oxides exhibited a high zero charge point. This enabled negatively charged organic
groups to adsorb or react with permanently negatively charged clay minerals at most pH
values below zero charges [78].

5. Conclusions

The variation of MOC and its relationship with clay minerals were studied in three
typical grassland transects in China. It was found that the MOC contents of different
transects were TP (14.89 g/kg) > MP (8.07 g/kg) > LP (5.41 g/kg). The MOC content
was the result of a combination of the climate, soil properties, and minerals. Precipitation,
as a climate factor, was positively correlated with MOC content (r = 0.53). Temperature
correlated significantly (r = 0.48) with MOC after controlling for the effect of precipitation.
Soil properties and minerals differed between grasslands affected by the climate. The pH
of soil properties affected soil weathering and its ability to adsorb MOC. But in turn, the
pH was also influenced by CaO and mixed-layer illite/smectite (I/Sme). The relationship
between soil minerals and microorganisms in stabilizing organic carbon has also been
found. Moreover, we also found a correlation between MOC and mineral species at different
temperature gradients. As the temperature decreases, the correlation between MOC and
minerals gradually increases. In summary, there was a coupling effect among organic
carbon, soil properties, and clay mineral under natural climate change. The relationship
between the above three factors cannot be simply explained by controlling one or two
variables. The interaction between the influencing factors in the natural environment had to
be comprehensively considered. In addition, the influence of clay minerals on MOC content
varies with climate conditions, but not in all environments. Therefore, the influence of
clay-grained minerals needed to be taken into account when studying SOC and its stability
under certain conditions.
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