Effects of Various Foot Wedges on Thigh Muscle Activity during Squatting in Healthy Adults: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Risk of Bias Assessment
2.5. Statistical Tests
3. Results
3.1. Participants’ Characteristics
3.2. Study Characteristics
3.3. Methodological Characteristics
3.4. Risk of Bias Assessment
3.5. Effects of the Posterior Wedge on the Activity Level of Thigh Muscles
3.6. Effects of the Anterior Wedge on the Activity Level of Thigh Muscles
3.7. Effects of the Medial Wedge on the Activity Level of Thigh Muscles
3.8. Effects of the Lateral Wedge on the Activity Level of Thigh Muscles
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zawadka, M.; Smołka, J.; Skublewska-Paszkowska, M.; Łukasik, E.; Zieliński, G.; Byś, A.; Gawda, P. Altered squat movement pattern in patients with chronic low back pain. Ann. Agric. Environ. Med. 2021, 28, 158–162. [Google Scholar] [CrossRef]
- Reneker, J.C.; Latham, L.; McGlawn, R.; Reneker, M.R. Effectiveness of kinesiology tape on sports performance abilities in athletes: A systematic review. Phys. Ther. Sports 2018, 31, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef]
- Jeong, H.; Haghighat, P.; Kantharaju, P.; Jacobson, M.; Jeong, H.; Kim, M. Muscle coordination and recruitment during squat assistance using a robotic ankle–foot exoskeleton. Sci. Rep. 2023, 13, 1363. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.H.; Anbarian, M.; Esmaeili, H. Effect of various foot wedge conditions on the electromyographic activity of lower extremity muscles during load lifting. Hum. Factors Erg. Man. 2018, 28, 213–219. [Google Scholar] [CrossRef]
- Paoli, A.; Marcolin, G.; Petrone, N. The effect of stance width on the electromyographical activity of eight superficial thigh muscles during back squat with different bar loads. J. Strength Cond. Res. 2009, 23, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of squat training with different depths on lower limb muscle volumes. Eur. J. Appl. Physiol. 2019, 119, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Slater, L.V.; Hart, J.M. Muscle activation patterns during different squat techniques. J. Strength Cond. Res. 2017, 31, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Tang, Y.-Y.; Kim, M.-K. Effects of the ankle angle on the electromyographic activity of the trunk and lower extremities during isometric squat exercises. J. Mens Health 2022, 18, 121. [Google Scholar] [CrossRef]
- Bae, C.-H.; Jeong, Y.-W.; Lee, J.-H. Analysis of muscle activations in lower extremities muscles at various angles of ankle flexion using wedges during static squat exercise. J. Phys. Ther. Sci. 2015, 27, 2853–2855. [Google Scholar] [CrossRef]
- Frohm, A.; Halvorsen, K.; Thorstensson, A. Patellar tendon load in different types of eccentric squats. Clin. Biomech. 2007, 22, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Macrum, E.; Bell, D.R.; Boling, M.; Lewek, M.; Padua, D. Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat. J. Sport Rehabil. 2012, 21, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Kang, J.-Y.; Oh, J.-H.; Wu, J.-G.; Choi, E.-B.; Park, S.-E.; Choi, M. The effects of performing squats on an inclined board on thigh muscle activation. Phys. Ther. Rehabil. Sci. 2017, 6, 39–44. [Google Scholar] [CrossRef]
- Sung, H.-R.; Oh, S.-J.; Ryu, J.-N.; Cha, Y.-J. Muscle activities of lower extremity and erector spinae muscles according to ankle joint position during squat exercise. J. Back Musculoskelet. Rehabil. 2021, 34, 671–676. [Google Scholar] [CrossRef]
- Sriwarno, A.B.; Shimomura, Y.; Iwanaga, K.; Katsuura, T. The effects of heel elevation on postural adjustment and activity of lower-extremity muscles during deep squatting-to-standing movement in normal subjects. J. Phys. Ther. Sci. 2008, 20, 31–38. [Google Scholar] [CrossRef]
- Lee, S.-P.; Gillis, C.B.; Ibarra, J.J.; Oldroyd, D.F.; Zane, R.S. Heel-raised foot posture does not affect trunk and lower extremity biomechanics during a barbell back squat in recreational weight lifters. J. Strength Cond. Res. 2019, 33, 606–614. [Google Scholar] [CrossRef]
- Hertel, J.; Sloss, B.R.; Earl, J.E. Effect of foot orthotics on quadriceps and gluteus medius electromyographic activity during selected exercises. Arch. Phys. Med. Rehabil. 2005, 86, 26–30. [Google Scholar] [CrossRef]
- Ribeiro, G.; Dionísio, V.C.; Almeida, G.L. Electromyographic activity during one-legged squatting under different foot positions. Rev. Bras. Med. Do Esporte. 2007, 13, 43–46. [Google Scholar] [CrossRef]
- Kongsgaard, M.; Aagaard, P.; Roikjaer, S.; Olsen, D.; Jensen, M.; Langberg, H.; Magnusson, S. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats. Clin. Biomech. 2006, 21, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.; Gross, M.T. Effect of foot position on electromyographic activity of the vastus medialis oblique and vastus lateralis during lower-extremity weight-bearing activities. J. Orthop. Sport Phys. Ther. 1999, 29, 93–105. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.J.; Schoenfeld, B.J.; Marchetti, P.N.; Pecoraro, S.L.; Greve, J.M.D.; Marchetti, P.H. Muscle activation differs between partial and full back squat exercise with external load equated. J. Strength Cond. Res. 2017, 31, 1688–1693. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Andersen, V.; Saeterbakken, A.H. Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS ONE 2019, 14, e0217044. [Google Scholar] [CrossRef]
- Murray, N.; Cipriani, D.; O’rand, D.; Reed-Jones, R. Effects of foot position during squatting on the quadriceps femoris: An electromyographic study. Int. J. Exerc. Sci. 2013, 6, 114–125. [Google Scholar] [PubMed]
- Dill, K.E.; Begalle, R.L.; Frank, B.S.; Zinder, S.M.; Padua, D.A. Altered knee and ankle kinematics during squatting in those with limited weight-bearing–lunge ankle-dorsiflexion range of motion. J. Athl. Train. 2014, 49, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Murley, G.S.; Landorf, K.B.; Menz, H.B.; Bird, A.R. Effect of foot posture, foot orthoses and footwear on lower limb muscle activity during walking and running: A systematic review. Gait Posture 2009, 29, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Murley, G.S.; Landorf, K.B.; Menz, H.B. Do foot orthoses change lower limb muscle activity in flat-arched feet towards a pattern observed in normal-arched feet? Clin. Biomech. 2010, 25, 728–736. [Google Scholar] [CrossRef]
- Charlton, J.M.; Hammond, C.A.; Cochrane, C.K.; Hatfield, G.L.; Hunt, M.A. The effects of a heel wedge on hip, pelvis and trunk biomechanics during squatting in resistance trained individuals. J. Strength Cond. Res. 2017, 31, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Yung-Hui, L.; Wei-Hsien, H. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Appl. Ergon. 2005, 36, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. J. Phys. Ther. Sci. 2016, 28, 2379–2380. [Google Scholar] [CrossRef]
- Ghasemi, M.H.; Anbarian, M.; Esmaieli, H. Immediate effects of using insoles with various wedges on activation and co-contraction indices of selected trunk muscles during load lifting. Appl. Ergon. 2020, 88, 1087–1095. [Google Scholar] [CrossRef]
- Ghasemi, M.H.; Anbarian, M. Immediate effects of using insoles with various wedges on center of pressure indices and comfort rating during load lifting. Int. J. Ind. Ergon. 2020, 79, 1–6. [Google Scholar] [CrossRef]
- Lu, Z.; Li, X.; Xuan, R.; Song, Y.; Bíró, I.; Liang, M.; Gu, Y. Effect of heel lift insoles on lower extremity muscle activation and joint work during barbell squats. Bioengineering 2022, 9, 301. [Google Scholar] [CrossRef]
- Boyden, G.; Kingman, J.; Dyson, R. A comparison of quadriceps electromyographic activity with the position of the foot during the parallel squat. J. Strength Cond. Res. 2000, 14, 379–382. [Google Scholar]
- Markov, A.; Chaabene, H.; Hauser, L.; Behm, S.; Bloch, W.; Puta, C.; Granacher, U. Acute Effects of Aerobic Exercise on Muscle Strength and Power in Trained Male Individuals: A Systematic Review with Meta-analysis. Sports Med. 2022, 52, 1385–1398. [Google Scholar] [CrossRef] [PubMed]
- Bize, R.; Johnson, J.A.; Plotnikoff, R.C. Physical activity level and health-related quality of life in the general adult population: A systematic review. Prev. Med. 2007, 45, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is motorized treadmill running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies. Sports Med. 2020, 50, 785–813. [Google Scholar] [CrossRef] [PubMed]
- How to extract data from graphs using plot digitizer or getdata graph digitizer. 2020. Available online: https://www.academia.edu/28590257/How_to_Extract_Data_from_Graphs_using_Plot_Digitizer_or_Getdata_Graph_Digitizer (accessed on 23 January 2024).
- Wojtyniak, J.; Britz, H.; Selzer, D.; Schwab, M.; Lehr, T. Data digitizing: Accurate and precise data extraction for quantitative systems pharmacology and physiologically-based pharmacokinetic modeling. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Peters, A.; Murphy, A.T.; Morris, M.E. Obstacle crossing deficits in older adults: A systematic review. Gait Posture 2009, 30, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.E.; Pearson, N.; Braithwaite, R.E.; Brown, W.J.; Biddle, S.J.H. Physical activity interventions and depression in children and adolescents. Sports Med. 2013, 43, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Introduction to Meta-Analysis; Wiley: Chichester, UK, 2009. [Google Scholar] [CrossRef]
- Stevens, V.K.; Coorevits, P.L.; Bouche, K.G.; Mahieu, N.N.; Vanderstraeten, G.G.; Danneels, L.A. The influence of specific training on trunk muscle recruitment patterns in healthy subjects during stabilization exercises. Man Ther. 2007, 12, 271–279. [Google Scholar] [CrossRef]
- Richards, J.; Thewlis, D.; Selfe, J.; Cunningham, A.; Hayes, C. A biomechanical investigation of a single-limb squat: Implications for lower extremity rehabilitation exercise. J. Athl. Train. 2008, 43, 477–482. [Google Scholar] [CrossRef]
- Kitamura, T.; Kido, A.; Ishida, Y.; Kobayashi, Y.; Tsukamoto, S.; Tanaka, Y. Muscle Activity Pattern with A Shifted Center of Pressure during the Squat Exercise. J. Sports Sci. Med. 2019, 18, 248–252. [Google Scholar] [PubMed]
- Franklin, M.; Chenier, T.; Brauninger, L.; Cook, H.; Harris, S. Effect of positive heel inclination on posture. J. Orthop. Sport Phys. Ther. 1995, 21, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.S.; Lack, S.D.; Lankhorst, N.E.; Raye, A.; Morrissey, D.; Van Middelkoop, M. Risk factors for patellofemoral pain: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 270–281. [Google Scholar] [CrossRef] [PubMed]
- McGinty, G.; Irrgang, J.J.; Pezzullo, D. Biomechanical considerations for rehabilitation of the knee. Clin. Biomech. 2000, 15, 160–166. [Google Scholar] [CrossRef]
- Ishida, T.; Samukawa, M.; Kasahara, S.; Tohyama, H. The center of pressure position in combination with ankle dorsiflexion and trunk flexion is useful in predicting the contribution of the knee extensor moment during double-leg squatting. BMC Sport Sci. Med. Rehabil. 2022, 14, 127. [Google Scholar] [CrossRef]
Character | Reported (Number of Participants) | Mean (SD) |
---|---|---|
Gender | 229 (13 studies) | 140 men, 89 women |
Age (years) | 219 (13 studies) | 24.87 (5.79) |
Height (cm) | 249 (14 studies) | 171.73 (9.15) |
Weight (kg) | 249 (14 studies) | 69.69 (13.16) |
Author (Year) | NP | Participants | Intervention | Variable | Task | Weight | Muscle | Phase | Results |
---|---|---|---|---|---|---|---|---|---|
Lu et al. (2022) [32] | 20 | Healthy adults (men and women) | Posterior (1.5 and 3 cm) | Normalized mean RMS | Barbell squats | 80% of 1-RM | RF, VM, VL, and BF | Total phase | VM in PW ↑ (Δ2%) VL in PW ↑ (Δ11%) RF in PW ↑ (Δ3%) BF in PW ↑ (Δ14%) |
Cui et al. (2022) [9] | 20 | Young individuals (gender unknown) | Anterior (10°) Posterior (10°) | Normalized mean RMS | Double-leg static squat | 0 kg | VM, VL RF, and BF | Holding phase | VM in AW and PW ↑ (Δ12, 38%), VL in AW and PW ↑ (Δ4, 17%), RF in AW and PW ↑ (Δ50, 115%), BF in AW and PW ↑ (Δ10, 17%) |
Sung et al. (2021) [14] | 37 | Young (men and women) | Anterior (15°) Posterior (15°) | Normalized mean RMS | Double-leg squat | 0 kg | VM, VL, and BF | Total phase | VM in AW ↓ (Δ13%) VM in PW ↑ (Δ4%) VL in AW ↓ (Δ11%) VL in PW ↓ (Δ3%) BF in AW ↓ (Δ4%) BF in PW ↓ (Δ10%) |
Lee et al. (2019) [16] | 14 | Recreational weightlifter (men and women) | Posterior (4.3°) | Normalized mean amplitudes | Double-leg barbell back squat | 80% of 1-RM | VL | Down, terminal depth, and up phases | VL in PW ↓ (Δ3%) |
Ghasemi et al. (2018) [5] | 9 | Young (only men) | Anterior (2.2°) Medial (7.1°) Posterior (2.2°) Posterior (6.6°) | Normalized mean amplitudes | Double-leg squat load lifting | 1.36 kg | VM and VL | Eccentric, holding, and concentric phases | VM in AW ↓ (Δ4%) VM in MW ↓ (Δ4%) VM in PW ↑ (Δ10%) VL in AW ↓ (Δ9%) VL in MW ↓ (Δ5%) VL in PW ↑ (Δ7%) |
Cho et al. (2017) [13] | 17 | Young (men and women) | Anterior (5°) Anterior (10°) | Normalized mean amplitudes | Double-leg squat | 0 kg | VM and BF (both sides) | Total phase | VM in AW ↑ (Δ11%) BF in AW ↑ (Δ15%) |
Charlton et al. (2017) [27] | 14 | Trained males | Posterior (2.5 cm) | Normalized peak and RMS amplitudes | Barbell Squat | 20 kg | RF and BF | Total phase | RF in PW ↓ (Δ4%) BF in PW ↑ (Δ5%) |
Bae et al. (2015) [10] | 20 | Adult (men and women) | Posterior (10°) Posterior (30°) Posterior (50°) | Muscle activity | Single-leg static squat | 0 kg | RF and BF | Holding phase | RF in PW ↑ (Δ31%) BF in PW ↑ (Δ22%) |
Macrum et al. (2012) [12] | 30 | Young (men and women) | Anterior (12°) | Normalized mean amplitudes | Double-leg squat | 0 kg | VM and VL | Total phase | VM in AW ↓ (Δ8%) VL in AW ↓ (Δ13%) |
Sriwarno et al. (2008) [15] | 8 | Adult (men) | Posterior (15°) | Normalized (dynamic) initial and peak values | Double-leg squatting to standing | 0 kg | RF | Total phase | RF in PW ↓ (Δ60%) |
Frohm et al. (2007) [11] | 13 | Young (men) | Posterior (25°) | Mean EMG activity | Double-leg squat | 10 kg | VM and BF | Total phase | VM in PW ↑ (Δ6%) RF in PW ↑ (Δ1%) |
Ribeiro et al. (2007) [18] | 8 | Young (men and women) | Anterior (10°) Posterior (10°) Medial (10°) Lateral (10°) | Mean activity (microvolt) | Single-leg squat | 0 kg | VM, VL, RF, and BF | Acceleration and deceleration phases | VM (AW and LW), VL (AW) ↓ (Δ8, 1, 2%) VM (PW and MW), VL (LW, PW, and MW) ↑ (Δ17, 10, 15, 14, 16%) RF (AW), BF (AW and LW) ↓ (Δ7, 1, 5%) RF (MW and PW), BF (MW) ↑ (Δ7, 13, 8, 14%) RF (LW) ↔ (Δ ≈ 0%) |
Kongsgaard et al. (2006) [19] | 13 | Young (men and women) | Posterior (25°) | Normalized mean amplitudes | Single-leg eccentric squats | 0 kg | VM, VL, RF, BF, and ST | Total | VM in PW ↑ (Δ14%) VL in PW ↑ (Δ14%) RF in PW ↑ (Δ63%) BF in PW ↓ (Δ9%) ST in PW ↓ (Δ12%) |
Hertel et al. (2005) [17] | 30 | Young (men and women) (normal, pes cavus, and planus) | Posterior (4*7°) | Normalized peak RMS | Single-leg squat | 0 kg | VM and VL | Total | VM in PW ↑ (Δ13%) VL not reported |
Hung and Gross (1999) [20] | 16 | Young (men and women) | Medial (10°) Lateral (10°) | Normalized mean amplitudes | Single-leg Short squat | 0 kg | VM and VL | Total | VM in MW ↓ (Δ3%) VM in LW ↓ (Δ9%) VL in MW ↓ (Δ6%) VL in LW ↑ (Δ2%) |
Papers | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lu et al. (2022) [32] | 1 | 1 | 1 | 1 | 0.17 | 1 | 0.6 | 0.8 | 0 | 1 | 1 | 1 | 1 | 0 | 10.57 |
Cui et al. (2022) [9] | 1 | 0.75 | 0.5 | 1 | 0.17 | 1 | 0.8 | 1 | 0 | 0 | 1 | 1 | 1 | 0.5 | 9.72 |
Sung et al. (2021) [14] | 1 | 1 | 1 | 1 | 0.5 | 1 | 0.8 | 1 | 0 | 0 | 1 | 1 | 1 | 0.5 | 10.8 |
Lee et al. (2019) [16] | 1 | 0.75 | 1 | 1 | 0.67 | 1 | 0.5 | 1 | 0 | 0 | 1 | 1 | 1 | 0.5 | 10.42 |
Ghasemi et al. (2018) [5] | 1 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0.8 | 1 | 0 | 0 | 1 | 1 | 1 | 0.5 | 9.8 |
Cho et al. (2017) [13] | 1 | 1 | 0.5 | 1 | 0.67 | 1 | 0.6 | 0.8 | 0 | 0 | 1 | 1 | 1 | 0.5 | 10.07 |
Charlton et al. (2017) [27] | 1 | 1 | 0.5 | 1 | 0.17 | 1 | 0.6 | 0.8 | 0 | 0 | 1 | 1 | 1 | 0.5 | 9.57 |
Bae et al. (2015) [10] | 1 | 0.25 | 0.5 | 0 | 0 | 0.5 | 0.6 | 0.8 | 0 | 0 | 1 | 1 | 1 | 0.5 | 7.15 |
Macrum et al. (2012) [12] | 1 | 0.75 | 0.5 | 1 | 0.5 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 10.75 |
Sriwarno et al. (2008) [15] | 1 | 1 | 0.5 | 0.5 | 0.17 | 0.5 | 0.6 | 0.4 | 0 | 0 | 1 | 1 | 1 | 0.5 | 8.17 |
Frohm et al. (2007) [11] | 1 | 1 | 0 | 0.5 | 0.5 | 0.5 | 0.6 | 0.4 | 0 | 0 | 1 | 1 | 0 | 1 | 7.5 |
Ribeiro et al. (2007) [18] | 1 | 1 | 0.5 | 0 | 0.83 | 1 | 0.8 | 1 | 0 | 0 | 1 | 1 | 1 | 0.5 | 9.63 |
Kongsgaard et al. (2006) [19] | 1 | 1 | 0.5 | 0.5 | 0.8 | 1 | 0.8 | 0.8 | 1 | 0 | 1 | 1 | 1 | 0.5 | 10.9 |
Hertel et al. (2005) [17] | 1 | 1 | 0.5 | 0.5 | 0.67 | 1 | 0.8 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 10.47 |
Hung and Gross (1999) [20] | 1 | 1 | 0.5 | 1 | 0.67 | 1 | 0.8 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 10.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemi, M.; Gholami-Borujeni, B.; Briem, K. Effects of Various Foot Wedges on Thigh Muscle Activity during Squatting in Healthy Adults: A Systematic Review and Meta-Analysis. Appl. Sci. 2024, 14, 2091. https://doi.org/10.3390/app14052091
Ghasemi M, Gholami-Borujeni B, Briem K. Effects of Various Foot Wedges on Thigh Muscle Activity during Squatting in Healthy Adults: A Systematic Review and Meta-Analysis. Applied Sciences. 2024; 14(5):2091. https://doi.org/10.3390/app14052091
Chicago/Turabian StyleGhasemi, Mohammadhossein, Behnam Gholami-Borujeni, and Kristín Briem. 2024. "Effects of Various Foot Wedges on Thigh Muscle Activity during Squatting in Healthy Adults: A Systematic Review and Meta-Analysis" Applied Sciences 14, no. 5: 2091. https://doi.org/10.3390/app14052091
APA StyleGhasemi, M., Gholami-Borujeni, B., & Briem, K. (2024). Effects of Various Foot Wedges on Thigh Muscle Activity during Squatting in Healthy Adults: A Systematic Review and Meta-Analysis. Applied Sciences, 14(5), 2091. https://doi.org/10.3390/app14052091