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Abstract: An IDS (Intrusion Detection System) is essential for network security experts, as it allows
one to identify and respond to abnormal traffic present in a network. An IDS can be utilized
for evaluating the various types of malicious attacks. Hence, detecting intrusions has become a
significant research area in the contemporary era, especially with the evolution of technologies.
With the progress of ML (Machine Learning)-based algorithms, researchers have striven to perform
optimal ID. However, most of these studies lag in accordance with their accuracy rate. Thus, to
attain a high accuracy rate in ID, the present study proposes ML-based meta-heuristic algorithms, as
these approaches possess innate merits of determining near-optimal solutions in limited time and
are capable of dealing with multi-dimensional data. The study proposes OWSA (Optimal Whale
Sine Algorithm) for selecting suitable and relevant features. With an exclusive optimization process
using the SCA (Sine Cosine Algorithm), this study proposes to combine SCA with WOA (Whale
Optimization Algorithm) for mitigating the demerits of both, with its hybridization thereby achieving
OWSA. Following this, AWRF (Artificial Neural Network Weighted Random Forest) is proposed for
classification. The main intention of this process is to propose a weight-updating process for discrete
trees in the RF model. The proposed approach is motivated by avoiding overfitting and attaining
stability and flexibility. This approach is assessed with regard to performance via a comparative
analysis, so as to uncover the best performance of this proposed technique in ID.

Keywords: intrusion detection; machine learning; Sine Cosine Algorithm; Whale Optimization
Algorithm; Artificial Neural Network; Random Forest

1. Introduction

In recent years, the advancement of technologies, namely, modern Industrial Control
Systems, Cloud Computing, IoT (Internet of Things) and other web applications, has been
rapidly increasing. These systems often handle large volumes of information and work
in symbiosis in complex and vast communication networks. This results in intrusions
by various ill-intentioned entities and hackers, who find new ways to break computer
systems [1]. So, it will be important to improve the security of these network systems.
Generally, an IDS monitors network traffic so as to detect suspicious activities, and creates
an alert when these activities are found. It represents a software application that scans a
system or network for harmful events or policy-breaching. Violations or malicious ventures
are typically reported to a proprietor, or centrally gathered with the use of SIEM (Security
Information and Event Management). An SIEM system collects the results from multiple
sources and utilizes alarm filtering methodologies for differentiating malicious events from
FAR (False Alarm Rates). Though IDS can identify potential malicious activities, it is also
liable to FARs. Thus, organizations need to fine-tune their IDS products once they have
already been installed. This suggests that establishing the proper settings of an IDS for
recognizing threats in network traffic is of the utmost importance, and these setting can
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be categorized based on the detection technique employed [2]. Moreover, in the area of
cyber-security, ML methodologies have been productively implemented in developing
effective approaches. These ML-based techniques show extensive potential to identify
various types of intrusions, perform malware classification, protect privacy, evade cyber-
attacks etc. Hence, ML has become a valuable tool for defenders. Contemporary threats
have evolved to a sophisticated and complex level with the rapid evolution of adversarial
methodologies. Most of the present security technologies will encounter various threats.
Consequently, self-learning methodologies should be used, as they are capable of handling
these issues. Accordingly, ML tools have emerged as crucial across the whole security sector.
ML is an area of AI associated with data mining, data science and computational statistics.
It is predominantly concerned with training machines to learn efficiently from input data.
Hence, ML is considered a data-driven method, the initial phase of which is understanding
the raw data to construct smart security frameworks and generate forecasts [3].

Correspondingly, several studies have endorsed the use of various models for en-
hancing the performance of IDSs with the use of diverse methods, such as wrapper, filter,
optimization, and bio-inspired algorithms, etc. Specifically, bio-inspired algorithms are
utilized for improving the performance of network IDSs via their ability to find the most
efficient solutions in less time. Each of the bio-inspired algorithms possesses its own merits
and demerits. Using hybrid methods, each of the algorithms employed could adopt the
strengths of the other, as well as resolving its demerits [4]. Several recent studies have also
found that hybridization enhances the performance of bio-inspired methods. In accordance
with this, Ref. [5] used an efficient method to detect and classify attacks based on a UNSW-
NB15 dataset. For improving accuracy, feature selection has been developed with the use
of the OSS (Optimized Sine Swarm) approach, which chooses significant features. Lastly,
ID has been performed with OSS-RF (OSS-Random Forest). The performances of classifiers
deployed have been assessed by use of various evaluation metrics. Comparisons have been
made with various conventional models for confirming the efficacy of this approach. The
endorsed system achieved a better performance, with 98.15% accuracy. Following this,
the research is [6] aimed to enhance the classification rate and minimize the redundancy
arising in feature selection during intrusion detection. To achieve this, an improved BWO-
BOA (Black Widow Optimization–Butterfly Optimization Algorithm) was utilized, which
employs a dynamic adaptive search strategy for improving the actual BOA and solving
the issues of low precision, easy entrapment in the local optima, and slow convergence.
Satisfactory results have been attained.

Additionally, Ref. [7] applied a hybrid model to perform feature selection and thus
accomplish ID. The execution model utilized PSO (Particle Swarm Optimization) and
GWO (Grey Wolf Optimization). Further, two models were used, namely, PSO-GWO-
ANN (PSO-GWO-Artificial Neural Network) and PSO-GWO-NB (PSO-GWO-Naïve Bayes).
Frequently repeating features from the suggested model were assessed. PSO-GWO was
run for a specific iteration count. An individual feature selection framework was run
independently, and the chosen feature set was saved. The features of PSO-GWO were tested
in the subsequent phase. The UNSW-NB15 dataset was utilized for evaluation. Further,
experimentations were executed with two classifiers, ANN and NB. The outcomes reveal
that PSO-GWO shows acceptable performance in selecting the features of ID. Moreover,
the combination of the features of PSO-GWO afforded better results with fewer features.
Initially, common features of attack and normal behavior were eliminated. The RF algorithm
was utilized to assess the significance of predictors for ID. Subsequently, RF was employed
to work with minimal selected predictors for classifying attack behavior and normal users.
Lastly, classifications were considered for intruder detection. Experimentations were
undertaken, and it was confirmed that the classifier’s performance could be enhanced with
regard to accuracy with the use of RF [8]. In spite of several attempts having been made to
use existing models, there is scope for a further improvement in accordance with accuracy.
Moreover, only a few studies have considered three datasets when performing ID. Hence,
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to alleviate such pitfalls, the current study proposes appropriate ML-based methods for
effective IDS detection.

The main objectives of this study are:

• To pre-process the data via the identification of missing values, and the scaling and
filling of the missing values so as to accomplish effective prediction;

• To select suitable and relevant features using the proposed OWSA (Optimal Whale
Sine Algorithm) for enhancing classifier performance;

• To predict the intrusions by deploying the proposed AWRF (ANN Weighted Random
Forest) to attain a better prediction rate;

• To assess the performance rate of the proposed work with regard to evaluation metrics
for proving the effectiveness of this system.

Paper Organization

The paper is structured as follows: Section 2 contains the review of conventional
systems, with problem identification. This is followed by Section 3, with the proposed
flow, algorithm, and relevant steps. The results procured via the execution of the proposed
system are presented in Section 4. Lastly, the overall research is concluded in Section 5 with
the outlining of possible future works.

2. Review of Existing Work

Existing studies have struggled to use different ML-based methodologies for intru-
sion detection. These methods are discussed in this section, with the identification of
their problems.

2.1. Intrusion Detection with NSL-KDD Dataset

Existing studies have utilized several methods, such as ML algorithms [9,10], swarm-
intelligence and ANN (Artificial Neural Network), for detecting intrusions. Accordingly,
Ref. [11] suggested a feature selection method using a GA (Genetic Algorithm), wherein
the GA finds the ideal features from an NSL-KDD dataset. Furthermore, hybrid classifiers
have been used, encompassing LR (Logistic Regression) and DT (Decision Tree) to achieve
the ideal accuracy and detection rate. The study has also employed and compared the
performances of varied meta-heuristic methods in optimizing the chosen ideal features.
The empirical outcomes reveal that the GWO (Grey Wolf Optimization) method showed
a better accuracy rate of 99.44%. Moreover, the integration of several feature-selection-
based approaches and the ML methods has been pursued for efficient intrusion detection.
Initially, the most relevant features were retrieved with the use of the hybrid meta-heuristic
algorithm, and later, supervised ML methods were employed for detecting various attacks
with a satisfactory accuracy rate. Accordingly, the NSL-KDD dataset was used with the
suggested AdaBoost model. A cost-sensitive classifier has been employed to enhance
the accuracy of the minority class, affording an 81.1% overall accuracy [12]. Further,
Ref. [13] considered a method relying on the HOA (Horse Herd Optimization Algorithm)
to detect network intrusions. To perform the classification, KNN (K-Nearest Neighbour)
was employed. A suitable performance was secured. To improve the performance further,
Ref. [14] employed a hybrid meta-heuristic approach with an OWKELM (Optimal Wavelet
Kernel Extreme Learning Machine)-based classifier. The suggested system included a
hybrid MFO (Moth Flame Optimization) with HC (Hill Climbing)-based process for feature
selection. Extensive simulations have been undertaken on the NSL-KDD dataset, and the
better performance of the suggested model was revealed. Besides this, intrusion detection
has been performed in several applications using the NSL-KDD dataset [15]. For instance,
Ref. [16] set out a model to detect and classify IoT network intrusions for use in agriculture.
NSL-KDD was employed as the input dataset. Feature extraction was performed with PCA
(Principal Component Analysis). For the classification of the dataset, ML methods such
as SVM (Support Vector Machine), RF (Random Forest) and LR (Linear Regression) have
been employed. The performances of the suggested ML classifiers have been assessed. The
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accuracy rate was found to be 98% when using SVM, 78% when employing LR and 85%
when using RF. Contrarily, Ref. [17] utilized an optimized strategy based on GB-EGWO
(Genetic-Based–Enhanced Grey Wolf Optimization) to detect intrusions. The simulation
outcomes confirm the better performance of the suggested system. Likewise, Ref. [18]
employed a bio-inspired method, namely, GWO, to improve its effectiveness in detecting
anomalous and normal traffic. Additionally, the ELM (Extreme Learning Machine) has
been considered for use as a classifier, and modified GWO has been used for tuning the
parameters of ELM. The accuracy rate has been found to be 81%. Following this, Ref. [19]
considered EBGWO (Enhanced Binary Grey Wolf Optimization) to perform feature selection
by balancing the parameters so as to detect anomalies. Evaluations of this method have
been performed on the NSL-KDD dataset, containing varied attack classes, in comparison
to other benchmark methods such as Binary PSO, Binary Bat Algorithm, and four variants
of GWO, in performing feature selection. The empirical outcomes show that EBGWO
achieved a better performance than supplementary classifiers, with a classification rate of
87.46%. To improve the performance rate further, Ref. [20] suggested using GSO (Glow-
worm Swarm Optimization) with PCA (Principal Component Analysis). The detection rate
was 94.08%.

2.2. Intrusion Detection with CICIDS Dataset

The study in [21] tried to enhance the classification rate and avoid FPs (False Pos-
itives). To accomplish this, ideal features were selected. An intrusion detection model
has been suggested based on ML methods such as DTs (Decision Trees), SVM and RF
(Random Forest). After the model’s training, an ensemble method-based voting classifier
was integrated, which attained a 96.25% accuracy rate. Further, the suggested system also
incorporated explainable AI, which contributed to attaining better outcomes. Moreover,
Ref. [22] assessed the performance of the CICIDS-2017 dataset when employing various
ML classifiers, such as CNN (Convolutional Neural Network), RF (Random Forest) and NB
(Naïve Bayes). Among these other classifiers, RF showed satisfactory performance. Unlike
CICIDS-2017, some works have also used the CICIDS-2018 dataset [23]. Accordingly, the
study in [24] employed an approach that improves time effectiveness and enables better
intrusion detection. The LightGBM (Light Gradient Boosting Machine) has been utilized
for constructing a model that accords with the considered dataset. The suggested system
achieved 97.73% accuracy. As an enhancement, Ref. [25] integrated the NTLBO (New
Teaching Learning Based Optimization Algorithm), ELM (Extreme Learning Machine), LR
(Logistic Regression) and SVM to perform the selection of subsets of features. Experiments
have been undertaken on identifying intrusion from ML datasets, such as CICIDS-2017,
wherein significant improvements have been made, reaching 97% accuracy.

Similarly, Ref. [26] used an enhanced intrusion detection system to perform binary
classification. This work included various optimizers, such as Rao Optimization, SVM, LR
and ELM, as well as hybrid Rao–SVM, with supervised ML methods for the selection of
feature subset. The selection of fewer features without a loss of accuracy in selecting feature
subsets has been regarded as the primary aim of optimization. The developed model
showed a 97% accuracy rate when applied to the considered CICIDS dataset. Similarly,
Ref. [27] used the CICIDS dataset. Duplicate information was eliminated. Subsequently,
with the use of specific software, the dataset was reformatted into a compatible form
with the WEKA tool. Subsequently, eight ML algorithms (AdaBoost, MLP (Multi-Layer
Perceptron), NB, KNN (K-Nearest Neighbor), J48, QDA (Quadratic Discriminant Analysis),
ID3 (Iterative Dichotomizer 3) and RF) were utilized. After assessing the efficacy of the
suggested system, the j48 method was chosen. Furthermore, in accordance with the
outcomes of the j48 classifier, expert rules were created that could respond to intrusions in
the network.

Furthermore, IDSs have been developed with embedded expert rules. These expert
rules were executed in the snort-rule language. The snort operates via the network IDS
method, and rules files were accessed as described in the snort configuration. This system
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achieved a better accuracy rate of 98%. Likewise, Ref. [28] employed a bottleneck layer
approach to the CICIDS-2107 dataset so as to confirm its better performance. This perfor-
mance was achieved with the incorporation of DL algorithms, such DNN (Deep Neural
Network) and ANN, and has been compared with those of conventional DNN, SVM and
ANN. Experimentation revealed the 92.35% accuracy of DNN, while the accuracy rate
was found to be 90.98% when using ANN. In addition, Ref. [29] utilized SVM. Two other
methodologies have also been benchmarked—NB and DT. The results reveal that SVM
reached 76.47% accuracy when applied to the CICIDS dataset, whereas DT reached 63.71%
accuracy, while NB reached 41.58% accuracy.

2.3. Intrusion Detection with UNSW-BOT Dataset

The study in [30] presented a BOT-IoT dataset that incorporates network traffic and
IoT-related traffic with several attack kinds. The dataset was developed in real time, and it
has been categorized with label features that represented the flow of attack, the category of
attack, and sub-categories for the probable intentions of multi-class classification. Further,
additional features have been generated to enhance the predictive ability of the classifiers
that were trained on the suggested model. With statistical evaluation, a subset of the actual
dataset was generated encompassing ten ideal features. Lastly, four metrics have been
utilized in assessing the dataset—precision, fall-out, recall and accuracy. A high accuracy
rate and high recall rate were found for the SVM model. The recommended models could
be further optimized so as to attain better outcomes. Accordingly, DL-based models have
been considered. Correspondingly, the study in [31] designed a system to detect intrusions
in accordance with DL for revealing IoT-DDoS (Distributed Denial of Service) Botnet attacks.
The considered dataset was developed and designed within a real-time environment. Traffic
data that were incorporated included attack and normal traffic data. The highly extendible
DNN has been recommended for use in robust attack detection in IoT networks. Analysis
has revealed that DNN works better than conventional algorithms, with a better precision
and accuracy rate. Following this, Ref. [32] developed a training method for tuning the
parameters of the utilized deep model. To achieve this, the NSBPSO (Neighborhood Search-
based PSO) has been utilized to improve the exploration or exploitation of PSO. The merits
of NSBPSO have been utilized for the optimal training of deep models in order to attain
better predictions. To assess the performance, the BOT dataset and UNSW-NB-15 dataset
have been used, and better outcomes have been procured.

2.4. Problem Identification

Recently, ML- and meta-heuristic-based approaches have found extensively use in
resolving the issues related to intrusion detection. Various issues have been identified
through the review of conventional works, and they are discussed in this section, as follows:

• Existing models have concentrated on determining the impacts of the network dataset.
They have suggested using the ML model to improve prediction performance. They
have also suggested the development of schemes related to feature engineering to
obtain a higher accuracy [9];

• Though Ref. [10] sought to perform intrusion detection based on ML, the system they
suggested did not employ any feature selection methodologies;

• Conventional models have used the NSL-KDD dataset. Accordingly, Ref. [12] em-
ployed a cost-sensitive classifier, and achieved 81.1% accuracy. Similarly, Ref. [18]
used Modified GWO, with an accuracy rate of 81%. Moreover, Ref. [19] employed
EBGWO and achieved a classification accuracy of 87.46%. In addition, Ref. [20] utilized
GSO-PCA and reached 94.08% accuracy. In addition, other research works have also
considered the CICIDS-2017 dataset. In accordance with this, Ref. [21] used an ensem-
ble method that achieved a 96.25% accuracy rate. Further, Ref. [25] used TLBO-GA,
and achieved a 97% accuracy rate. Furthermore, Ref. [26] employed Rao–SVM and
achieved 97% accuracy. Though better performances have been achieved, there is
scope for further improvement;



Appl. Sci. 2024, 14, 2172 6 of 22

• The article [13] suggested that future works could consider employing various semi-
supervised and meta-heuristic approaches in intrusion detection so as to accomplish
a high accuracy rate and low computational complexity when detecting extensive
attacks in CNs (computer networks).

3. Proposed Methodology

This study proposes an IDS model developed using ML-based approaches. Though
existing studies have attempted this, the systems developed have been deficient with
regard to accuracy. To resolve the prevailing issues, the current research considers three
datasets (UNSW-Bot, NSL-KDD and CICIDS-2107) and performs a series of steps, as shown
in Figure 1. Initially, pre-processing is performed, whereby inconsistent and missing data
are eliminated so as to avoid error. This process also helps enhance the dataset’s quality and
accuracy by making the data more consistent and reliable. After pre-processing, features
are selected using OWSA. Feature selection is performed by considering the diversity and
number of features of user behavior and network traffic, and the selection of a subset of
features is performed to improve the accuracy of model classification. An approach to
selecting server traffic feature subsets based on OWSA has been used to determine the
features that are the most important and related to the class label. This process contributes
to minimizing computational costs and enhancing the performance rate. After feature
selection, the chosen data are used in the training and testing phases, with a ratio of
80:20. The use of 80% of the data for training involves presenting a labeled dataset to
the model, and allowing it to learn patterns and relationships between input features and
corresponding labels. The proposed model adjusts its parameters through optimization
techniques, aiming to make accurate predictions. Finally, regarding the 20% of data used as
a testing set, we evaluate the model trained on a separate dataset in order to calculate the
performance of the model. In the final phase, classification is accomplished with AWRF.
The model is evaluated with regard to performance so as to confirm its efficacy.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 22 
 

Preprocessing1) UNSW-BoT
2) NSL KDD

3) CICIDS2017

Identifying Missing Values
Filling Missing Values
Scaling

...

Optimal Whale Sine 
Feature Selection

Selected Features

Train Test SplitAWRF Classification

Trained Model

Prediction Performance Analysis

1 2
3

4

56

7 8
 

Figure 1. Overview of the proposed methodology. 

3.1. OWSA (Optimal Whale Sine Algorithm) for Feature Selection 
Initially, the WOA (Whale Optimization Algorithm) was inspired by the bubble-net 

hunting mannerism of humpback whales. The population-based WOA possesses the 
capacity for avoiding local optima, thereby attaining optimal solutions. Such merits could 
identify the WOA as a suitable approach to solving various unconstrained or constrained 
optimization issues related to practical employment without reformatting the structure of 
the algorithm. Humpback whales produce huge spirals of bubbles as they approach 
closer to their prey top contain them. Then, the prey is hunted. In the hunting phase, the 
humpback whales pursue two predation methodologies, so as to minimize the ensuing 
steps. Subsequently, the whales will enact the spiral upraise-position technique. 
Throughout the hunting phases, both of these methodologies are utilized concurrently. 
Accordingly, two bubble-related techniques are employed—upward spirals and double 
loops. In the first stage, the humpback whales dive twelve meters down; following this, 
bubbles are produced that surround the prey and float upwards in a spiral form. The 
subsequent step includes three phases—lob-tail, coral loop and capture loop. 

Phase 1: Encircling the prey—The humpback whales lactate the prey and then sur-
round them. With the ideal design position within the search area already known, the 
WOA selects a candidate outcome that targets prey, or else it moves close to the optimal. 
Then, better search agents are described. These search agents attempt to direct the search 
towards the ideal agent. 

Phase 2: Exploitation—Bubble-net attack. This process encompasses two main 
methodologies, namely, shrinking encircling and spiral updating; 

Phase 3: Exploration—Aside from bubble net processing, humpback whales search 
for their prey in a random manner. 

For pursuing the two approaches, the WOA uses random choice possibility 
(𝑥 (𝑥ଶሾ0, 1ሿ)). Moreover, when (x < 0.5), the humpback whale makes use of the spiral up-
raising position methodology. On the contrary, when (x > 0.5), the humpback whale uses 
the methodology of shrinking encircling. During shrinking encircling, whales search for 
their prey with consideration of each other’s locations. To reflect the uncertainty in this 
algorithm, 𝐴 is presented as the co-efficient vector. The search agent is set as |𝑝⃗|  <  1 
to update the area of the search agents. As this process involves several search strategies, 
its effect is limited in identifying the global ideal outcome with the highest merit in 

Figure 1. Overview of the proposed methodology.

3.1. OWSA (Optimal Whale Sine Algorithm) for Feature Selection

Initially, the WOA (Whale Optimization Algorithm) was inspired by the bubble-net
hunting mannerism of humpback whales. The population-based WOA possesses the ca-
pacity for avoiding local optima, thereby attaining optimal solutions. Such merits could
identify the WOA as a suitable approach to solving various unconstrained or constrained
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optimization issues related to practical employment without reformatting the structure
of the algorithm. Humpback whales produce huge spirals of bubbles as they approach
closer to their prey top contain them. Then, the prey is hunted. In the hunting phase, the
humpback whales pursue two predation methodologies, so as to minimize the ensuing
steps. Subsequently, the whales will enact the spiral upraise-position technique. Through-
out the hunting phases, both of these methodologies are utilized concurrently. Accordingly,
two bubble-related techniques are employed—upward spirals and double loops. In the
first stage, the humpback whales dive twelve meters down; following this, bubbles are
produced that surround the prey and float upwards in a spiral form. The subsequent step
includes three phases—lob-tail, coral loop and capture loop.

Phase 1: Encircling the prey—The humpback whales lactate the prey and then sur-
round them. With the ideal design position within the search area already known, the
WOA selects a candidate outcome that targets prey, or else it moves close to the optimal.
Then, better search agents are described. These search agents attempt to direct the search
towards the ideal agent.

Phase 2: Exploitation—Bubble-net attack. This process encompasses two main method-
ologies, namely, shrinking encircling and spiral updating;

Phase 3: Exploration—Aside from bubble net processing, humpback whales search
for their prey in a random manner.

For pursuing the two approaches, the WOA uses random choice possibility (x
(
x2[0, 1]

)
).

Moreover, when (x < 0.5), the humpback whale makes use of the spiral upraising position
methodology. On the contrary, when (x > 0.5), the humpback whale uses the methodology
of shrinking encircling. During shrinking encircling, whales search for their prey with

consideration of each other’s locations. To reflect the uncertainty in this algorithm,
→
A is

presented as the co-efficient vector. The search agent is set as
∣∣∣→p ∣∣∣< 1 to update the area of

the search agents. As this process involves several search strategies, its effect is limited in
identifying the global ideal outcome with the highest merit in comparison to conventional
optimization. A mathematical model of the search distances of position vectors is given in
Equation (1), ∣∣∣→r ∣∣∣ = →

q .
→
z
∗
(t)−→

z (t) (1)

In Equation (1), t denotes the existing iteration count, (
→
z ) and (z ∗) represent the

position vectors of the ideal outcome,
→
r represents the search distance and

→
q denotes the

coefficient vector. Equation (2) updates the whale’s movement (location) around the victim,
which can be described in a mathematical form as follows:

→
z (t + 1) =

→
z
∗
(t)−

→
A.

→
r (2)

The random search agent is given by Equation (2),

→
z (t + 1) =

→
z rand −

→
p
(→

r
)

(3)

In Equation (3),
→
z rand represents the random position vector of the current population,

while
→
p indicates the coefficient vector. Humpback whales also use the spiral position

updating technique to hunt. The spiral positioning of the whale is given in Equation (3),

→
z (t + 1) =

→
r ’
(

ebl
)
(cos(2πl)) +

→
z∗(t) (4)

In Equation (4),
→
r ’=

∣∣∣∣→z∗(t)−→
z (t)

∣∣∣∣ reveals the distance of the ith whale from the prey

(satisfactory outcome gained here), and b represents the constant defining the logarithmic

spiral format.
→
z (t + 1) is the coefficient vector.

→
r ’
(

ebl
)
(cos(2πl)) +

→
z∗(t) denotes the coef-
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ficient scalar. l is a random digit (in (−1, 1)). The stepwise procedure for WOA is given in
Pseudocode 1.

Pseudocode 1: WOA (Whale Optimization Algorithm)

Modify the whale populace zi (i = 1, 2, . . . ., n)
Analyze the value of fitness function
Randomly select the search agent z∗

Initialize t = 1 and t < maximum iterations
for every search agent
Modify a, p, q, l, and x//a represents linearly reduced within the range of 2 to 0 over the

course of iteration, p and q represents coefficient vectors, l reresents absolute value
and x represents the constant for explaining the shape of the logarithmic spiral.
if 1 (p < 0.5)

if 2 (|a|< 1)
Update the position of current solution by Equation (2)

else if 2 (|a|≥ 1)
Update the position of current solution by Equation (3)

end if 2
else if 1 (p ≥ 0.5)

Random solution is generated
Update the position of the current solution by Equation (4)

end if 1
end for

if some search agent drives away from the search space or else amend it
Analyze the value of fitness function
Modify z∗ if it is better
t = t + 1
end while
return z∗

Based on the pseudocode, the whale population is altered and the fitness values
are assessed. Thus, the search agent is modified and the ideal search agent is finally
attained. On the contrary, the SCA (Sine Cosine Algorithm) is considered; the trigonometric
operations of SC are the basis for this algorithm. Typically, SCA shows a better acceleration
and convergence rate. It also shows a reliable implementation time. Several initial random
solutions are generated by the SCA. It also helps in transferring the ideal solution that
employs a mathematical framework in accordance with the functionalities of SC. Varied
random and adaptive variables are integrated within this algorithm to maintain the search
spaces in the optimization processes. The population search approach and local search
approach are the major techniques in SCA. This algorithm shows certain innate advantages,
such as simple execution and flexibility, due to which it could be utilized for solving several
optimization issues. These features have enabled SCA to resolve various optimization
issues. Taking into account the n-dimension optimization issue,

min
f
(a1, a2 . . . an) (5)

li ≤ ai ≤ ui; i = 1, 2 . . . n (6)

In Equation (5), ai indicates the ith-decision variable, li denotes the lower bound,
and ui represents the upper bound. Moreover, n indicates the problem dimension. In
Equation (5), SCA utilizes the oscillatory functions of both functions of SC, which alters
the capacities of individuals to observe the global ideal solution. The precise process is
given below.

An assumption is made such that, in the SCA, the population size is termed N, and
the ith individual’s position in the tth generation is represented as (a t

i = at
i1 + at

i2, . . . , at
in ),

wherein i = 1, 2, . . . N. In addition, the fitness value is computed for individuals, and the
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position of the ideal individual is recorded as at
∗

(
at
∗ = arg − min

(
fat

i

)
. The jth dimension

for the ith individual in the populace is updated in Equation (7),

at
ij(t + 1) =

{
at

ij + d1(sin(r2)).
∣∣∣d3

(
at
∗j − at

ij

∣∣∣ ; d4 < 0.5

at
ij + d1(cos(r2)).

∣∣∣d3

(
at
∗j − at

ij

∣∣∣ ; d4 ≥ 0.5
(7)

In Equations (6) and (7), d3 ∈ (0, 2π) and d4 ∈ (0, 1) indicate the random count of the
uniform distribution, wherein d1 indicates the control parameter. The computation process
is given in Equation (8),

d1 = x
(

1 − t
tmax

)
(8)

In Equation (8), x is the constant, t represents current iterations and tmax is the maxi-
mum iteration count. Further, let bt+1

∗ = arg − min
(

fa
t+1
i

)
; this equation employs acquisi-

tive searching for attaining fa
t+1
i , which is represented via Equation (8),

at+1
∗ = bt+1

∗ f
(
bt+1
∗

)
< f

(
at
∗
)

at
* otherwise

(9)

Furthermore, let t = t + 1, and the process (in Equations (6)–(8)) repeats until the
termination condition is attained. The overall procedure of SCA is given in Pseudocode 2.

Pseudocode 2: SCA (Sine Cosine Algorithm)

Randomly initialize search agents (solutions)
Do

Estimate each search agents by objective function
Update the solution attained so far ( p = a. ) by using Equation (8)
Update the control parameter d1
Update the position of search agents by using Equation (9)
While (t < maximum number o f iterations)

Return the best solution attained so far as the global optimum

The initial phase involves the initialization of search agents. With the use of the
objective function, search agent evaluation is undertaken. With the use of Equation (8),
the ideal solution is updated and the control parameter d1 is updated. With the use of
Equation (6), the positions of search agents are updated. This process continues until
the maximum iterations are reached and the ideal solution is attained. Periodically, SCA
faces issues such as getting stuck in a local area in the search space. This impacts the
computational exertion that is required in searching for the ideal solution within the search
space. The above issues could be resolved via enhancements to standard SCA that in turn
enhance the SCA performance.

On the contrary, WOA also possess disadvantages such as easy localization and
low convergence. Hence, the present study endeavors to resolve these issues via several
enhancements so as to procure better accuracy. With the exclusive optimization standard
of SCA, this study intends to combine WOA and SCA so as to limit the demerits of both
via hybridization, thereby attaining OWSA. As hybridization involves an enhancement of
optimization methodologies, the present research proposes a OWSA wherein operators
from certain methods are combined with other operators from supplementary methods so
as to generate efficient and reliable results. In the current study, the OWSA is proposed for
the optimal selection of features. It possesses the greatest ability to enhance the exploration
phase. The overall process of optimal feature selection using OWSA is shown in Figure 2.
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As depicted in Figure 2, all the whales are randomly set. Following this, the search
agents are evaluated with the use of the objective function. Subsequently, the destination
location is updated. Then, the fitness computation is performed. A position update is
performed with SCA. Finally, the global optimal solution is attained. The overall sequence
is presented in Pseudocode 3.

Pseudocode 3: OWSA (Optimal Whale Sine Algorithm)

Modify the whale populace zi (i = 1,2,. . .. , n)
Analyze the value of fitness function
Randomly select the search agent z∗

Calculate objective function for each ai
Initialize t = 1 and t < maximum iterations

for every search agent
Modi f y a, p, q, l, and x
if 1 (p < 0.5)

if 2 (|a|< 1)
Update the position of current solution using Equation (2)

else if 2 (|a|≥ 1)
Update the position of current solution using Equation (3)

end if 2
else if 1 (p ≥ 0.5)
Update the position of the current solution using Equation (4)

end if 1
end for

if some search agent drives away from the search space or else amend it
Analyze the value of fitness function
Calculate Objective function for each ai
Modify z∗ if it is better
t = t + 1
end while
return z*

3.2. AWRF (ANN Weighted Random Forest) for Classification

Generally, ANN refers to the biologically inspired sub-field of AI modeled after the
brain. Typically, ANN is a computational network relying on biological NNs (Neural
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Networks), which mirror human brain’s structure. Like the human brain, this NN possess
neurons interconnected with one another, and ANNs possess neurons that are associated
with one another in several network layers. Further, RF (Random Forest) is a well-renowned
ML method that relies on a supervised learning method. The RF’s function relies on the idea
of EL (Ensemble Learning), whereby multiple classifiers are integrated to solve complex
issues, thereby enhancing the model’s performance. The main intention of the current
study is to propose a weight updating process that is applicable to an individual tree in
the RF model, and the comprehensive evaluation of ideal parameter tuning. The proposed
approach is recommended by its stability, flexibility and avoidance of over-fitting. The
overall process is shown in Figure 3.
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As shown in Figure 3, the selected features are fed into RF. Based on weight updating,
the RF generates optimal outcomes. RF encompasses numerous DTs for several subsets of
the dataset, and by averaging, it enhances the prediction rate of a specific dataset. The RF
model determines the predictions of all the DTs (Decision Trees), and the overall outcomes
are predicted in accordance with the prediction that receives the most votes. Besides
this, weight in the ANN indicates a parameter that possesses converted input data in the
network’s hidden layers. The resulting layer repeatedly tunes the input within the hidden
layers to produce a desirable count in the specific range, as the less weighted value does
not alter the input. However, on the contrary, high-weighted values are applied, causing
significant alterations in the results. Thus, the chosen features are fed into RF. Concurrently,
the ANN weight updates are fed into RF. Several input data subsets are employed for
training the ML models. DT acts as the core element of the RF model. From the actual data, a
set of DTs related to the bootstrap samples is generated. Usually, the bootstrapping method
assists the RF with the collection of sufficient DT counts, which enhance the classification
rate via the overlap-thinking concept. With the voting approach, optimal trees are chosen
by bagging. The chosen features are subjected to cross-validation. These features are also
fed into RF. Lastly, the ANN weight updating process assist the RF model in performing
effective classification. The overall process is presented in Pseudocode 4.

To receive effective outcomes with the contribution of the considered classifier, all the
input is weighted. The solution relies on majority voting. Each of the quadrant solutions is
compared with the overall solution. When there is a match, the fixed value (β+) is added to
the weight. Contrarily, when it does not match, (β−) is taken from the classifier’s weight,
which minimizes the negative impact on further processes. The algorithm is thus updated
with persistent weights, and hence the system can be subjected to internal and external
alterations. This ensures the classifier’s reliability. It is significant for pre-defining the initial
weight value φ0i, wherein i = 1, 2 . . . N, and N denotes the classifier count. Values have a
huge influence on the evolution of the system, as the system’s reliability is in accordance
with the weights of ANN.
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Pseudocode 4: AWRF (ANN Weighted Random Forest)

Inputs:
Votes: array of votes from each source
X: array of ANN weights for each source
Outputs:
decision: category voted by the algorithm
X ← ϕ; ←→ Initialize ANN weights
for every new measure do

ANN weighted majority:
for all k ϵ sources do

Contributions (k) ← X(k) ∗ votes (k)
end for
decision ← max_index(contributions);
Update ANN weights:
for all k ϵ sources do

if decision = votes(s) then
X(k) = X(k) + β+
else
X(k) = X(k) + β−

end if
end for

end for

4. Results and Discussion

The significant results attained via the execution of this proposed work are discussed
in this section. Further, the dataset description, metrics and performance analysis, and
comparative analysis are outlined.

4.1. Dataset Description

The present research has considered the three datasets such CICIDS-2017, NSL-KDD
and UNSW-Bot.

UNSW-Bot: This dataset encompasses various categories of IoT, namely, normal traffic,
IoT traffic, and several types of botnet attacks. The IoT-Bot training dataset encompasses
3,037,933 IoT traffic archives, with 1018 normal traffic archives and 3,036,915 attack traf-
fic archives. On the contrary, the test dataset encompasses 3,668,552 IoT traffic archives,
consisting of 477 normal traffic archives and 3,668,552 attack traffic archives. Hence, these
IoT traffic archives are generated using IoT composed of smart home-based devices, like
smart refrigerators, smart lights, remote garage doors, etc. Overall, this dataset com-
prises three main groups, namely, time-based, byte-based and packet-based. This dataset
can be consulted at https://research.unsw.edu.au/projects/bot-iot-dataset (accessed on
1 February 2022).

NSL-KDD: The NSL (Network Security Laboratory) dataset is the advanced form
of the DARPA-98 dataset. It is composed of specific records given by the complete KDD
dataset. Currently, NSL-KDD is used for the analysis of the efficacy of several classifica-
tion approaches used in finding abnormalities in the structures of network-traffic. Four
kinds of attacks can be found in NSL-KDD, including R2L (Remote to Local), U2R (User
to Root), Probe attacks and DoS (Denial of Service). This dataset can be consulted at
https://www.unb.ca/cic/datasets/nsl.html (accessed on 15 February 2022).

CICIDS-2017: The Canadian Institute of Cyber-security has developed a conventional
dataset termed CICIDS-2017, comprising recent threats and features. This dataset encom-
passes non-threatening and recent commonly occurring attacks, using actual real-time data.
It also includes the results of network traffic enquiries made with a flow meter consisting of
destination ports, attacks, protocols and time-stamps. The dataset covers 5 days of data col-
lection, with 2, 25 and 745 sets containing almost 80 features. In this dataset, attacks are di-
vided into seven categories, known as infiltration attack, DoS attack, brute-force attack, web

https://research.unsw.edu.au/projects/bot-iot-dataset
https://www.unb.ca/cic/datasets/nsl.html
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attack, Botnet attack, DDoS attack and heart bleed attack. This dataset can be consulted at
https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 1 April 2022).

4.2. Performance Metrics

The main metrics considered for the analysis of the proposed work are discussed in
this section.

(A) Precision

Precision is defined as the co-variance of the method, which is attained by suitably
comparing cases to the overall cases. It is computed using Equation (10); TrP represents
True Positive and FlP indicates False Positive.

Precision =
TrP

TrP + FlP
(10)

(B) Recall

Recall is known as a production metric that finds the overall number of accurate posi-
tive groups composed of all the optimistic groups, and it is computed using Equation (11);
TrP represents True Positive and FlN denotes False Negative.

Recall =
TrP

TrP + FlN
(11)

(C) F1-score

This is also termed the F-measure. It is the weighted harmonic value of precision and
recall. It is given in Equation (12),

F1 − score = 2 × Precision × Recall
Precision + Recall

(12)

(D) Accuracy

Accuracy can be understood as the degree of systematic organization, which can
be exposed by correctly classifying the groups into the overall dataset. It is computed
with the use of Equation (13), where TrN indicates True Negative, TrP represents True
Positive, FlN denotes False Negative and FlP indicates False Positive.

Accuracy =
TrN + TrP

TrP + TrN + FlN + FlP
(13)

(E) Specificity

This is understood as the quality or state of remaining unique and specific to groups
or individuals. It is computed by Equation (14), where TrN indicates True Negative
and FlN denotes False Negative.

Speci f icity =
TrN

FlN + TrN
(14)

4.3. Performance Analysis

The performance of the proposed system has been evaluated in accordance with
F1-Score, Precision, Recall and Accuracy in relation to the three considered datasets. The
outcomes are discussed in this section.

4.3.1. Analysis with UNSW-Bot Dataset

Initially, the proposed system was assessed with regard to four standard metrics for
theUNSW-Bot dataset, and the corresponding outcomes are given in Table 1, with the
relevant pictorial depiction shown in Figure 4.

https://www.unb.ca/cic/datasets/ids-2017.html
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Table 1. Analysis with the UNSW-Bot dataset.

Accuracy Recall Precision F1-Score

99.783 99.748 99.875 99.705
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From Table 1, we see that the proposed system achieved a 99.783 Accuracy rate, a
99.705 F1-Score, a 99.875 Precision rate and a 99.748 Recall rate. Following this, the accuracy
values for varied weights in the UNSW-Bot dataset have been assessed, and the analytical
outcomes derived are given in Table 2.

Table 2. Accuracy for varied weights in the UNSW-Bot dataset.

Weight Accuracy

1 68.476

2 68.476

3 99.703

4 99.706

5 99.686

6 68.476

7 99.723

8 68.476

9 99.695

10 99.783

Table 2 shows that the accuracy value differs based on the weight. Accordingly, when
weight = 1, the accuracy value is 68.476. This rate eventually increased with the increase in
weights, and it reached 99.695 when weight = 9 and 99.783 when weight = 10. Subsequently,
the outcomes of k-fold cross-validation for the UNSW-Bot dataset are shown in Table 3.



Appl. Sci. 2024, 14, 2172 15 of 22

Table 3. Results of k-fold cross-validation for UNSW-Bot.

Folds Accuracy

Fold 1 0.9971

Fold 2 0.9973

Fold 3 0.9964

Fold 4 0.997

Fold 5 0.9969

Table 3 shows that the accuracy value differs for each fold. Accordingly, the accuracy
value was found to be 0.9971 for fold 1, 0.9973 for fold 2, 0.9964 for fold 3, 0.997 for fold 4
and 0.9969 for fold 5. Hence, the accuracy value differs based on the folds. Further, a
confusion matrix for the UNSW-Bot dataset has been constructed so as to expose the correct
and misclassification rates of the proposed system. The corresponding outcomes are shown
in Figure 4.

A confusion matrix is calculated by comparing the predicted classifications of a model
with the actual classifications in a dataset. It is often used in the context of classification
problems. The matrix has four components: TP, denoting instances correctly predicted
as positive; FP, as instances incorrectly predicted as positive; TN, signifying instances
correctly predicted as negative; FN, as instances incorrectly predicted as negative. “Attack
classes” refer to distinct categories of cyber threats that likely fit into specific malicious
patterns. Evaluating the model’s performance involves analyzing numerical values and
statistics, including the distribution of attack classes in the dataset, developing a confusion
matrix detailing true positives and false positives, and outlining class-specific metrics like
precision and recall. These values offer insights into the model’s ability to accurately detect
various types of cyber-attacks.

In Figure 4, the number of correct classifications of attack classes is shown to be 10,976,
while, the correct classification of normal classes numbered 23,984. Concurrently, 30 normal
classes have been misinterpreted as attack classes. On the contrary, 79 attack classes have
been misinterpreted as normal. As the correct classification rate seems to be higher than
the misclassification rate, the proposed system has been confirmed to be effective.

4.3.2. Analysis with NSL-KDD Dataset

The proposed work has been evaluated in accordance with four standard metrics in
relation to the NSL-KDD dataset and the equivalent outcomes are presented in Table 4.

Table 4. Analysis with NSL-KDD dataset.

Accuracy Recall Precision F1-Score

99.92 99.38 99.97 99.54

Table 4 shows that the proposed system achieved a 99.92 Accuracy rate, a 99.54 F1-
Score, a 99.97 Precision rate and a 99.38 Recall rate. Following this, the accuracy values for
different weights in the NSL-KDD dataset have been evaluated, and the acquired analytical
results are outlined in Table 5.

From Table 5, we see that the accuracy value changed in accordance with the weight.
Correspondingly, when weight = 1, the accuracy value was 99.92. This rate gradually
increased and decreased with the increase in weights, and it reached 42.5 when weight = 9
and 99.92 when weight = 10. The results of k-fold cross-validation for the NSL-KDD dataset
are explored in Table 6.
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Table 5. Accuracy with varied weights in the NSL-KDD dataset.

Weight Accuracy

1 99.92

2 99.92

3 42.5

4 99.92

5 42.5

6 99.92

7 99.92

8 42.5

9 42.5

10 99.92

Table 6. Results of k-fold cross-validation for NSL-KDD.

Folds Accuracy

Fold 1 0.999

Fold 2 0.997

Fold 3 0.985

Fold 4 0.983

Fold 5 0.981

From Table 6, it can be seen that the accuracy value differed for each of the folds.
Accordingly, the accuracy value was 0.9375 for fold 1, 0.956 for fold 2, 0.9375 for fold 3,
0.94 for fold 4 and 0.9375 for fold 5. Hence, the accuracy value varied based on the folds.
Furthermore, a confusion matrix for the NSL-KDD dataset has been constructed to expose
the correct and misclassification rates of the proposed work. The equivalent outcomes are
projected in Figure 5.
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Figure 5 shows the number of correct classifications of attack classes to be 15,524, while
the number of correct classifications of normal classes is 14,165. Concurrently, 13 normal
classes have been misinterpreted as attack classes. Contrarily, two attack classes have been
misinterpreted as normal. In this case, as the correct classification rate appears to be higher
than the misclassification rates, the proposed system has been exposed to be effective.
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4.3.3. Analysis with CICIDS2017 Dataset

The proposed system has been validated with four standard metrics in relation to the
CICIDS2017 dataset, and the corresponding outcomes are presented in Table 7.

Table 7. Analysis with the CICIDS2017 dataset.

Accuracy Recall Recall Precision

0.98 0.97 0.97 0.97

Table 7 shows that the proposed system reached a 0.98 Accuracy rate, a 0.97 F1-Score,
a 0.97 Precision rate and 0.97 Recall rate. Then, the accuracy values for diverse weights in
the CICIDS2017 dataset were assessed and the analytical outcomes obtained are shown in
Table 8.

Table 8. Accuracy for varied weights in the CICIDS2017 dataset.

Weight Accuracy

1 83.5

2 97

3 83.5

4 83.5

5 83.5

6 83.5

7 97

8 97

9 83.5

10 97

From Table 8, it is evident that the accuracy value varied based on weights. Similarly,
when weight = 1, the accuracy value was 83.5. This rate progressively increased and
decreased with the increase in weights, and it reached 83.5 when weight = 9 and 97 when
weight = 10. Following this, the outcomes of k-fold cross-validation for the CICIDS2017
dataset are shown in Table 9.

Table 9. Results of k-fold cross-validation for CICIDS2017.

Folds Accuracy

Fold 1 0.9375

Fold 2 0.9563

Fold 3 0.9688

Fold 4 0.975

Fold 5 0.98

From Table 9, it can be seen that the accuracy value changed for each of the folds. In
accordance with this, the accuracy value was 0.9375 for fold 1, 0.9563 for fold 2, 0.9688 for
fold 3, 0.975 for fold 4 and 0.98 for fold 5. Hence, the accuracy value differed based on the
folds. Besides this, a confusion matrix for the CICIDS2017 dataset has been built in order
to explore the correct and misclassification rates of the proposed system. The results are
shown in Figure 6.
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Figure 6 shows that the number of correct classifications of attack classes was 541,412,
while the number of correct classifications of normal classes was 114,047. Concurrently,
68 normal classes were misinterpreted as attack classes. Contrarily, one attack class was
misinterpreted as normal. In this case, as the correct classification rate seemed to be higher
than the misclassification rates, the proposed system has been inferred to be efficient. The
performance analysis showed that the proposed system reached a 99.92 accuracy rate with
the NSL-KDD dataset, 0.98 accuracy with the CICIDS2017 dataset and 99.783 accuracy with
the UNSW-Bot dataset. In this case, the proposed work has shown high accuracy in relation
to the NSL-KDD dataset.

4.4. Comparative Analysis

The proposed system has been compared with conventional methods in relation to
the three considered datasets, and the obtained outcomes are presented in this section. The
existing models, namely, Global Model, Local Model, Local Outlier Factor, Isolation Forest,
GAN-AE (Generative Adversarial Network–Autoencoder), One Class SVM (One Class
Support Vector Machine) and K-means, have been compared with the proposed system by
considering the UNSW-Bot dataset, and the attained outcomes are presented in Table 10.

Table 10. Comparative analysis with UNSW-Bot [33].

Model Precision Accuracy F1-Score Recall

Global Model 0.9933 0.9711 0.9831 0.9733

K-means 0.9564 0.8801 0.9198 0.8676

One Class SVM 0.9427 0.5301 0.667 0.5274

Local Model 0.9654 0.9297 0.9426 0.921

GAN-AE 0.9874 0.9512 0.9603 0.9364

Isolation Forest 0.9008 0.7998 0.8397 0.8726

Local Outlier Factor 0.8093 0.6063 0.6502 0.4911

Proposed 0.9987 0.9978 0.9971 0.9975

From Table 10, we can see that existing algorithms such as K-means achieved 0.9711
accuracy rate and GAN-AE achieved a 0.9512 accuracy rate, while the Local Model showed
a 0.9297 accuracy rate, whereas the proposed model achieved a high accuracy rate of 0.9978.
Similarly, the precision, F1-Score and recall rate of the proposed work are better than those
of existing methods. Following this, conventional models, namely, C5.0, RF (Random
Forest), SVM (Support Vector Machine) and NB (Naïve Bayes), have been compared with
the proposed work by considering the CICIDS2017 dataset, and the outcomes are shown in
Table 11.
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Table 11. Comparative analysis with CICIDS2017 [34].

Model Accuracy Recall Precision

C5.0 0.86457 0.85925 0.99706

RF 0.86803 0.8629 0.9963

NB 0.79996 0.90069 0.86031

SVM 0.79887 0.92445 0.84364

Proposed Model 0.98 0.97 0.97

Table 11 shows that existing methodologies such as SVM reached a 0.79887 accuracy
rate, while NB reached a 0.79996 accuracy rate, RF reached a 0.86803 accuracy rate and C5.0
reached a 0.86457 accuracy rate. However, the proposed model achieved a 0.98 accuracy
rate. Moreover, the proposed model showed a better performance as regards precision and
recall. Finally, a comparison has been undertaken with existing methodologies in relation
to the NSL-KDD dataset. The conventional methods that have been considered include
CFS + ANN (Correlation Feature Selection + Artificial Neural Network), SVM-RBF (Support
Vector Machine–Radial Basis Function), SAE-SVM-RBF (Stacked Auto Encoder–SVM-RBF),
CNN-Bi-LSTM (Convolutional Neural Network–Bi-directional Long Short-Term Memory),
ensemble model, CART (Classification and Regression Tree), RF, C4.5, NB and MLP (Multi-
Layer Perceptron). The respective results are shown in Table 12.

Table 12. Comparative Analysis with the NSL-KDD dataset [35].

Learning Techniques Specificity Accuracy

SVM 71.41 69.52

Bi-LSTM 79.64 76.37

CNN 80.75 95.01

MLP 79.57 77.41

C4.5 83.44 81

NB 83.21 81.47

RF 82.35 80.67

CART 82.71 80.3

Ensemble 89.41 87.28

CNN-BiLSTM 80.83 80.05

SAE-SVM-RBF 98.35 95.27

SVM-RBF 91.84 92.55

CFS + ANN 99.31 97.49

Proposed System 99.97 99.92

Table 12 shows that the existing methodologies, such as CFS + ANN, achieved 99.31
specificity, while CNN-Bi-LSTM reached 80.83% specificity, and other algorithms such
as SAE-SVM reached 98.35 and SVM-RBF reached 91.84. However, the proposed model
reached a high specificity rate of 99.97. Similarly, conventional models such as CNN reach
a 95.01 accuracy rate, SAE-SVM-RB showed a 95.27 accuracy rate, SVM-RBF showed 92.55
and CFS + ANN showed 97.49. The proposed system reached a 99.92 accuracy rate. Hence,
the comparative analysis shows that the proposed method reached an accuracy rate of
99.92 with the NSL-KDD dataset, a 0.98 accuracy rate with the CICIDS2017 dataset and a
99.783 accuracy rate with the UNSW-Bot dataset.

Further, by assigning different weights to accuracy scores, the overall weighted accu-
racy was influenced. If there are instances with higher weights, the model prioritizes them
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more during evaluation. Consequently, the proposed model’s performance appears more
favorable when heavily weighted instances are accurately predicted, leading to higher
weighted accuracy. This weighting scheme emphasizes specific cases, potentially reflecting
the model’s effectiveness in handling critical scenarios, thus resulting in varying accuracy
scores for different weights. Thus, the weights are chosen based on the importance of
different instances, and the factors include cost sensitivity, class imbalance and domain
knowledge. Thus, it is evident from the comparison that the proposed model outperforms
other conventional methods. With the unique optimization capacity of SCA, the present
research intends to integrate SCA and WOA so as to cancel out the shortcomings of both
via hybridization, thereby procuring OWSA. Further, the proposed weight-updating pro-
cess is made suitable for application to an individual tree in the RF model. These innate
advantages of the proposed model allow it to yield ideal outcomes in ID.

5. Conclusions

This research proposed an IDS model based on appropriate ML-based algorithms,
and to develop this, the study considered three datasets (UNSW-Bot, NSL-KDD and
CICIDS2017). OWSA was proposed for selecting relevant features and AWRF was con-
sidered for the classification of intrusions. Performance was validated in accordance with
standard metrics, in which the results suggest a better performance. Further, accuracy was
assessed for various weights. In this case, although the accuracy rate varied with weights,
better outcomes were attained when the weight = 10. Further, k-fold cross-validation was
undertaken on the proposed system with three datasets. For the UNSW-Bot dataset, the
accuracy was better when k = 2 and 4, with 0.9973 and 0.997 accuracy. Similarly, for the
NSL-KDD dataset, the accuracy value was optimal when k = 1, with 0.999 accuracy, and for
CICIDS2017, the accuracy rate was optimal when k = 5 with 0.98 accuracy. Furthermore,
a confusion matrix was developed for identifying the correct and misclassification rate.
The confusion matrices that were attained revealed that the proposed system reached a
high rate of correct classification and a low rate of misclassification. This confirmed the
better performance of the proposed system. However, for confirming the improved efficacy
of the proposed system compared to conventional systems, a comparative analysis was
undertaken. The outcomes show improved accuracy scores of 99.92 with the NSL-KDD
dataset, 0.98 with the CICIDS2017 dataset and 99.783 with the UNSW-Bot dataset. The
better performance rate of the proposed system makes it applicable for real-time execution.
This study could also assist network security experts in determining intrusions, which
would eventually help in the development of security measures for protecting a system. As
a further extension, DL-based methodologies could be utilized for ID. In addition, various
other datasets could be considered.
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