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Abstract: In the context of automatic charging for electric vehicles, collision localization for the
end-effector of robots not only serves as a crucial visual complement but also provides essential
foundations for subsequent response design. In this scenario, data-driven collision localization
methods are considered an ideal choice. However, due to the typically high demands on the data
scale associated with such methods, they may significantly increase the construction cost of models.
To mitigate this issue to some extent, in this paper, we propose a novel approach for robot collision
localization based on a sparse modular point matrix (SMPM) in the context of automatic charging for
electric vehicles. This method, building upon the use of collision point matrix templates, strategically
introduces sparsity to the sub-regions of the templates, aiming to reduce the scale of data collection.
Additionally, we delve into the exploration of data-driven models adapted to SMPMs. We design a
feature extractor that combines a convolutional neural network (CNN) with an echo state network
(ESN) to perform adaptive feature extraction on collision vibration signals. Simultaneously, by
incorporating a support vector machine (SVM) as a classifier, the model is capable of accurately
estimating the specific region in which the collision occurs. The experimental results demonstrate
that the proposed collision localization method maintains a collision localization accuracy of 91.27%
and a collision localization RMSE of 1.46 mm, despite a 48.15% reduction in data scale.

Keywords: automatic charging; data-driven collision localization; sparse modular point matrix;
convolutional neural network; echo state network; support vector machine

1. Introduction

In the domain of robot-assisted automatic electric vehicle charging, the connection
between the charger and the charging port relies on precise visual positioning [1]. However,
the visual positioning system may be subject to disturbances in unstructured environments,
such as changes in lighting conditions, leading to instances of positioning failure. Visual
positioning failure typically results in three scenarios: in cases of minimal localization
deviation, the charger carried by the robot’s end-effector is able to connect to the charging
port, but may experience jamming. In such situations, impedance control implemented
on the robot can effectively suppress jamming [2]. When the positioning deviation is
substantial, the charger on the robot’s end-effector may fail to make contact with the
charging port during the connection process, potentially causing contact with other parts
of the electric vehicle’s body. In this case, implementing a collision classification protection
system on the robotic arm ensures the safety of the vehicle and the robot. When the
positioning deviation falls between the aforementioned scenarios, meaning that the charger
can make contact with the charging port but cannot smoothly insert due to the presence of
a visual positioning deviation, imparting a collision localization capability to the robotic
arm can effectively correct the deviation caused by the visual positioning failure, serving as
a supplementary localization strategy in the event of a visual failure [3,4].
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In the exploration of model-based collision localization methods, J. Vorndamme et al.
achieved collision localization for humanoid robots by constructing a generalized momen-
tum observer to calculate joint torques and estimate joint accelerations [5]. This method
enables point estimation in single-contact situations using only onboard sensors. Addi-
tional force/torque sensors are introduced only when estimating multi-contact positions.
M. Iskandar et al. developed a momentum-based external force estimation framework for
robot collision localization [6]. This approach includes joint-level residual estimation and
uncoupled force–torque estimation in Cartesian space, eliminating the need for acceler-
ation estimation and consequently mitigating the introduction of noise associated with
acceleration estimation. D. Zurlo et al. addressed the problem of difficulty in achieving
high-precision collision localization solely by relying on a generalized momentum observer
to a certain extent by combining the generalized momentum observer method with a
particle filtering strategy [7].

In the pursuit of achieving high-precision collision localization, artificial-skin-based
methods are generally considered a more favorable option. P. Piacenza et al. utilized
low-cost optical components installed along the edges of the perception region to achieve
higher accuracy in contact localization by measuring the impact of touch on the passage
of light through elastic material [8]. X. Fan et al. designed a set of ultrasound sensors
deployable on the surface of a robotic arm to achieve high-precision contact localization and
analyze contact pressure [9]. P. Mittendorfer et al. achieved interactive touch in different
parts of a humanoid robot by employing self-organizing, multimodal artificial skin [10].
X. Li et al. developed a tactile sensor composed of overlapping air chambers, leveraging
the spatiotemporal continuity of learning contact positions to achieve high-precision and
high-resolution collision localization [11].

With the rapid advancement of artificial intelligence technology, supervised learning
strategies have become widely utilized to address collision localization problems in robotics.
These methods are commonly referred to as data-driven collision localization approaches.
D. Popov et al. employed onboard sensors to collect collision data from robots, utilizing
neural network methods to learn from the relevant data, thereby achieving collision local-
ization at the centimeter level [12]. X. Ha et al. utilized information from multi-core fiber
Bragg grating sensors, combined with a k-nearest neighbor (KNN) model to fit a free-space
curvature model, successfully estimating collision positions for continuum robots [13].
F. Min et al. mounted accelerometers on the joint near the base and end-effector of a robotic
arm to capture vibration signals during collisions. They performed reasonable feature
extraction on the collision vibration signals and, in conjunction with an artificial neural
network (ANN), successfully achieved the localization of the contact points [14]. W. McMa-
han et al. mounted four accelerometers on a single robotic arm to form an accelerometer
array, capturing collision vibration data. They employed a support vector machine (SVM)
to learn from the vibration information of different collision positions, thereby achieving
collision localization with an error in the centimeter range [15].

In the realm of robot-assisted automatic electric vehicle charging, the end-effector,
which is incapable of establishing direct physical contact with the charging port, exclu-
sively interfaces with it through the intermediary of the carried charger. This situation
may introduce unknown disturbances in signal measurements within the model-based
method, posing challenges for achieving high accuracy in collision localization with model-
based methods. Additionally, during the plug-in process, the forces generated during
collisions typically act along the robot. As discussed in [5], model-based methods face
increased difficulty in handling collision issues when external forces act along the robot.
In addition, due to the frequent contacts and substantial contact forces inherent in the
plug-in process, this demanding operational environment will significantly diminish the
lifespan of artificial skin. Simultaneously, the deployment of artificial skin encounters
certain challenges, serving as a constraint that restricts its application in addressing this
issue. Considering data-driven collision localization methods, these approaches heavily
depend on formulating rules for gathering data tailored to specific scenarios.
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In our previous research, we introduced a collision point matrix template specifically
designed for millimeter-level collision localization in the scenario of automatic charging for
electric vehicles [4]. The collision point matrix template consists of collision points spaced
at 1 mm intervals on a plane. By pre-setting the collision point matrix template on the
surface of the charging port and then colliding with each collision point using the charger
carried by the automatic charging robot, we can obtain collision vibration information
suitable for collision localization. Utilizing a collision point matrix template composed of
densely distributed collision points, the collision localization problem can be transformed
into a classification problem, with collision information corresponding to different points
in the template. To enhance the generalization ability of the collision localization method,
it is necessary to consider the adaptation of the collision localization method to variations
in joint configurations during the data collection process. Therefore, it is generally required
to collect collision information under as many different joint configurations as possible. As
the accuracy of collision localization in this method depends on the dense distribution of
collision points in the template, the cost of data collection is typically very high.

To alleviate the significant burden of data collection associated with such an approach,
we propose a data-driven collision localization method based on a sparse modular point
matrix (SMPM). Unlike the earlier collision point matrix template, the SMPM efficiently
reduces the density of collision point distribution, thereby reducing the scale and associated
costs of building the collision dataset to some extent. The main contributions of this paper
are as follows:

1. Building upon the collision point matrix template, the SMPM is first introduced to
achieve local sparsity of the template, thereby reducing the data scale required for the
data-driven collision localization method;

2. Comparative experiments are conducted by constructing SMPMs of various forms
and degrees of sparsity, exploring the optimal way to build SMPMs effectively while
maintaining high collision localization performance with a reduced data scale;

3. A data-driven collision localization method combining a convolutional neural network
(CNN), an echo state network (ESN), and a support vector machine (SVM) is proposed
to enable the SMPM to achieve optimal performance in collision localization.

2. Materials and Methods
2.1. Dataset Description

The SMPM proposed in this study was constructed based on the collision point matrix
template introduced in ref. [4]. To investigate the effectiveness of the proposed SMPM,
the data used in this study were consistent with our previous work [4]. Specifically, the
datasets comprised vibration signals encompassing 3-axis acceleration and 3-axis angular
velocity, collected by the IMU mounted on the charger at a sampling frequency of 1500 Hz.
An AUBO-i5 robot, a commercially available general-purpose 6-DOF robotic arm, was
employed as the automatic charging equipment. It was connected to the charger via a
flexible wrist, as depicted in Figure 1. During the data collection process, the end-effector
robot moves in a linear motion at a speed of 15 mm/s to execute the collision. Each collision
point in the collision point matrix template attached to the charging port undergoes five
collisions in the same pattern to minimize the impact of robot positioning errors on the
results. Additionally, we considered the impact of different joint configurations on the
collision localization results, thereby constructing three independent collision vibration
signal datasets named D1, D2, and D3. Each dataset corresponds to three sets of distinct
joint configurations, with each dataset containing 4335 samples. For more details, please
refer to the table entitled “Joint configuration of the datasets” in ref. [4].
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Figure 1. Illustration of the automatic charging equipment.

2.2. SMPM Method

In our previous work, we observed that when using the collision point matrix template,
the estimated positions of collision points are prone to confusion with their neighboring
collision points. This implies that it is possible to estimate the occurrence of collisions
at a particular collision point by leveraging the collision vibration information from its
neighboring points. Building upon this idea, we propose a local modularization and
sparsification approach for the collision point matrix template, as illustrated in Figure 1. The
collision point matrix template mentioned here is identical to the one in ref. [4]. Collision
points are defined as intersection points between the central axis of the charger and the
plane in which the charging port is located. The template comprises collision points
with 1 mm spacing, arranged in 17 rows and 17 columns, with its center located at the
intersection of the central axis of the charging port and the plane in which the charging
port is situated. In practical applications, the template can be scaled without altering the
spacing between collision points. Modularization is achieved by exploiting the similarity
in collision vibration signals between the estimated collision points and their neighboring
points, eliminating the need to collect data for the estimated collision points during the
data collection process. We refer to the estimated collision points that do not appear in
the dataset as “zero-shot points”, while the collision points used to estimate zero-shot
points, requiring collection in the dataset, are defined as “fully observable points”. In the
process of implementing local modularization, we consider the information from fully
observable points nearest to the zero-shot points to estimate collisions occurring at the
zero-shot points. This process leads to the formation of a modular point matrix (MPM),
as illustrated in the figure, comprising a central zero-shot point and its surrounding eight
fully observable points. The MPM utilized results in a 1/9 reduction in the quantity of data
collected, compared to the original collision point matrix template.

Furthermore, it is crucial to consider whether utilizing all eight fully observable points
is necessary for accurately estimating a collision occurrence at a zero-shot point. In theory,
the collision vibration information obtained from these eight fully observable points may
contain redundancy when estimating a zero-shot point. If this hypothesis holds true,
eliminating the redundant fully observable points could further reduce the scale of the
collision dataset. Taking this into consideration, we propose three sparsification methods
for the MPM, as illustrated in Figure 2. The first sparsification method involves removing
one of the fully observable points from the MPM. This approach results in eight sparse
modular point matrices (SMPMs), denoted as Cell 1-1, Cell 1-2, . . ., Cell 1-8, obtained by
sequentially removing one fully observable point in clockwise direction starting from the
top left corner. The second sparsification method involves removing two fully observable
points from the MPM. During this removal process, we consider two extreme cases: one that
maximally preserves the zero-shot point’s farthest adjacent points (resulting in Cell 2-1 and
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Cell 2-2), and another that maximally preserves the zero-shot point’s nearest adjacent points
(resulting in Cell 2-3 and Cell 2-4). The third sparsification method involves removing four
fully observable points from the MPM, specifically resulting in Cell 3-1, which excludes
all of the nearest adjacent points, and Cell 3-2, which excludes all of the farthest adjacent
points. The collision localization effects arising from the different sparsification methods
are explained in detail in the experimental section.
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2.3. Collision Localization Model

In our previous work, we explored collision localization models based on a CNN [3]
and an ESN [4], respectively. Drawing inspiration from these two approaches, we proposed
a collision localization model that integrates a CNN and an ESN as feature extractors. In
this model, the CNN demonstrates a propensity for capturing salient features along the line
of sight, making it a prevalent choice for feature engineering. Meanwhile, the ESN exhibits
the capability to unfold in accordance with the temporal sequence, finding widespread
applications in time series analysis. To enhance the ultimate localization performance,
we also integrate an SVM model as the final region classifier. Capitalizing on distinctive
attributes of the CNN and ESN, we formulate a collision localization model based on a
CNN-ESN-SVM (CE-SVM) architecture.

2.3.1. CNN

The CNN, a representative deep learning method, is known for its efficacy in pro-
cessing time-series and image signals [16,17]. A typical CNN structure comprises two
main components: the convolutional layer and the pooling layer. In the convolutional
layer, the convolution operation is applied between the input features and convolution
kernels, resulting in the generation of new features. Following convolution, the obtained
results typically undergo non-linear processing, often facilitated by activation functions.
Commonly employed activation functions include Sigmoid, tanh, and ReLU [18]. Based
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on previous research results, ReLU activation functions are a suitable choice for collision
localization problems.

The pooling layer serves two primary functions: dimensionality reduction and mit-
igating overfitting. There are two main types of pooling methods: average pooling and
maximum pooling. In average pooling, the operation involves taking the average of the
convolution-derived features as the output, while in maximum pooling, the operation
involves selecting the maximum value from the convolution-derived features as the output.
In this research, we adopted the same pooling method as in our previous work, specifically
utilizing the maximum pooling approach.

2.3.2. ESN

An echo state network (ESN) is a type of recurrent neural network proposed by Jaeger
et al. [19], consisting of three main components: an input layer, a reservoir, and an output
layer. The reservoir is essentially a randomly connected recurrent network of a certain size,
where neurons form a dense structure through random connections. These connections are
predetermined and remain unaltered during training. A basic ESN model is illustrated in
Figure 3.
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Let Nin, Nres, and Nout represent the numbers of neurons in the input layer, reservoir,
and output layer, respectively. The matrices Win, Wres, and Wout denote the weight ma-
trices from the input layer to the reservoir, within the reservoir, and from the reservoir
to the output layer, respectively. Win and Wres are randomly initialized and remain fixed
throughout the training process. Only Wout undergoes adjustments during the learning
process. The specific ESN model can be expressed as follows:

h(t) = εtanh(Winx(t + 1) + Wresh(t) + Wouty(t)) (1)

where tanh(·) represents the non-linear activation function of the reservoir and ε ∈ (0, 1] is
the leakage rate. x(t), h(t), and y(t) denote the input vector, the state vector of the reservoir,
and the output vector, respectively. Compared to conventional RNNs, the training process
of the ESN is simpler, only involving parameter adjustments in the output layer. The entire
network does not require the complex process of backpropagation. Furthermore, due to
the randomness and dense connections in the reservoir, this structure facilitates enhanced
generalization capabilities, enabling the network to capture the non-linear dynamics of
input signals effectively. This property contributes to the ESN’s strong performance in
handling time-series tasks.

In terms of hyperparameter settings, since Win and Wres are generated through random
initialization, it is essential to predefine the range for their random initialization before
training. The appropriate values for these two weight matrices were adopted from Ref. [20].
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Additionally, following our previous work [4], the leakage rate ε, spectral radius ρ, and
Nres were set. Specifically, the hyperparameters of the ESN used in this paper are presented
in Table 1.

Table 1. Key parameters of ESN.

Parameters Symbolic Representations Values

Weight matrices from the input layer
to the reservoir Win [−0.5, 0.5]

Weight matrices within the reservoir Wres [−0.5, 0.5]
Leakage rate ε 0.5

Spectral radius ρ 1
Numbers of neurons in the reservoir Nres 64

2.3.3. Framework of CE-SVM

The framework of the proposed CE-SVM is illustrated in Figure 4, consisting primarily
of a feature extractor and a classifier. The collision vibration signals employed are 3-axis
acceleration and 3-axis angular velocity signals collected by the IMU mounted on the
charger. After normalization, these signals serve as inputs to the model. The definition
of the input data length follows the concept of the “effective period” from our previous
work, where a segment with rich information meeting collision localization requirements
is extracted from the initial data length, as detailed in ref. [4]. As discussed in ref. [4],
an effective period with 290 sampling points already contains sufficient information for
collision localization. Therefore, this paper also sets the effective period to 290 sampling
points. The input layer of the feature extractor is followed by two CNN layers, each
composed of a convolutional layer and a maxpooling layer. In the diagram, Conv2D denotes
a 2D convolution layer, and MaxPooling2D denotes a 2D pooling layer. Post Conv2D, batch
normalization is applied to ensure the data’s generalization ability. Subsequently, a non-
linear ReLU activation function is used to process the features, enhancing the model’s
capacity for effective non-linear information processing. Notably, the Conv2D structure
employed in this study differs from that of [3]. While the previous work involved symmetric
3 × 3 convolutional kernels, in this study, we adopt asymmetric kernels to maximally
preserve temporally reasonable features extracted by the CNN for subsequent processing
by the ESN layer. The convolution kernel size in the temporal direction is significantly larger
than that in the different axis dimensions. To effectively transmit temporal information
to the ESN layer, the time-distributed technique [21] is employed for the flattening layer
connecting the CNN layers and the ESN layer. To enable the SVM to effectively utilize
the features extracted by the ESN, the features need to undergo flattening processing
after the ESN process. Simultaneously, a fully connected layer is employed to reduce the
dimensionality of the features to prevent the curse of dimensionality. In the feature extractor
training process, Softmax is used as the final classifier. Based on feedback from the Softmax
layer’s estimation results, the weights of different components in the feature extractor are
adjusted. In the training of the classifier SVM for collision localization, the weights of the
pre-trained feature extractor are fixed and used solely for feature extraction. The SVM is
then constructed based on the features extracted by the pre-trained feature extractor.

Detailed hyperparameters for the feature extractor and classifier are provided in
Table 2. The hyperparameters of the ESN and SVM are taken from [4], while the hyperpa-
rameters of the CNN remain consistent with those outlined in ref. [3], with the exception
of the convolutional kernel aspect. Since the padding method is not utilized during the
initial convolutional computation, it should ensure that the length of the input can be
evenly divisible by the convolutional length along the temporal dimension. Furthermore,
to maintain an appropriate convolutional size along the temporal dimension, we specify
the kernel size in this direction as 10. Meanwhile, the kernel size remains consistent with
ref. [3] in the other direction. Our experiments utilized a Windows-based system with
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the following specifications: Processor: Intel (R) Core (TM) i7-10700K CPU @ 3.80 GHz,
Memory: 31.9 GiB, GPU: NVIDIA GeForce RTX 3080.
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Table 2. Hyperparameters of the CE-SVM.

Type Name of Parameter Values

Number of filters 64
Conv2D Kernel size (10, 3)

Stride 1

Batch normalization - -

ReLU - -

Pool size (2, 2)
Maxpooling Stride 1

Padding same

Conv2D

Number of filters 64
Kernel size (10, 3)

Stride 2
Padding same

Batch normalization - -

ReLU - -

Pool size (2, 2)
Maxpooling Stride 1

Padding same

Time-distributed flattening - -

Nres 64
ESN ε 0.5

ρ 1

FC Number of hidden units 512

SVM
Regularization parameter 100

Kernel function rbf

3. Results and Discussion

To explore the effectiveness of the SMPM in reducing the required data scale for
collision localization model construction, the experimental design of this research mainly
consists of two parts. The first part aims to analyze the SMPM structure under discrete
distributions and select the optimal structure based on the structural analysis results. The
second part aims to investigate the effectiveness of the proposed collision localization
method when employing the optimal SMPM layout across the entire collision point tem-
plate. In the first part of the experiment, various SMPM structures are predefined based
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on the characteristics of vibration signals corresponding to collision points. Subsequently,
utilizing multiple data-driven models, SMPMs with diverse structures across the discrete
distribution of collision point templates are evaluated, leading to the selection of the opti-
mal SMPM structure. In the second part of the experiment, the optimal SMPM is deployed
throughout the entire collision point template with varying degrees of sparsity. This deploy-
ment allows for testing the performance of the optimal SMPM in reducing the necessary
data scale for constructing the collision localization model while maintaining collision
localization performance. By integrating the test outcomes, the collision localization model
that best complements the SMPM is also identified.

3.1. Optimal SMPM Structure

In conducting a comprehensive structural analysis and optimization of the SMPM
across the entire collision point matrix template, significant computational costs are in-
curred. In this study, we mitigate these computational challenges by decomposing the
SMPM optimization problem into distinct local regions. This subdivision results in a sub-
stantial reduction in the workload for the optimal SMPM structure selection method. The
proposed optimal SMPM structure selection method consists of two main steps: firstly,
various forms of sparsification are applied to the MPM distributed in the four-corner region.
Collision localization is then performed on the SMPMs using multiple models. Based on
the accuracy of the localization results, SMPMs with superior performance are initially
identified. Subsequently, the position of the SMPM relative to the collision point matrix
template is adjusted, and further collision localization using multiple models is conducted
on the initially screened SMPMs to select those with the optimal structure. In terms of
model selection, the proposed CE-SVM method from this study is employed, along with
the DCNN-SVM method introduced in [3], as well as the ESN-SVM, LSTM-SVM, and
GRU-SVM methods mentioned in [4]. Additionally, based on our previous findings, the
effective handling of collision point localization in the testing set when a particular collision
point in the collision point matrix template is present in both the training and testing sets
has been validated. Therefore, in the SMPM selection process, greater attention can be
directed towards evaluating the performance of collision localization for zero-shot points.
Consequently, in the SMPM selection process, we employ all points in datasets D1, D2, and
D3 that meet the definition of zero-shot points as the testing set. Simultaneously, all points
in datasets D1, D2, and D3 that conform to the definition of fully observable points are
utilized as the training set.

The distribution of MPMs in four corner regions of the collision point matrix template
are illustrated in Figure 5. To introduce a certain level of similarity interference, four MPMs
are set in each region, and are tightly connected to form a square area. These MPMs are
labeled for collision localization. Specifically, we defined the regions in the four corners as
I, II, III, and IV. Subsequently, we assigned numerical labels from 1 to 4 to the MPMs within
each region. Then, different forms of sparsification were applied to the MPMs, as shown
in Figure 2. Based on these various sparsification forms, collision localization tests were
conducted to preliminarily identify preferable sparsification forms.

Building upon the aforementioned preferable configurations, we further displaced the
SMPM to occupy different positions on the collision point matrix template. As illustrated
in Figure 6, there are three types of movements: vertical (up and down), horizontal (left
and right), and toward the center. A collision localization test was conducted each time
the SMPM was shifted by a distance equivalent to one collision point. Based on the results
of these tests, we refined the selection of the optimal SMPM structure. To facilitate the
explanation, we defined the following situations: horizontal movement by one collision
point as LR1 and by two collision points as LR2; vertical movement by one collision point as
UD1 and by two collision points as UD2; and movement toward the center by one collision
point as CT1 and by two collision points as CT2.
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As shown in Figure 7, the average collision localization accuracy results for the SMPM
positioned at the corners of the collision point matrix template are presented. The re-
sults labeled “models with CNN” represent the average collision localization accuracy
of fusion models incorporating convolutional modules, specifically the DCNN-SVM and
CE-SVM methods. Conversely, “models without CNN” correspond to the average collision
localization accuracy of models excluding convolutional modules, including ESN-SVM,
LSTM-SVM, and GRU-SVM. From the graph, it is evident that fusion models with convolu-
tional modules significantly outperform those relying solely on recursive neural networks
for handling collision localization when applied in conjunction with an SMPM. When em-
ploying collision localization methods with convolutional modules, the accuracy of SMPMs
(Cell 1-1 to Cell 1-8) after removing single points is slightly higher overall than the accuracy
achieved by the MPM. In contrast, for collision results obtained using collision localization
models without convolutional layers, single-point removal SMPMs are comparatively dis-
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advantaged. This suggests that, when estimating the localization of collisions at zero-shot
points, choosing an appropriate model enables the achievement of accuracy levels, even
with sample size reduction, equivalent to or higher than those achieved without reducing
the sample size. In the case of double-point and quadruple-point removal SMPMs, it is no-
tably observed that when using models with convolutional modules, Cell 2-3, Cell 2-4, and
Cell 3-2 achieve significantly higher average collision localization accuracy compared to
single-point removal SMPMs. Especially, Cell 3-2 consistently achieves the highest collision
accuracy across different sparsification forms. This implies that certain points in the MPM
provide redundant or even disruptive information for collision localization. Furthermore, it
can be observed that, in the single-point removal SMPM, using models with convolutional
modules results in higher collision accuracy for Cell 1-1, Cell 1-3, Cell 1-5, and Cell 1-7
compared to their adjacent counterparts, Cell 1-2, Cell 1-4, Cell 1-6, and Cell 1-8. Similarly,
in the double-point removal SMPM, Cell 2-3 and Cell 2-4 achieve significantly higher
collision localization accuracy than Cell 2-1 and Cell 2-2, while in the quadruple-point
removal SMPM, Cell 3-2 demonstrates markedly higher collision localization accuracy than
Cell 3-1. This phenomenon indicates that the sparsification method removing the farthest
adjacent points of zero-shot points in the MPM is more effective than removing the nearest
adjacent points. Moreover, the standout performance of Cell 3-2 suggests that information
from the farthest adjacent points in the MPM may lead to confusion in different regions,
resulting in a decrease in collision localization accuracy.
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Considering the significant advantages of collision localization models with convolu-
tional modules when combined with an SMPM, we focused solely on utilizing collision
localization models with convolutional modules when analyzing the zero-shot point lo-
calization situation of the SMPM at different positions within the collision point matrix
template. In the selection of SMPM structures, we experimentally chose SMPM structures
that exhibited clear advantages at the corners of the collision point matrix template, specifi-
cally those removing the farthest adjacent points: Cell 1-1, Cell 1-3, Cell 1-5, Cell 1-7, Cell 2-3,
Cell 2-4, and Cell 3-2. For the purposes of comparison with cases without any sparsification,
Cell 0 was introduced as a control experiment. Figure 8 depicts the collision localization
results based on SMPMs positioned at different locations. The best performance in UD1 and
UD2 is observed with Cell 1-5 and Cell 2-3, in LR1 and LR2 with Cell 0 and Cell 1-3, and in
CT1 and CT2 with Cell 1-7 and Cell 3-2. Comparing the results of SMPMs with those of the
MPM, it is evident that the vibration signals acquired at the farthest neighboring points may
indeed contain information that could degrade the localization model’s performance. From
the average accuracy results of different movement point numbers in UD, LR, and CT, the
relative differences in average accuracy for SMPMs removing single points (Cell 1-1, Cell
1-3, Cell 1-5, and Cell 1-7) compared to the MPM are 1.29%, −0.2%, and −0.02%; for SMPMs
removing double points (Cell 2-3 and Cell 2-4), they are −0.03%, −1.18%, and −1.56%;
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and for SMPMs removing four points (Cell 3-2), they are 2.16%, −0.7%, and 0.62%. This
indicates that information contained in some of the farthest adjacent points is not always
redundant. However, even with the removal of these points, collision localization accuracy
does not significantly decrease compared to using the MPM, suggesting that removing the
farthest neighboring points is effective in reducing the dataset size while maintaining high
collision localization accuracy. Furthermore, it is noteworthy that the use of the Cell 3-2
sparsification form consistently demonstrates excellent collision localization performance
for SMPMs positioned at different locations. This sparsification form, compared to others,
minimizes the required data collection scale to the greatest extent. Hence, we consider the
Cell 3-2 sparsification form of the SMPM the optimal choice.
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3.2. Collision Localization Results across the Entire Template

When applying the SMPM with the Cell 3-2 form for collision localization at the
charging port, the encountered challenge is not solely limited to accurately identifying
collisions occurring at zero-shot points. Rather, it extends to efficiently locating collisions
within the entire collision point matrix template. Therefore, it is imperative for the Cell 3-2
SMPM to be comprehensively deployed across the entire collision point matrix template. In
order to investigate the feasibility of the proposed sparsification method across the entire
domain, a thorough analysis of the complete collision point matrix template area is required
under different robot joint angles. The training datasets used for this purpose are D1 and
D2, while the testing dataset is D3, isolated from D1 and D2. Additionally, the collisions
occurring at the locations of removed fully observable points also need to be addressed.
Despite the theoretical capability of SMPMs to effectively locate collisions at both zero-shot
and fully observable points, there is currently a lack of adequate information for handling
collisions at removed fully observable points. Hence, we introduce the concept of partially
observable points, i.e., collision data sampled with a demand lower than that of fully
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observable points but greater than zero. In conjunction with training datasets D1 and D2,
the specific forms of SMPMs containing locally observable points used in the experiments
are illustrated in Figure 9. To ensure the comprehensive deployment of SMPMs across the
entire collision point matrix template, a departure from the approach outlined in [7] is taken.
Specifically, the outermost points of the collision point matrix template are disregarded,
and analysis is conducted only on the inner 15 rows and 15 columns. Building upon the
Cell 3-2 form, partially observable points are positioned at the farthest adjacent point
of the MPM. The samples include 30 instances of fully observable points, 0 instances of
zero-shot points, and N instances of partially observable points. To investigate the impact
of different sparsity levels of partially observable points on the collision localization results,
five different SMPMs are defined, with N values of 5, 10, 15, 20, and 25, denoted as S1 to S5,
respectively. Additionally, for comparison with the case of ample data collection, an MPM
(S6) is introduced, and a control experiment (S7) utilizes the collision point matrix template
directly without downsampling.
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In evaluating the effectiveness of applying SMPMs with varying degrees of sparsity
to collision localization, we employ assessment criteria that include collision localization
accuracy and root mean square error (RMSE). In this study, we treat the SMPM as a unified
entity, with its central position representing the estimated positions of individual points
within the SMPM. The results of collision localization accuracy are presented in Table 3,
where the data scale of S7 is defined as 100%. In S7, the collision localization accuracy
of different models exceeded 96%, with the highest reaching 98.67%. As the data scale
decreases, the accuracy of collision localization for each method also declines accordingly.
At a data scale of 51.85%, the average accuracy of each method only drops by 8.72%.
Notably, the CE-SVM method exhibits the smallest decrease, with a reduction of only 7.22%,
maintaining an accuracy above 90%. Furthermore, in cases S1 to S6, the CE-SVM method
outperforms other methods, especially in situations with higher sparsity, highlighting the
pronounced advantage of CE-SVM. Regarding the deviation in collision localization, the
RMSEs of various models for collision localization are presented in Table 4. Due to the
utilization of the center position of the SMPM as the estimated location for individual
points within the SMPM, additional localization biases are introduced in the RMSEs, even
when the collision area is correctly predicted. Therefore, the RMSEs of various models
are consistently greater than 1 mm. Without any reduction in data scale, the CNN-SVM
model achieves the lowest RMSE in collision localization. However, with the introduction
of varying degrees of sparsity, the CE-SVM consistently exhibits a notable advantage.
When the data scale is reduced to 51.85%, the RMSE of the CE-SVM method increases
by only 0.21 mm, compared to the increase in RMSE for CNN-SVM, which is only 55%
of its value. In conclusion, it is evident that the SMPM is capable of maintaining a high
level of collision localization performance even in scenarios involving significant data
scale reduction. From both the collision localization accuracy and RMSEs perspectives, the
SMPM maintains a high level of performance even in scenarios of substantial data scale
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reduction. Particularly noteworthy is its outstanding collision localization performance
when employed in conjunction with the CE-SVM method.

Table 3. Collision localization accuracy achieved using SMPMs with different levels of sparsification.

Case CE-SVM CNN-SVM LSTM-SVM ENS-SVM GRU-SVM Data Scale

S1 91.27% 89.29% 88.33% 89.53% 88.73% 51.85%
S2 94.29% 91.79% 90.62% 91.54% 90.8% 59.26%
S3 95% 94.17% 93.24% 93.27% 93.06% 66.67%
S4 96.2% 95% 93.92% 94.2% 93.88% 74.07%
S5 97.07% 95.12% 94.44% 95.22% 94.72% 81.48%
S6 96.73% 95.74% 94.78% 95.65% 95.28% 88.89%
S7 98.49% 98.67% 96.7% 98.64% 98.27% 100%

Table 4. Collision localization RMSEs achieved using SMPMs with different levels of sparsification (mm).

Case CE-SVM CNN-SVM LSTM-SVM ENS-SVM GRU-SVM

S1 1.46 1.62 1.73 1.63 1.75
S2 1.4 1.52 1.59 1.54 1.61
S3 1.37 1.46 1.51 1.5 1.49
S4 1.33 1.45 1.48 1.47 1.48
S5 1.34 1.39 1.54 1.42 1.42
S6 1.3 1.39 1.45 1.42 1.44
S7 1.25 1.24 1.35 1.26 1.26

4. Conclusions

To achieve higher precision in collision localization, the existing data-driven method
for the plug-in process of electric vehicle (EV) automatic charging suffers from high data
collection costs. In this study, we propose a novel data-driven approach for robot colli-
sion localization specifically tailored to automatic charging scenarios for EVs, effectively
mitigating this issue. Our method is grounded in a collision point matrix template and inte-
grates a sparse modular point matrix (SMPM) to reduce the necessary size of the collision
dataset for data-driven techniques. By employing an optimized SMPM structure to sparsify
the entire template, we achieve a reduction in data scale of 48.15% while maintaining an
average localization accuracy of 89.43% and an average RMSE of 1.64 mm. Compared to
scenarios without sparsification, the average localization accuracy decreases by only 8.72%,
with a minimal increase of 0.37 mm in RMSE for collision localization. Additionally, we
exploit the characteristics of convolutional neural network (CNNs) and echo state network
(ESNs) to develop an integrated adaptive extractor for dynamic feature extraction from
collision vibration signals. Utilizing a support vector machine (SVM) as the classifier, we
demonstrate the exceptional performance of the model in addressing collision localization
issues when combined with the SMPM. Specifically, even with a 48.15% reduction in data
scale, our model achieves an outstanding collision localization accuracy of 91.27% and an
RMSE of 1.46 mm for collision localization.

Although our proposed method effectively reduces dataset size while maintaining
collision localization performance at a high level, there is still a noticeable decrease in
collision localization accuracy when compared to the scenario without any sparsification.
In subsequent research, we will focus on exploring whether data augmentation techniques
can be employed to generate data for sparsified points, creating a virtual supplement to the
dataset. We aim to enhance the performance of the collision localization method further
while reducing the need for experimental data acquisition.
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