Erosion Monitoring in Benggang Based on Control-Free Images and Nap-of-the-Object Photogrammetry Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Data Acquisition
2.2.1. Layout and Acquisition of Ground Checkpoints
2.2.2. UAV Data Image Acquisition
Data Acquisition at Different Flight Approximation Distances
Control-Free-Image-Based Nap-of-the-Object Photogrammetry Data Acquisition
2.3. Research Methodology
2.4. Data Processing
2.4.1. UAV Data Processing
- (1)
- Point Cloud and DSM Data
- (2)
- DSM Volume Difference Calculation
- (3)
- Point Cloud Data Index Calculation
2.4.2. Data Processing for Model Coordinate Extraction
2.4.3. Analysis of Control-Free-Image Accuracy
3. Results
3.1. Flight Proximity and Nap-of-the-Object Photogrammetry Accuracy
3.1.1. Positioning Accuracy Analysis
3.1.2. Point Cloud Reproducibility Analysis
3.1.3. DSM Accuracy Analysis
3.2. Accuracy of Control-Free Nap-of-the-Object Photogrammetry Images
3.2.1. DSM Positioning Accuracy
3.2.2. Measurement Error of DSMs
4. Discussion
4.1. Reliability of Control-Free Nap-of-the-Object Photogrammetry Technique
4.2. Advantages of Control-Free Nap-of-the-Object Photogrammetry
5. Conclusions
- (1)
- The resolution of DSMs gradually increases with a robust linear correlation (R2 = 0.914) over the course of the analysis. Considering positioning accuracy, point cloud data, and DSM analysis, the flight proximity distance of 20 m emerges as the optimal scheme for nap-of-the-object photogrammetry to obtain data in the Benggang study area.
- (2)
- The average reprojection errors for nap-of-the-object photogrammetry with and without image control do not differ significantly, both approximating 0.012 pixels. There is no significant difference between the two photogrammetry methods in the positioning accuracy of the DSMs in the planar and vertical directions, which resulted to be about 0.01 m and 0.03 m, respectively. The error analysis of the DSMs indicates a consistent trend in the profiles obtained with and without image control points before and after rainfall. Moreover, the elevation errors along the X- and Y-axes are less than 6.94 cm and 11.78 cm, respectively. Notably, both elevation and X-axis errors fall within the subcentimeter range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, Y.; Yuan, Z.; Zhuo, M.; Huang, B.; Nie, X.; Xie, Z.; Tang, C.; Li, D. Coupling effects of erosion and surface roughness on colluvial deposits under continuous rainfall. Soil Tillage Res. 2019, 191, 98–107. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, Y.; Wang, M.; Lin, J.; Zhao, G.; Ge, H. Effects of Rainfall Intensity and Slope Gradient on Steep Colluvial Deposit Erosion in Southeast China. Soil Sci. Soc. Am. J. 2014, 78, 1741–1752. [Google Scholar] [CrossRef]
- Deng, Y.; Xia, D.; Cai, C.; Ding, S. Effects of land uses on soil physic-chemical properties and erodibility in collapsing-gully alluvial fan of Anxi County, China. J. Integr. Agric. 2015, 15, 1863–1873. [Google Scholar] [CrossRef]
- Xu, J. Benggang erosion: The influencing factors. Catena 1996, 27, 249–263. [Google Scholar]
- Zhang, X. The practice and prospect of hill collapsing improving and development in southern China. China Water Resour. 2010, 4, 17–18+22. [Google Scholar]
- Woo, M.; Fang, G.; diCenzo, P.D. The role of vegetation in the retardation of rill erosion. Catena 1997, 29, 145–159. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, L.; Wei, X.; Li, T.; Shao, M. Progress and prospect of studies of Benggang erosion in southern China. Geoderma 2023, 438. [Google Scholar] [CrossRef]
- Liao, Y.; Yuan, Z.; Li, D.; Zheng, M.; Huang, B.; Xie, Z.; Wu, X.; Luo, X. What kind of gully can develop into benggang? Catena 2023, 225, 107024. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. Temporal-spatial analyses of collapsed gully erosion based on three-dimensional laser scanning. Editor. Off. Trans. Chin. Soc. Agric. Eng. 2015, 31, 204–211. [Google Scholar]
- Shen, S.; Chen, J.; Zhang, S.; Cheng, D.; Wang, Z.; Zhang, T. Deep Fusion of DOM and DSM Features for Benggang Discovery. ISPRS Int. J. Geo-Inf. 2021, 10, 556. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Seta, M.D.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Han, Y.; Oh, H.J. RNCC-based Fine Co-registration of Multi-temporal RapidEye Satellite Imagery. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2018, 36, 581–588. [Google Scholar]
- Jiang, X.; Liang, Z.; Zhou, H.; Dai, Y.; Chen, Y. Dynamic Change Monitoring of Collapse Based on UAV Oblique Photograph Technique. Trop. Geogr. 2019, 39, 597–603. [Google Scholar]
- Zhou, X.; Yu, H.; Wei, Y.; Hu, J.; Cai, C. Method for monitoring change in Benggang erosion based on oblique aerial images of UAV. J. Agric. Eng. 2019, 35, 51–59. [Google Scholar]
- Ren, B.; Ding, S.; Wu, D.; Li, S. Study of headward erosion characteristics of collapsed downland in granite region in southeast Hubei Province. People’s Chang. 2015, 46, 76–79. [Google Scholar]
- Li, Z.; Zhong, L.; Huang, Y.; Ge, H.; Zhu, Y.; Jiang, F.; Li, X.; Zhang, Y.; Lin, J. Monitoring technology for collapse erosion based on the nap of the object photograph of UAV. Editor. Off. Trans. Chin. Soc. Agric. Eng. 2021, 37, 151–159. [Google Scholar]
- Zhang, Z. Origin and Meaning of Nap of the Object Photograph; Wuhan University, School of Remote Sensing Information Engineering: Wuhan, China, 2019. [Google Scholar]
- Zhang, Z.; Tao, P. An Overview on “Could Control” Photogrammetry in Big Data Era. J. Surv. Mapp. 2017, 46, 1238–1248. [Google Scholar]
- Liang, J.; Tie, Y.; Zhao, C.; Zhang, X. Technology and method research on the early detection of high-level collapse based on the Nap-of-the-object photography. Geol. Surv. China 2020, 7, 107–113. [Google Scholar]
- Li, C.; Zhang, G.; Lei, T.; Gong, A. Quick image-processing method of UAV without control points data in earthquake disaster area. Trans. Nonferrous Met. Soc. China 2011, 21, s523–s528. [Google Scholar] [CrossRef]
- Zhao, H.; Gou, Z.; Gao, P.; Cheng, Y. No ground control point making the orthophoto for the UAV remote sensing system. In International Symposium on Photoelectronic Detection and Imaging 2007: Related Technologies and Applications; Society of Photo Optical: Bellingham, WA, USA, 2008. [Google Scholar]
- He, H.; Chen, T.; Zeng, H.; Huang, S. Ground Control Point-Free Unmanned Aerial Vehicle-Based Photogrammetry for Volume Estimation of Stockpiles Carried on Barges. Sensors 2019, 19, 3534. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, B.; Yuan, Z.; He, K.; Liu, X.; Liu, Z.; Shen, Z. Evaluating the Potentiality of Using Control-free Images from a Mini Unmanned Aerial Vehicle (UAV) and Structure-from-Motion (SfM) Photogrammetry to Measure Paleoseismic Offsets. Int. J. Remote Sens. 2021, 42, 2417–2439. [Google Scholar] [CrossRef]
- Maier, K.; Nascetti, A.; Van Pelt, W.; Rosqvist, G. Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation. ISPRS J. Photogramm. Remote Sens. 2022, 186, 1–18. [Google Scholar] [CrossRef]
- Zhou, X.; Jia, Q.; Shi, P.; Guo, B.; He, F.; He, W.; Li, P. Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill, Zhouqu County. Chin. J. Geol. Hazard Control 2022, 33, 107–116. [Google Scholar]
- Wu, J.; Wang, P.; Wang, J.; Wu, X.; Su, X. Low Altitude Photogrammetry of Sea Islands and Reefs without Ground Control Points: Research and Application. J. Yangtze River Sci. Res. Inst. 2022, 39, 133–137. [Google Scholar]
- Chudley, T.R.; Christoffersen, P.; Doyle, S.H.; Abellan, A.; Snooke, N. High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. Cryosphere 2019, 13, 955–968. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X. Optimization Study of Laying Scheme of Image Control Points in UAV Low Aero Photogrammetry. Surv. Sci. Technol. 2018, 12–15. [Google Scholar]
- Su, S.; Wang, Y. Control points layout for the precision of aerial survey. Sci. Surv. Mapp. 2012, 37, 115–117. [Google Scholar]
- Xie, D.; Hu, R.; Wang, C.; Zhu, C.; Xu, H.; Li, Q. A Simulation Framework of Unmanned Aerial Vehicles Route Planning Design and Validation for Landslide Monitoring. Remote Sens. 2023, 15, 5758. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, F.; Su, G. Accuracy Analysis of Low Altitude Photogrammetry with Wide-angle Camera. Acta Geod. Cartogr. Sin. 2014, 43, 991. [Google Scholar]
- Zhou, J.; Gong, J.; Liu, W. Application of UAV Close-in Photogrammetry in Landside Monitoring. Ceomatics Spat. Inf. Technol. 2023, 46, 183–189. [Google Scholar]
- Yang, B.; Pang, Z.; Wen, W. Research on the application of nap of the object photogrammetry technology in 3D real scene modeling of ancient architecture. Stand. Surv. Mapp. 2023, 39, 110–114. [Google Scholar]
- Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F. Evaluating the Potential of RTK-UAV for Automatic Point Cloud Generation in 3D Rapid Mapping; Copernicus GmbH: Göttingen, Germany, 2016. [Google Scholar]
- Du, Y.; Li, S.; Ding, S.; He, Y.; Deng, Y. Study of CORS–RTK combined with GIS in collapsing gully monitoring of southeast Hubei Province. Yangtze River 2015, 46, 87–90. [Google Scholar]
- Liu, C.; Wang, Y.; Yu, S.; Lei, Q.; Yang, S. Positioning Accuracy Analysis of the New Portable Industry-level Unmanned Aerial Vehicle Phantom 4RTK. Technol. Earthq. Disaster Prev. 2022, 17, 114–123. [Google Scholar]
DJI Phantom 4 RTK UAV | Basic Parameters of Camera | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Weight (g) | 1391 | Sensors (in) | 1 |
Wheelbase (mm) | 350 | Effective pixels | 20 million |
Maximum flight speed (km/h) | 50 | Resolution (mm) | 5472 × 3648 |
Maximum tilt angle (°) | 25 | Aperture | f 2.8–f 11 |
Maximum wind speed (m/s) | 10 | Focal length (mm) | 8.8 |
Maximum flight time (min) | 30 | Equivalent focal length (mm) | 24 |
Vision system | Five-way obstacle avoidance | Focusing distance (m) | 1 m–∞ |
Processing Parameter | 15 m | 20 m | 25 m | 30 m |
---|---|---|---|---|
Number of images | 1678 | 1182 | 1008 | 886 |
Number of calibration images | 1678 | 1182 | 1008 | 886 |
Number of ground control points | 9 | 9 | 9 | 9 |
Ground resolution (cm) | 0.4 | 0.5 | 0.7 | 1.2 |
Mean reprojection error (pixels) | 0.010 | 0.012 | 0.012 | 0.014 |
Flight Proximity (m) | Average Error (mm) | Mean Absolute Error (mm) | Root Mean Square Error (RMSE) (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
15 | 0.04 | 0 | −0.12 | 8.20 | 6.43 | 7.27 | 9.30 | 8.04 | 8.15 |
20 | 0.05 | 0.06 | −0.07 | 8.21 | 7.07 | 6.76 | 9.98 | 8.70 | 8.11 |
25 | 0 | 0 | 0.07 | 8.74 | 7.40 | 7.59 | 9.87 | 8.77 | 8.84 |
30 | −0.18 | 0.15 | −0.21 | 8.78 | 6.17 | 7.53 | 10.40 | 8.18 | 8.89 |
Control Point Number | 15 m | 20 m | 25 m | 30 m | Mean Absolute Error |
---|---|---|---|---|---|
1 | 0.3 | 0.3 | 0.6 | 0.7 | 0.5 |
2 | 0.1 | 0.3 | 0.6 | 0.5 | 0.4 |
3 | 0.4 | 0 | 0 | 0.1 | 0.1 |
4 | 0.4 | 0.2 | 0 | 0.2 | 0.2 |
5 | 0.3 | 0.1 | 0 | 0.1 | 0.1 |
6 | 0 | 0.2 | 0.2 | 0.1 | 0.1 |
7 | 0.1 | 0.2 | 0.5 | 0.2 | 0.3 |
8 | 0.1 | 0 | 0 | 0.1 | 0.1 |
9 | 0 | 0.1 | 0.3 | 0.1 | 0.1 |
Mean absolute error | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 |
Processing Parameter | 22 June 2022 | 15 July 2022 |
---|---|---|
Number of images | 1184 | 1176 |
Number of dense point clouds | 243,626,208 | 25,329,724 |
Number of point clouds in the Benggang area | 4,412,945 | 4,534,858 |
Number of ground checkpoints | 10 | 9 |
Average reprojection error (pixels) | 0.013 | 0.012 |
Ground resolution (mm) | 5.0 | 5.0 |
Date | CFI or IC | Norm | Ground Checkpoint Name | MAE | RMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||
22 June | CFI | ΔX | 0.01 | 0.02 | 0 | 0.01 | −0.02 | 0.01 | 0.01 | 0.01 | 0 | 0.01 | 0.01 |
ΔY | 0 | 0 | −0.01 | 0.01 | 0.02 | 0.01 | −0.01 | 0 | 0 | 0.01 | 0.01 | ||
ΔXY | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.01 | 0 | 0.01 | 0.02 | ||
ΔZ | 0.01 | 0.01 | −0.05 | −0.03 | −0.03 | −0.03 | −0.03 | −0.03 | −0.04 | 0.03 | 0.03 | ||
IC | ΔX | 0 | 0.01 | 0 | 0.01 | −0.02 | 0.01 | 0.01 | 0.01 | −0.01 | 0.01 | 0.01 | |
ΔY | 0 | 0 | −0.01 | 0.01 | 0.02 | 0.01 | −0.01 | 0 | 0 | 0.01 | 0.01 | ||
ΔXY | 0 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0 | 0.01 | 0.01 | ||
ΔZ | 0.02 | 0.01 | −0.03 | −0.01 | −0.01 | −0.02 | −0.01 | −0.01 | −0.02 | 0.02 | 0.02 | ||
15 July | CFI | ΔX | 0.01 | 0.02 | 0.01 | 0.01 | −0.02 | 0.01 | 0.02 | 0.02 | 0 | 0.01 | 0.01 |
ΔY | −0.01 | −0.01 | −0.01 | 0 | 0.01 | 0 | −0.02 | 0 | 0 | 0.01 | 0.01 | ||
ΔXY | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0 | 0.02 | 0.02 | ||
ΔZ | 0.05 | 0.05 | −0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0 | 0.02 | 0.03 | ||
IC | ΔX | 0 | 0.01 | 0.01 | 0.01 | −0.02 | 0.01 | 0 | 0.01 | −0.01 | 0.01 | 0.01 | |
ΔY | 0 | 0.01 | −0.01 | 0 | 0.01 | 0 | −0.01 | 0 | 0 | 0.01 | 0.01 | ||
ΔXY | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | ||
ΔZ | 0.01 | 0.01 | −0.02 | 0.01 | 0.01 | 0 | −0.01 | 0 | −0.01 | 0.01 | 0.01 |
With or Without Image Control | Control Point Marker | Aerial Triangulation Processing Time | DOM Image Processing | DSM Processing | Total |
---|---|---|---|---|---|
Image control | 58.00 | 13.91 | 21.00 | 190.93 | 283.84 |
Control-free images | / | 15.88 | 20.65 | 180.05 | 216.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Lai, J.; Lai, G.; Ji, X.; Zhang, Y.; Jiang, F.; Huang, Y.; Lin, J. Erosion Monitoring in Benggang Based on Control-Free Images and Nap-of-the-Object Photogrammetry Techniques. Appl. Sci. 2024, 14, 2112. https://doi.org/10.3390/app14052112
Zhong L, Lai J, Lai G, Ji X, Zhang Y, Jiang F, Huang Y, Lin J. Erosion Monitoring in Benggang Based on Control-Free Images and Nap-of-the-Object Photogrammetry Techniques. Applied Sciences. 2024; 14(5):2112. https://doi.org/10.3390/app14052112
Chicago/Turabian StyleZhong, Linting, Jianfeng Lai, Guangxi Lai, Xiang Ji, Yue Zhang, Fangshi Jiang, Yanhe Huang, and Jinshi Lin. 2024. "Erosion Monitoring in Benggang Based on Control-Free Images and Nap-of-the-Object Photogrammetry Techniques" Applied Sciences 14, no. 5: 2112. https://doi.org/10.3390/app14052112
APA StyleZhong, L., Lai, J., Lai, G., Ji, X., Zhang, Y., Jiang, F., Huang, Y., & Lin, J. (2024). Erosion Monitoring in Benggang Based on Control-Free Images and Nap-of-the-Object Photogrammetry Techniques. Applied Sciences, 14(5), 2112. https://doi.org/10.3390/app14052112