Simultaneous SERS Detection of Multiple Amino Acids Using ZIF-8@AuNPs as Substrate: Classified with 1D Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZIF-8@AuNPs
2.2.1. Synthesis of ZIF-8
2.2.2. Synthesis of AuNPs
2.2.3. Synthesis of ZIF-8@AuNPs Nanocomposite
2.3. SERS Measurement
2.4. SERS Detection of Amino Acids in Shaanbei Millet and Healthcare Product
2.5. Instrumentation
2.6. One-Dimensional CNN
3. Results and Discussion
3.1. Characterization of ZIF-8@AuNPs
3.2. Size Optimization of AuNPs
3.3. Selectivity and Assignment on the Characteristic SERS Band
3.4. Optimization of ZIF-8@AuNPs
3.5. SERS Performance
3.6. Applications on Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dalfsen, J.H.V.; Markus, C.R. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and the sleep-promoting effects of tryptophan: A randomized placebo-controlled crossover study. J. Psychopharmacol. 2019, 33, 948–954. [Google Scholar] [CrossRef]
- Dato, S.; Hoxha, E.; Crocco, P.; Iannone, F.; Passarino, G.; Rose, G. Amino acids and amino acid sensing: Implication for aging and diseases. Biogerontology 2019, 20, 17–31. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Huang, L.Q. Effects of vitamin Bdeficiency on the amino acid metabolism, fatty acid metabolism and aminotransferase activity of the silkworm. Acta Entomol. Sin. 2003, 46, 436–440. [Google Scholar]
- Palma-Granados, P.; Seiquer, I.; Benítez, R.; Óvilo, C.; Nieto, R. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets. Animal 2019, 13, 2406–2418. [Google Scholar] [CrossRef] [PubMed]
- Ishigaki, M.; Ito, A.; Hara, R.; Miyazaki, S.; Murayama, K.; Tusji, S.; Inomata, M.; Yoshikiyo, K.; Yamamoto, T.; Ozaki, Y. Development of an amino acid sequence-dependent analytical method for peptides using near-infrared spectroscopy. Analyst 2022, 147, 3634–3642. [Google Scholar] [CrossRef]
- Omar, M.M.A.; Elbashir, A.A.; Schmitz, O.J. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food. Food Chem. 2017, 214, 300–307. [Google Scholar] [CrossRef]
- Aach, H. Spektrophotometrische Untersuchungen an Mutanten des Tabakmosaikvirus. Z. Naturforsch B 1958, 13, 165–167. [Google Scholar] [CrossRef]
- Pettiwala, A.M.; Singh, P.K. Optical Sensors for Detection of Amino Acids. Curr. Med. Chem. 2018, 25, 2272–2290. [Google Scholar] [CrossRef] [PubMed]
- Lospinoso, D.; Colombelli, A.; Lomascolo, M.; Rella, R.; Manera, M.G. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection. Nanomaterials 2022, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-K.; Park, W.-H.; Park, C.-G.; Shin, H.-H.; Lee, K.S.; Kim, Z.H. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy. J. Am. Chem. Soc. 2016, 138, 4673–4684. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, H.; Zhong, Y.; Zhang, L.; Sui, X.; Feng, X.; Wang, B.; Mao, Z. Study on the effect of different dyeing systems on the interaction of multi-component reactive dyes by Raman spectroscopy. Color. Technol. 2021, 137, 520–529. [Google Scholar] [CrossRef]
- Chen, J.; Liu, G.; Zhu, Y.; Su, M.; Zhang, H. Ag@MoS2 Core−Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Du, J.; Li, X.; Shen, Y.; Yang, M.; Han, X.; Yang, L.; Zhao, B. Comparative study of semiconductor TiO2 and noble metal Ag substrates: The differences between chemical enhancement and electromagnetic enhancement in SERS. J. Raman Spectrosc. 2018, 49, 1257–1264. [Google Scholar] [CrossRef]
- Liu, J.; Osadchy, M.; Ashton, L.; Foster, M.; Solomon, C.J.; Gibson, S.J. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Hisey, C.L.; Zargar-Shoshtari, K.; Xu, W.; Broderick, N.G.R. Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications. Opt. Commun. 2022, 510, 127977. [Google Scholar] [CrossRef]
- Fernández-Manteca, M.G.; Ocampo-Sosa, A.A.; De Alegría-Puig, C.R.; Roiz, M.P.; Rodríguez-Grande, J.; Madrazo, F.; Calvo, J.; Rodríguez-Cobo, L.; López-Higuera, J.M.; Fariñas, M.C.; et al. Automatic classification of Candida species using Raman spectroscopy and machine learning. Spectrochim. Acta A 2023, 290, 122270. [Google Scholar] [CrossRef]
- Mozaffari, M.H.; Tay, L.-L. Overfitting One-Dimensional convolutional neural networks for Raman spectra identification. Spectrochim. Acta A 2022, 272, 120961. [Google Scholar] [CrossRef]
- Ma, D.; Shang, L.; Tang, J.; Bao, Y.; Fu, J.; Yin, J. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta A 2021, 256, 119732. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Cao, H. Development of Au NPs-decorated filter paper as a SERS platform for the detection of benzidine. RSC Adv. 2021, 11, 39797–39803. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Younus, H.A.; Chughtai, A.H.; Van Hecke, K.; Khattak, Z.A.; Gaoke, Z.; Danish, M.; Verpoort, F. Synthesis of 2D MOF having potential for efficient dye adsorption and catalytic applications. Catal. Sci. Technol. 2018, 8, 4010–4017. [Google Scholar] [CrossRef]
- Zhao, S.N.; Song, X.Z.; Song, S.Y.; Zhang, H.J. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordin. Chem. Rev. 2017, 337, 80–96. [Google Scholar] [CrossRef]
- Chen, L.; Duan, B.; Luo, Q.; Liu, J.; Duan, C. Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chem. Commun. 2016, 52, 116–119. [Google Scholar]
- Fu, Y.; Xin, M.; Chong, J.; Li, R.; Huang, M. Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde. J. Mater. Sci. 2021, 56, 4151–4160. [Google Scholar] [CrossRef]
- Das, A.; Choi, N.; Moon, J.; Choo, J. Determination of total iron-binding capacity of transferrin using metal organic framework-based surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc. 2021, 52, 506–515. [Google Scholar] [CrossRef]
- Shao, Q.; Zhang, D.; Wang, C.; Tang, Z.; Zou, M.; Yang, X.; Gong, H.; Yu, Z.; Jin, S.; Liang, P. Ag@MIL-101(Cr) Film Substrate with High SERS Enhancement Effect and Uniformity. J. Phys. Chem. C 2021, 125, 7297–7304. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Yuan, Y.; Xu, M.; Yao, J. The moveable “hot spots” effect in an Au nanoparticles–Au plate coupled system. Nanoscale 2020, 12, 23789–23798. [Google Scholar] [CrossRef]
- Fukuhara, M.; Fujiwara, K.; Maruyama, Y.; Itoh, H. Feature visualization of Raman spectrum analysis with deep convolutional neural network. Anal. Chim. Acta 2019, 1087, 11–19. [Google Scholar] [CrossRef]
- Ahmad, S.Z.N.; Salleh, W.N.W.; Yusof, N.; Yusop, M.Z.M.; Hamdan, R.; Ismail, A.F. Synthesis of zeolitic imidazolate framework-8 (ZIF-8) using diferent solvents for lead and cadmium adsorption. Appl. Nanosci. 2022, 13, 4005–4019. [Google Scholar] [CrossRef]
- Zabetakis, K.; Ghann, W.E.; Kumar, S.; Daniel, M.C. Effect of high gold salt concentrations on the size and polydispersity of gold nanoparticles prepared by an extended Turkevich–Frens method. Gold. Bull. 2012, 45, 203–211. [Google Scholar] [CrossRef]
- GB 7650-87; Determination of Tryptophan in Cereal Grains. Analysis and Testing Center, Chinese Academy of Agricultural Sciences: Beijing, China, 2005.
- Xu, W.; Zhong, C.; Zou, C.; Wang, B. Zhang. Analytical methods for amino acid determination in organisms. Amino Acids 2020, 52, 1071–1088. [Google Scholar] [CrossRef]
- Guo, M.; Yin, D.; Han, J.; Zhang, L.; Li, X.; He, D.; Du, Y.; Tang, D. Phenylboronic acid modified solid-phase extraction column: Preparation, characterization, and application to the analysis of amino acids in sepia capsule by removing the maltose. J. Sep. Sci. 2016, 39, 3428–3435. [Google Scholar] [CrossRef] [PubMed]
- Lima, J., Jr.; Freire, P.; Lima, R.; Moreno, A.; Filho, J.M.; Melo, F. Raman scattering of L-valine crystals. J. Raman Spectrosc. 2005, 36, 1076–1081. [Google Scholar] [CrossRef]
- Kandakkathara, A.; Utkin, I.; Fedosejevs, R. Surface-Enhanced Raman Scattering (SERS) Detection of Low Concentrations of Tryptophan Amino Acid in Silver Colloid. Appl. Spectrosc. 2011, 65, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Levada, A.L.M. PCA-KL: A parametric dimensionality reduction approach for unsupervised metric learning. Adv. Data Anal. Classif. 2021, 15, 829–868. [Google Scholar] [CrossRef]
- Lomont, J.P.; Smith, J.P. In situ Raman spectroscopy for real time detection of cysteine. Spectrochim. Acta A 2022, 274, 121068. [Google Scholar] [CrossRef]
- Fermo, I.; Arcelloni, C.; De Vecchi, E.; Vigano, S.; Paroni, R. High-performance liquid chromatographic method with fluorescence detection for the determination of total homocyst(e)ine in plasma. J. Chromatogr. A 1992, 593, 171–176. [Google Scholar] [CrossRef]
Sample | Amino Acid | Detected (M) | Spiked (M) | Found (M) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|
millet | cys | Nd * | 5.00 × 10−2 | 4.80 × 10−2 | 96.0 | 8.13 |
1.00 × 10−2 | 1.02 × 10−2 | 102.3 | 9.95 | |||
5.00 × 10−3 | 5.18 × 10−3 | 98.7 | 7.82 | |||
trp | 1.68 × 10−3 M | 5.00 × 10−2 | 5.67 × 10−2 | 110.0 | 9.04 | |
1.00 × 10−2 | 1.12 × 10−2 | 95.2 | 7.38 | |||
5.00 × 10−3 | 6.87 × 10−3 | 103.8 | 5.17 | |||
Val | Nd | 5.00 × 10−2 | 4.92 × 10−2 | 98.4 | 6.01 | |
1.00 × 10−2 | 1.06 × 10−2 | 105.9 | 3.58 | |||
5.00 × 10−3 | 5.22 × 10−3 | 104.4 | 2.86 |
Sample | Amino Acid | Detected (M) | Spiked (M) | Found (M) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|
L-Cysteine capsule | Cys | 1.31 × 10−2 | 5.00 × 10−2 | 6.16 × 10−2 | 97.0 | 4.66 |
1.00 × 10−2 | 2.36 × 10−2 | 105.3 | 2.80 | |||
5.00 × 10−3 | 1.80 × 10−2 | 98.7 | 3.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Ma, S.; He, J.; Xue, W.; Hou, X.; Zhang, Y.; Liu, X.; Bai, H.; Li, R. Simultaneous SERS Detection of Multiple Amino Acids Using ZIF-8@AuNPs as Substrate: Classified with 1D Convolutional Neural Network. Appl. Sci. 2024, 14, 2118. https://doi.org/10.3390/app14052118
Huang M, Ma S, He J, Xue W, Hou X, Zhang Y, Liu X, Bai H, Li R. Simultaneous SERS Detection of Multiple Amino Acids Using ZIF-8@AuNPs as Substrate: Classified with 1D Convolutional Neural Network. Applied Sciences. 2024; 14(5):2118. https://doi.org/10.3390/app14052118
Chicago/Turabian StyleHuang, Mengping, Shuai Ma, Jinrong He, Wei Xue, Xueyan Hou, Yuqi Zhang, Xiaofeng Liu, Heping Bai, and Ran Li. 2024. "Simultaneous SERS Detection of Multiple Amino Acids Using ZIF-8@AuNPs as Substrate: Classified with 1D Convolutional Neural Network" Applied Sciences 14, no. 5: 2118. https://doi.org/10.3390/app14052118
APA StyleHuang, M., Ma, S., He, J., Xue, W., Hou, X., Zhang, Y., Liu, X., Bai, H., & Li, R. (2024). Simultaneous SERS Detection of Multiple Amino Acids Using ZIF-8@AuNPs as Substrate: Classified with 1D Convolutional Neural Network. Applied Sciences, 14(5), 2118. https://doi.org/10.3390/app14052118