Approximation of Cognitive Performance Using an Elastic Net Regression Model Trained on Gait, Visual, Auditory, Postural, and Olfactory Function Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Testing
2.3. Gait Function
2.4. Visual Ability
2.5. Auditory Function
2.6. Postural Stability
2.7. Olfactory Function
2.8. Statistical Analysis
3. Results
3.1. Demographics, Cognitive Function, and the History of Illness
3.2. Gait Assessment
3.3. Visual Function
3.4. Auditory Function
3.5. Postural Stability
3.6. Olfactory Function
3.7. Regression Model Parameters and Coefficients
+ 0.277 × PS testing time PC + 0.257 × SRS better + 0.185 × Olfactory discrimination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ageing and Health. Who.int. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 6 November 2023).
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Alzheimer’s Disease International. World Alzheimer Report 2023: Reducing Dementia Risk: Never Too Early, Never Too Late. 2023. Available online: https://www.alzint.org/resource/world-alzheimer-report-2023/ (accessed on 6 November 2023).
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment: Moca: A brief screening tool for MCI. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Borson, S.; Frank, L.; Bayley, P.J.; Boustani, M.; Dean, M.; Lin, P.J.; McCarten, J.R.; Morris, J.C.; Salmon, D.P.; Schmitt, F.A.; et al. Improving dementia care: The role of screening and detection of cognitive impairment. Alzheimer’s Dement. 2013, 9, 151–159. [Google Scholar] [CrossRef]
- Chiaramonte, R.; Cioni, M. Critical spatiotemporal gait parameters for individuals with dementia: A systematic review and meta-analysis. Hong Kong Physiother. J. 2021, 41, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bovonsunthonchai, S.; Vachalathiti, R.; Hiengkaew, V.; Bryant, M.S.; Richards, J.; Senanarong, V. Quantitative gait analysis in mild cognitive impairment, dementia, and cognitively intact individuals: A cross-sectional case-control study. BMC Geriatr. 2022, 22, 767. [Google Scholar] [CrossRef]
- Beauchet, O.; Blumen, H.M.; Callisaya, M.L.; De Cock, A.M.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.P.; Verghese, J.; Allali, G. Spatiotemporal gait characteristics associated with cognitive impairment: A multicenter cross-sectional study, the intercontinental “gait, cOgnitiOn & Decline” initiative. Curr. Alzheimer Res. 2018, 15, 273–282. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsu, W.-C.; Wu, C.-K.; Chang, W.-H.; Wu, K.P.-H.; Wong, A.M.K. Comparison of motor performance of upper and lower extremities in dual-task tests in patients with mild Alzheimer’s dementia. Aging Clin. Exp. Res. 2016, 28, 491–496. [Google Scholar] [CrossRef]
- Allali, G.; Annweiler, C.; Blumen, H.M.; Callisaya, M.L.; De Cock, A.M.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.P.; Verghese, J.; Beauchet, O. Gait phenotype from mild cognitive impairment to moderate dementia: Results from the GOOD initiative. Eur. J. Neurol. 2016, 23, 527–541. [Google Scholar] [CrossRef]
- Varma, V.R.; Ghosal, R.; Hillel, I.; Volfson, D.; Weiss, J.; Urbanek, J.; Hausdorff, J.M.; Zipunnikov, V.; Watts, A. Continuous gait monitoring discriminates community-dwelling mild Alzheimer’s disease from cognitively normal controls. Alzheimer’s Dement. 2021, 7, e12131. [Google Scholar] [CrossRef]
- Ghoraani, B.; Boettcher, L.N.; Hssayeni, M.D.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E. Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control 2021, 64, 102249. [Google Scholar] [CrossRef] [PubMed]
- Mesbah, N.; Perry, M.; Hill, K.D.; Kaur, M.; Hale, L. Postural stability in older adults with Alzheimer disease. Phys. Ther. 2017, 97, 290–309. [Google Scholar]
- Biasin, F.; Ceolin, C.; Celli, S.; Terziotti, C.; Raffaelli, C.; Bontempi, C.; Devita, M.; De Rui, M.; Sergi, G.; Coin, A. Interrelation between functional decline and dementia: The potential role of balance assessment. Hum. Mov. Sci. 2023, 89, 103095. [Google Scholar] [CrossRef]
- Szczepańska-Gieracha, J.; Cieślik, B.; Chamela-Bilińska, D.; Kuczyński, M. Postural stability of elderly people with cognitive impairments. Am. J. Alzheimer’s Dis. Other Dement. 2016, 31, 241–246. [Google Scholar] [CrossRef]
- Killeen, O.J.; Zhou, Y.; Ehrlich, J.R. Objectively measured visual impairment and dementia prevalence in older adults in the US. JAMA Ophthalmol. 2023, 141, 786–790. [Google Scholar] [CrossRef]
- Shang, X.; Zhu, Z.; Wang, W.; Ha, J.; He, M. The association between vision impairment and incidence of dementia and cognitive impairment: A systematic review and meta-analysis. Ophthalmology 2021, 128, 1135–1149. [Google Scholar] [CrossRef]
- Runk, A.; Jia, Y.; Liu, A.; Chang, C.-C.H.; Ganguli, M.; Snitz, B.E. Associations between visual acuity and cognitive decline in older adulthood: A 9-year longitudinal study. J. Int. Neuropsychol. Soc. 2023, 29, 1–11. [Google Scholar] [CrossRef]
- Liu, C.-M.; Lee, C.T.-C. Association of hearing loss with dementia. JAMA Netw. Open 2019, 2, e198112. [Google Scholar] [CrossRef]
- Davies, H.R.; Cadar, D.; Herbert, A.; Orrell, M.; Steptoe, A. Hearing impairment and incident dementia: Findings from the English longitudinal study of Ageing. J. Am. Geriatr. Soc. 2017, 65, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Lad, M.; Sedley, W.; Griffiths, T.D. Sensory loss and risk of dementia. Neuroscientist 2022, 10738584221126090. [Google Scholar] [CrossRef] [PubMed]
- Dintica, C.S.; Marseglia, A.; Rizzuto, D.; Wang, R.; Seubert, J.; Arfanakis, K.; Bennett, D.A.; Xu, W. Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain. Neurology 2019, 92, e700–e709. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Shin, I.-S.; Lee, J.-E. Olfactory function in mild cognitive impairment and Alzheimer’s disease: A meta-analysis: Olfactory Function Deficit in MCI and AD. Laryngoscope 2019, 129, 362–369. [Google Scholar] [CrossRef]
- Delgado-Lima, A.H.; Bouhaben, J.; Martínez-Zujeros, S.; Pallardo-Rodil, B.; Gómez-Pavón, J.; Delgado-Losada, M.L. Could olfactory identification be a prognostic factor in detecting cognitive impairment risk in the elderly? GeroScience 2023, 45, 2011–2025. [Google Scholar] [CrossRef]
- Audronyte, E.; Pakulaite-Kazliene, G.; Sutnikiene, V.; Kaubrys, G. Odor discrimination as a marker of early Alzheimer’s disease. J. Alzheimer’s Dis. 2023, 94, 1169–1178. [Google Scholar] [CrossRef]
- Ding, D.; Liang, X.; Xiao, Z.; Wu, W.; Zhao, Q.; Cao, Y. Can dementia be predicted using olfactory identification test in the elderly? A Bayesian network analysis. Brain Behav. 2020, 10, e01822. [Google Scholar] [CrossRef] [PubMed]
- Dementia: Comorbidities in Patients—Data Briefing. Gov.uk. Available online: https://www.gov.uk/government/publications/dementia-comorbidities-in-patients/dementia-comorbidities-in-patients-data-briefing (accessed on 6 November 2023).
- Lor, Y.-C.M.; Tsou, M.-T.; Tsai, L.-W.; Tsai, S.-Y. The factors associated with cognitive function among community-dwelling older adults in Taiwan. BMC Geriatr. 2023, 23, 116. [Google Scholar] [CrossRef]
- Youn, J.C.; Kim, K.W.; Lee, D.Y.; Jhoo, J.H.; Lee, S.B.; Park, J.H.; Choi, E.A.; Choe, J.Y.; Jeong, J.W.; Choo, I.H.; et al. Development of the Subjective Memory Complaints Questionnaire. Dement. Geriatr. Cogn. Disord. 2009, 27, 310–317. [Google Scholar] [CrossRef]
- Balance Systemtm SD. Biodex. 2023. Available online: https://biodexrehab.com/products/balance-system-sd/ (accessed on 7 November 2023).
- Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. ‘Sniffin’ sticks’: Olfactory performance assessed by the combined testing of odour identification, odor discrimination and olfactory threshold. Chem. Senses. 1997, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.E.; MacInnis, R.J.; Wattanapenpaiboon, N.; Nowson, C.A. BMI and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014, 99, 875–890. [Google Scholar] [CrossRef]
- Fletcher, J.; Topping, M.; Zheng, F.; Lu, Q. The effects of education on cognition in older age: Evidence from genotyped Siblings. Soc. Sci. Med. 2021, 280, 114044. [Google Scholar] [CrossRef]
- Kim, R.; Chung, W. Effect of aging on educational differences in the risk of cognitive impairment: A gender-specific analysis using Korean Longitudinal Study of aging (2006–2016). Healthcare 2022, 10, 1062. [Google Scholar] [CrossRef]
- Jang, J.W.; Park, J.H.; Kim, S.; Lee, S.H.; Lee, S.H.; Kim, Y.J. Prevalence and incidence of dementia in South Korea: A nationwide analysis of the National Health Insurance Service Senior Cohort. J. Clin. Neurol. 2021, 17, 249–256. [Google Scholar] [CrossRef]
- Kawagoe, T.; Onoda, K.; Yamaguchi, S. Subjective memory complaints are associated with altered resting-state functional connectivity but not structural atrophy. NeuroImage Clin. 2019, 21, 101675. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Kim, A.; Kim, S.; Park, K.W.; Park, K.H.; Youn, Y.C.; Lee, D.W.; Lee, J.Y.; Lee, J.H.; Jeong, J.H.; et al. Self- and informant-reported cognitive functioning and awareness in subjective cognitive decline, mild cognitive impairment, and very mild Alzheimer disease. Int. J. Geriatr. Psychiatry 2020, 35, 91–98. [Google Scholar] [CrossRef]
- El Husseini, N.; Katzan, I.L.; Rost, N.S.; Blake, M.L.; Byun, E.; Pendlebury, S.T.; Aparicio, H.J.; Marquine, M.J.; Gottesman, R.F.; Smith, E.E. Cognitive impairment after ischemic and hemorrhagic stroke: A scientific statement from the American heart association/American stroke association. Stroke 2023, 54, e272–e291. [Google Scholar] [CrossRef]
- Rogers, M.A.M.; Langa, K.M. Untreated poor vision: A contributing factor to late-life dementia. Am. J. Epidemiol. 2010, 171, 728–735. [Google Scholar] [CrossRef]
- Marquié, M.; Castilla-Martí, M.; Valero, S.; Martínez, J.; Sánchez, D.; Hernández, I.; Rosende-Roca, M.; Vargas, L.; Mauleón, A.; Rodríguez-Gómez, O.; et al. Visual impairment in aging and cognitive decline: Experience in a Memory Clinic. Sci. Rep. 2019, 9, 8698. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.H.; Han, K.; Jeong, S.M.; Park, J.; Yoo, J.E.; Yoo, J.; Lee, J.; Kim, S.; Shin, D.W. Changes in alcohol consumption and risk of dementia in a nationwide cohort in South Korea. JAMA Netw. Open 2023, 6, e2254771. [Google Scholar] [CrossRef]
- Brach, J.S.; Studenski, S.; Perera, S.; VanSwearingen, J.M.; Newman, A.B. Stance time and step width variability have unique contributing impairments in older persons. Gait Posture 2008, 27, 431–439. [Google Scholar] [CrossRef]
- Pieruccini-Faria, F.; Black, S.E.; Masellis, M.; Smith, E.E.; Almeida, Q.J.; Li, K.Z.; Bherer, L.; Camicioli, R.; Montero-Odasso, M. Gait variability across neurodegenerative and cognitive disorders: Results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study. Alzheimer’s Dement. 2021, 17, 1317–1328. [Google Scholar] [CrossRef]
- Martin, K.L.; Blizzard, L.; Wood, A.G.; Srikanth, V.; Thomson, R.; Sanders, L.M.; Callisaya, M.L. Cognitive function, gait, and gait variability in older people: A population-based study. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2013, 68, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Nadhimi, Y.; Llano, D.A. Does hearing loss lead to dementia? A review of the literature. Hear. Res. 2021, 402, 108038. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, W.; Wang, H.; Sun, Y. Sentence comprehension in patients with dementia of the Alzheimer’s type. PeerJ 2019, 7, e8181. [Google Scholar] [CrossRef]
- Sabiniewicz, A.; Wrage, F.; Hummel, T. The impact of cognitive and noncognitive factors on odor discrimination performance. J. Sens. Stud. 2021, 36, e12683. [Google Scholar] [CrossRef]
- Dewyer, N.A.; Jiradejvong, P.; Henderson Sabes, J.; Limb, C.J. Automated smartphone audiometry: Validation of a word recognition test app. Laryngoscope 2018, 128, 707–712. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, M.; Swanepoel, D.W.; Myburgh, H.C. Modernising speech audiometry: Using a smartphone application to test word recognition. Int. J. Audiol. 2018, 57, 561–569. [Google Scholar] [CrossRef]
- Polechoński, J.; Nawrocka, A.; Wodarski, P.; Tomik, R. Applicability of smartphone for dynamic postural stability evaluation. BioMed Res. Int. 2019, 2019, 9753898. [Google Scholar] [CrossRef]
- Andrew, M.K.; Tierney, M.C. The puzzle of sex, gender and Alzheimer’s disease: Why are women more often affected than men? Women’s Health 2018, 14, 174550651881799. [Google Scholar] [CrossRef]
Parameter | MEAN (SD) | R2 | p-Value |
---|---|---|---|
Age (years) * | 75.3 (4.1) | 0.058 | 0.001 |
BMI (kg/m2) | 24.2 (2.4) | <0.001 | 0.921 |
Years of education * | 13.4 (3.7) | 0.156 | <0.001 |
K-MoCA score | 24.4 (2.8) | - | - |
SMCQ score | 2.8 (2.8) | <0.001 | 0.947 |
Q | YES (n/%) | p-Value | |
---|---|---|---|
Diabetes mellitus | 35/33.7 | 0.319 | |
Hypertension | 41/39.4 | 0.960 | |
Cardiovascular disease | 16/15.4 | 0.488 | |
Neurovascular disease * | 6/5.8 | 0.024 | |
Smoking | Never | 42/40.4 | 0.769 |
Previous | 54/51.9 | ||
Current | 8/7.7 | ||
Drinking * | Never | 37/35.6 | 0.023 |
Occasionally | 61/58.7 | ||
Daily | 6/5.8 | ||
Physical activity | 101/97.1 | 0.898 | |
Regular ophthalmological exam * | 83/79.8 | 0.001 | |
Regular audiological exam | 69/66.3 | 0.732 |
Parameter | MEAN (SD) | R2 (p-Value) | PC | Loading | R2 (p-Value) |
---|---|---|---|---|---|
DLS (%) | 21.6 (2.3) | 0.004 (0.370) | Gait cycle | 0.963 | 0.001 (0.661) |
PS (%) | 11.1 (1.4) | 0.004 (0.378) | 0.902 | ||
SLS (%) | 39.5 (1.3) | 0.001 (0.583) | −0.832 | ||
LR (%) | 10.5 (1.2) | 0.006 (0.283) | 0.827 | ||
SW (%) | 38.9 (1.5) | 0.003 (0.420) | −0.754 | ||
DLS CoV | 4.2 (5.6) | 0.007 (0.217) | Gait cycle variation | 0.970 | 0.012 (0.114) |
PS CoV | 5.4 (8.2) | <0.001 (0.810) | 0.931 | ||
LR CoV * | 5.6 (4.1) | 0.022 (0.034) | 0.852 | ||
SLS CoV | 2.0 (1.8) | 0.004 (0.358) | 0.829 | ||
SW CoV | 2.1 (2.6) | 0.009 (0.163) | 0.538 | ||
Swing duration CoV | 2.6 (2.9) | 0.002 (0.481) | - | - | - |
Swing duration (ms) | 417.4 (25.0) | 0.007 (0.264) | Gait rhythm | 0.929 | 0.003 (0.447) |
Stride duration (ms) | 1075. 8 (82.7) | 0.011 (0.138) | 0.886 | ||
Cadence (steps/min) | 112.2 (8.2) | 0.011 (0.136) | −0.879 | ||
Stance duration (ms) | 658.5 (62.6) | 0.012 (0.118) | 0.804 | ||
Stride duration CoV | 1.9 (1.4) | 0.017 (0.064) | Gait rhythm variation | 0.943 | 0.001 (0.660) |
Cadence CoV | 1.5 (1.1) | 0.017 (0.062) | 0.941 | ||
Stance duration CoV * | 2.5 (1.9) | 0.027 (0.019) | 0.861 | ||
Velocity CoV | 2.6 (2.0) | <0.001 (0.819) | 0.722 | ||
Step Length (cm) | 64.7 (7.0) | 0.033 (0.066) | Gait pace | 0.884 | 0.016 (0.073) |
Stride Length (cm) * | 127.0 (12.7) | 0.040 (0.041) | 0.877 | ||
Velocity (cm/s) | 119.1 (17.0) | 0.033 (0.065) | 0.685 | ||
Step Length CoV | 2.3 (1.3) | 0.001 (0.653) | Gait pace variation | 0.828 | 0.001 (0.617) |
Stride Length CoV | 1.8 (1.2) | 0.002 (0.521) | 0.767 | ||
TS (%) | 19.1 (2.4) | 0.007 (0.235) | Midstance | 0.951 | 0.006 (0.266) |
MS (%) | 20.5 (2.5) | 0.007 (0.235) | −0.936 | ||
MS CoV | 10.3 (6.2) | 0.003 (0.437) | Midstance variation | 0.884 | <0.001 (0.767) |
TS CoV | 11.3 (7.5) | <0.001 (0.749) | 0.857 |
Parameter | MEAN (SD) | R2 (p-Value) | PC | Loading | R2 (p-Value) |
---|---|---|---|---|---|
CSC at 3 m * | 16.2 (5.6) | 0.021 (0.045) | Corrected vision * | 0.929 | 0.023 (0.028) |
CSC at 4 m | 11.7 (6.2) | 0.017 (0.067) | 0.907 | ||
CSC at 2 m | 20.8 (4.6) | 0.011 (0.151) | 0.901 | ||
CSC at 1.6 m | 22.8 (3.6) | 0.009 (0.214) | 0.853 | ||
VABC | 0.8 (0.3) | 0.009 (0.206) | 0.837 | ||
CSU at 2 m | 21.4 (5.4) | <0.001 (0.958) | Uncorrected vision | 0.869 | <0.001 (0.821) |
CSU at 1.6 m | 18.8 (6.6) | 0.001 (0.642) | 0.866 | ||
CSU at 3 m | 14.1 (6.6) | <0.001 (0.770) | 0.824 | ||
CSU at 4 m | 9.5 (6.8) | <0.001 (0.925) | 0.714 | ||
VABU | 0.7 (0.3) | <0.001 (0.952) | 0.665 |
Parameter | MEAN (SD) | R2 (p-Value) | PC | Loading | R2 (p-Value) |
---|---|---|---|---|---|
SRW total number of mistakes * | 1.9 (2.0) | 0.084 (<0.001) | Sentence Recognition * | −0.946 | 0.069 (<0.001) |
SRW average * | 97.6 (2.4) | 0.084 (<0.001) | 0.946 | ||
SRS total number of mistakes * | 1.9 (1.8) | 0.085 (<0.001) | −0.939 | ||
SRS average * | 90.3 (9.1) | 0.085 (<0.001) | 0.939 | ||
SRS better * | 94.9 (8.4) | 0.106 (<0.001) | 0.933 | ||
SRW better * | 99.0 (1.8) | 0.077(0.001) | 0.898 | ||
SRT average | 24.2 (12.3) | 0.011 (0.152) | Hearing level | 0.952 | 0.007 (0.232) |
SRT better | 19.8 (11.2) | 0.008 (0.240) | 0.923 | ||
PTA average | 25.0 (11.9) | 0.017 (0.058) | 0.910 | ||
PTA better | 20.9 (10.5) | 0.014 (0.094) | 0.897 | ||
WR better | 82.2 (12.6) | 0.009 (0.188) | Word recognition | 0.900 | 0.001 (0.690) |
WR total number of mistakes | 11.2 (6.4) | 0.015 (0.084) | −0.898 | ||
WR average | 77.5 (12.8) | 0.014 (0.099) | 0.898 |
Parameter | MEAN (SD) | R2 (p-Value) | PC | Loading | R2 (p-Value) |
---|---|---|---|---|---|
OSI EO | 0.5 (0.2) | 0.016 (0.095) | Eyes open postural stability | 0.929 | 0.006 (0.252) |
MLSI EO | 0.2 (0.1) | 0.013 (0.135) | 0.850 | ||
APSI EO | 0.4 (0.2) | 0.014 (0.135) | 0.803 | ||
FRI | 1.1 (0.4) | 0.011 (0.146) | - | - | - |
APSI EC | 1.2 (0.6) | 0.002 (0.570) | Eyes closed postural stability | 0.926 | 0.001 (0.674) |
OSI EC | 1.5 (0.7) | 0.002 (0.500) | 0.826 | ||
MLSI EC | 0.6 (0.4) | 0.001 (0.662) | 0.762 | ||
RT EC (s) | 8.1 (13.5) | 0.014 (0.100) | PS testing time * | 0.799 | 0.044 (0.003) |
RT EO (s) | 40.2 (24.3) | 0.006 (0.310) | 0.699 | ||
LOS time (s) * | 55.4 (14.1) | 0.048 (0.001) | −0.587 |
Parameter | MEAN (SD) | R2 (p-Value) | PC | Loading | R2 (p-Value) |
---|---|---|---|---|---|
Olfaction threshold | 3.8 (2.0) | <0.001 (0.964) | Sense of smell | 0.799 | 0.014 (0.087) |
Olfactory discrimination * | 12.5 (3.3) | 0.033 (0.011) | 0.799 | ||
Olfactory identification † | 8.2 (2.3) | 0.003 (0.447) | - | - | - |
Dataset | RMSE | R2 | K-MoCA Correlation Coefficient | Lambda | Alpha |
---|---|---|---|---|---|
Train | 2.119 | 0.493 | 0.569 | 0.593 | 0.515 |
Test | 2.017 | 0.420 | 0.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostic, E.; Kwak, K.; Lee, S.; Kim, D. Approximation of Cognitive Performance Using an Elastic Net Regression Model Trained on Gait, Visual, Auditory, Postural, and Olfactory Function Features. Appl. Sci. 2024, 14, 2098. https://doi.org/10.3390/app14052098
Kostic E, Kwak K, Lee S, Kim D. Approximation of Cognitive Performance Using an Elastic Net Regression Model Trained on Gait, Visual, Auditory, Postural, and Olfactory Function Features. Applied Sciences. 2024; 14(5):2098. https://doi.org/10.3390/app14052098
Chicago/Turabian StyleKostic, Emilija, Kiyoung Kwak, Shinyoung Lee, and Dongwook Kim. 2024. "Approximation of Cognitive Performance Using an Elastic Net Regression Model Trained on Gait, Visual, Auditory, Postural, and Olfactory Function Features" Applied Sciences 14, no. 5: 2098. https://doi.org/10.3390/app14052098
APA StyleKostic, E., Kwak, K., Lee, S., & Kim, D. (2024). Approximation of Cognitive Performance Using an Elastic Net Regression Model Trained on Gait, Visual, Auditory, Postural, and Olfactory Function Features. Applied Sciences, 14(5), 2098. https://doi.org/10.3390/app14052098