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Abstract: Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy.
Achieving high-accuracy PV power prediction requires addressing two challenges in current deep
learning methods: (1) In photovoltaic power generation prediction, traditional deep learning methods
often generate predictions for long sequences one by one, significantly impacting the efficiency of
model predictions. As the scale of photovoltaic power stations expands and the demand for predictions
increases, this sequential prediction approach may lead to slow prediction speeds, making it difficult
to meet real-time prediction requirements. (2) Feature extraction is a crucial step in photovoltaic
power generation prediction. However, traditional feature extraction methods often focus solely on
surface features, and fail to capture the inherent relationships between various influencing factors
in photovoltaic power generation data, such as light intensity, temperature, and more. To overcome
these limitations, this paper proposes a mid-term PV power prediction model that combines Graph
Convolutional Network (GCN) and Informer models. This fusion model leverages the multi-output
capability of the Informer model to ensure the timely generation of predictions for long sequences.
Additionally, it harnesses the feature extraction ability of the GCN model from nodes, utilizing graph
convolutional modules to extract feature information from the ‘query’ and ‘key’ components within
the attention mechanism. This approach provides more reliable feature information for mid-term PV
power prediction, thereby ensuring the accuracy of long sequence predictions. Results demonstrate
that the GCN–Informer model significantly reduces prediction errors while improving the precision
of power generation forecasting compared to the original Informer model. Overall, this research
enhances the prediction accuracy of PV power generation and contributes to advancing the field of
clean energy.

Keywords: photovoltaic power generation; informer; deep learning; graph convolution network

1. Introduction

With the rapid economic and social development, both industrial and residential
electricity consumption have been experiencing exponential growth. Furthermore, the ex-
cessive utilization of non-renewable energy sources such as fuel oil and coal has accelerated
the depletion of energy resources and exacerbated the spread of greenhouse effects [1]
on our planet. As a result, power generation systems based on renewable energy have
emerged as a formidable force [2], gradually replacing fossil fuel-based power generation,
hydroelectricity, and nuclear power, firmly establishing their position within the power
grid [3].

The report from China’s National Energy Administration indicates that by the close of
2021, the country’s renewable energy installations had surged to a staggering 934 million
kilowatts. Solar power, impressively, accounted for over 250 million kilowatts of this,
making up 27.1% of the total [4]. Yet, beneath this rapid advancement lurks a challenge
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inherent to photovoltaic systems: their unpredictable stability and output cycles present
significant hurdles to the seamless deployment of the power grid.

Precise forecasting in the photovoltaic power generation sector aims to provide a
secure and reliable electricity usage environment for various clientele, catering to diverse
power scenarios and consumption needs [5]. However, due to the unique nature of elec-
trical energy, generated power cannot be directly stored over extended periods. Hence,
a dynamic equilibrium between generation and consumption must be sought [6]. Given
the uncertainties of renewable energy generation environments, predicting power output
has emerged as a pivotal challenge. In recent years, substantial strides have been made
in photovoltaic power prediction models, with forecast accuracy hinging on photovoltaic
generation data. Consequently, for accurate photovoltaic power prediction, the reliability
of the data themselves and the selection of their attributes directly influence the precision
of the forecasts. Photovoltaic power prediction involves comprehensive consideration of
natural factors, including meteorological conditions, temporal elements, weather patterns,
regional context, and seasonal influences. It also encompasses operational characteristics of
the photovoltaic power station, such as system performance, infrastructure development,
and equipment conditions. By leveraging a predictive model and analyzing historical
data, the interconnections within the data sources are explored. Striving to meet a cer-
tain level of accuracy, this process computes forthcoming power generation data under
specific conditions.

In this era of modern technology, the advancement of information technology unfolds
in a continuous and swift manner. The age of big data has dawned, and artificial intelligence
has permeated the foundational frameworks of various industries. Models employed for
photovoltaic power generation forecasting can be broadly categorized into two types: deep
learning models and non-deep learning models.

A modeling and prediction framework is developed for photovoltaic power genera-
tion data in three regions, using a Random Forest (RF) algorithm optimized by Principal
Component Analysis (PCA) and K-Means clustering. PCA and K-Means clustering [7] are
employed to extract features that are similar to the prediction time points. The input data
are then filtered to reduce interference. Additionally, an optimization algorithm is utilized
to quickly select RF parameters, significantly mitigating errors caused by manual filtering
factors. However, when addressing regression problems, RF does not provide continuous
outputs, which can lead to overfitting when modeling data with certain noise patterns.
To overcome this, a photovoltaic power output prediction model based on an empirical
mode decomposition–support vector machine (EMD-SVM) is proposed [8]. Each decom-
posed component sequence and residual sequence is used to train respective Support Vector
Machine (SVM) models for prediction. Furthermore, an artificial bee colony algorithm
is employed to optimize the SVM model parameters. Finally, the outputs of each model
are reconstructed to obtain the final prediction results. The predicted results demonstrate
improved accuracy of the proposed model, and the computational speed of the optimized
prediction model using the artificial bee colony algorithm is greatly enhanced. However,
when dealing with large training samples, the quadratic programming algorithm in SVM
consumes substantial machine memory and computation time, rendering it impractical for
regression tasks.

Deep learning models simulate the human thought process and are capable of per-
forming complex computational tasks. They have emerged as a popular technique for
photovoltaic power prediction.

In the field of photovoltaic power generation prediction, recurrent neural networks
(RNNs) have emerged as a leading AI model for accurate forecasting. As a specialized type
of deep neural network, RNNs have also found widespread application in photovoltaic
power generation prediction [9–12]. Each recurrent layer of an RNN maintains a hidden
state, which serves as input for the next recurrent layer and updates as the time series
progresses. This structure enables RNNs to handle dependencies in time-series data and
comprehend temporal information within the sequences. By harnessing this capability,
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RNNs can capture patterns and trends in photovoltaic power generation, achieving more
accurate predictions than traditional machine learning algorithms. However, one of the
most significant issues facing RNNs is the problem of vanishing gradients, which can
limit the model’s ability to learn complex patterns over extended time frames. This chal-
lenge becomes increasingly apparent as the length of the time series increases, potentially
constraining the predictive accuracy of RNNs in long-term forecasting scenarios.

In recent years, Long Short-Term Memory (LSTM) has emerged as a leading model for
photovoltaic power prediction, addressing the temporal correlations between predicted
and historical power that are often overlooked by non-deep learning models [13,14]. The
ability of LSTM to capture long-term dependencies in sequential data has made it a suit-
able choice for photovoltaic power generation forecasting. Hossain et al. [15] combined
historical solar irradiance data and the sky forecast type with LSTM for photovoltaic
generation forecasting, achieving promising results. This approach utilizes additional
meteorological data to enhance the predictive accuracy, further highlighting the versa-
tility of LSTM in photovoltaic forecasting. De V. et al. [16] leveraged LSTM models for
photovoltaic prediction in scenarios with limited data availability, showcasing the accu-
racy of LSTM models in photovoltaic forecasting. This study underscores the robustness
of LSTM in scenarios where data scarcity is a challenge, making it a suitable choice for
practical applications in photovoltaic power generation prediction. The accumulating
evidence [17,18] points to the accuracy and effectiveness of LSTM in photovoltaic power
prediction. Its ability to capture temporal patterns and long-term dependencies, combined
with additional meteorological data, makes LSTM a promising candidate for enhancing
photovoltaic power generation forecasting. The memory unit of an LSTM (Long Short-Term
Memory) comprises a cell state and three gates: the input gate, forget gate, and output
gate. At each time step, the LSTM receives the input for the current time step and the
hidden state from the previous time step, updating the cell state and hidden state through
a gated mechanism. This structure allows the LSTM to selectively retain and update infor-
mation, maintaining effective memory capabilities when processing long time sequences.
By stacking multiple LSTM layers, the network can further extract and represent complex
features in the time series. However, LSTMs still suffer from the limitations of having too
many parameters, leading to overfitting and an inability to effectively handle very long
sequence inputs.

Currently, there has been a growing interest in utilizing Graph Convolutional
Networks (GCNs) to address the spatio-temporal challenges in photovoltaic power predic-
tion [19–23]. Zhang et al. [24] proposed a spatio-temporal graph neural network prediction
method for regional photovoltaic electricity based on weather condition recognition. They
employed Graph Convolutional Networks as the predictive model, enabling the capture
of spatial features through graph convolutional models and temporal features through
gated convolutional neural units. This approach resolves issues related to the inadequate
consideration of time correlations in power output and physical connections between
photovoltaic stations caused by cloud movement. Zhang et al. [25] introduced an optimal
graph-structured approach that considers surrounding spatio-temporal correlations for
short-term solar power forecasting. Based on complex network theory, they proposed a
novel metric to evaluate graph structure connectivity, thereby enhancing the predictive
capabilities of Graph Convolutional Network models. This method tackles the problem of
information redundancy commonly encountered when modeling by indiscriminately using
all station data without differentiation as seen in most existing approaches that consider
spatial information from neighboring sites. While these two methods are innovative in
addressing spatio-temporal challenges in photovoltaic power prediction, they do not fully
resolve the issue of accurately accounting for sudden extreme weather events. In situations
where unexpected weather phenomena, such as severe storms or rapid weather fluctua-
tions, significantly impact photovoltaic power generation, these methods may still face
challenges in providing precise predictions. The models primarily rely on historical data
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and may struggle to adapt to unanticipated, extreme weather conditions, which can lead to
inaccuracies in power output forecasts.

While the models we mentioned above have made significant advancements in han-
dling time-series data, they face challenges when applied directly to mid-term photovoltaic
power prediction due to the focus of this study on long time-series processing. This gives
rise to two major challenges:

(1) How do we address the computational challenges associated with LSTM models
in parallel processing when applied to photovoltaic power prediction? Although LSTM
models solve the problem of gradient vanishing during RNN backpropagation, they still
face computational challenges in parallel processing. The depth of the network leads to
high computational complexity and time consumption, making it difficult to meet real-time
prediction requirements.

(2) How can we utilize GCN to more accurately extract hidden feature information
among different features? Not only do we need to focus on the surface data of features
but also we need to capture the relationship of mutual influence among data.

As a deep learning model, the Transformer has successfully tackled natural language
processing (NLP) and computer vision (CV) tasks, with its core idea being the self-attention
mechanism. Self-attention [26], which allows the model to focus on the importance of
different positions within a sequence when processing sequential data, has become a
crucial component of the Transformer model. This mechanism computes the correlation
scores between each element in the sequence and all other elements, enabling the model
to dynamically attend to relevant parts of the input sequence and thus improving its
ability to capture information. Furthermore, the self-attention mechanism can capture
long-range dependencies within the sequence by directly computing the correlation scores
between elements, which is difficult to achieve with traditional recurrent neural networks
and convolutional neural networks. However, self-attention also has some drawbacks.
Firstly, its computational complexity increases with the length of the sequence, which
can pose computational resource challenges when dealing with long sequences. Secondly,
the self-attention mechanism ignores positional information in the sequence and requires
additional positional encoding to compensate for this limitation. Finally, self-attention may
over-focus on certain unimportant information, leading to a decline in model performance.
However, due to its high time complexity and memory requirements, it cannot be directly
applied to long time-series prediction. In response to these challenges, numerous scholars
have contributed several methods to overcome these limitations, yielding promising re-
sults. Nikita Kitaev et al. [27] proposed the Reformer model, introducing Locality Sensitive
Hashing (LSH) to enhance the attention module, thereby reducing the time complexity.
They also introduced reversible residual layers to trade computational efficiency for mem-
ory consumption. Iz Beltagy et al. [28] introduced the Longformer model, capable of
handling lengthy texts efficiently. This model addresses the issues associated with long
sequences. Wang Sinong et al. [29] presented the Linformer model, which decomposes
the self-attention matrix with singular values. They also proposed a novel self-attention
mechanism that reduces the time complexity to linear. Haoyi Zhou et al. [30] introduced
the Informer model, which not only reduces time complexity but also optimizes the input
and output of long sequences. This model has demonstrated outstanding performance
across various large-scale datasets.

As mentioned above, the Informer model is a relatively new approach for long time-
series prediction, and its research still has significant limitations. To enhance the accuracy of
photovoltaic power prediction, this study introduces a hybrid forecasting model. The per-
formance of the GCN–Informer model is evaluated by comparing it with other prediction
models. The main contributions of this research are as follows:

(1) This paper represents the first creative integration of the attention module in
GCN and Informer. Each node in GCN is associated with query vectors and keyword
vectors related to other nodes. Edges represent the connection strength between nodes.
The strength of these connections is calculated through the dot product of query and key,
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which can reflect the interaction level between nodes. This information can be used to build
a graph where the edge weights are determined by attention scores. The aim is to extract
more complex indirect relationships in weather features in photovoltaic power generation
datasets more efficiently (such as a certain combination of temperature and humidity that
may cause changes in photovoltaic power generation).

(2) By utilizing the decoder design of the Informer model, this paper can simulta-
neously consider information from multiple future time steps and generate predictions
for these time steps in one shot, addressing the challenge of long sequence output in
photovoltaic power forecasting and ensuring that the prediction results meet certain real-
time requirements.

As shown below, the rest of the paper is structured as follows: Section 2 presents the
methodology of Informer and GCN and the derivation of the relevant formulas. Section 3
performs the experimental preparation and presents the overall framework. In Section 4,
a comparative analysis of the experimental results and errors is presented. Section 5
summarizes the paper.

2. Methodology

In this section, we first explain the theoretical support of our proposed model, and then
introduce the technical details of the model.

2.1. Overall Framework

Our goal is to make the model learn better representations by making full use of
local features.

In Figure 1, we can see how the GCN–Informer model is structured.
The GCN–Informer has two parts, the encoder layer and the decoder layer. In the

encoder layer, this paper use ProbSparse self-attention to simplify the way the attention
is calculated. The specific implementation is described in detail in Section 2.2.1. In the
next down-sampling part, the input sequence is reduced to the original 1/2 through the
self-attention distilling mechanism, which greatly improves the efficiency. The specific
implementation process will be described in detail in Section 2.2.2. The main task of the
encoder layer is to obtain a hidden layer representation of the input data and to ensure
consistent dimensions. As shown in Figure 2, the EncoderStack mentioned in the paper
is actually composed of multiple encoder and distillation layers. Each horizontal stack
represents a separate encoder module. The upper stack is the main stack, which receives
the entire input sequence, while the second stack takes half of the input, and the second
stack throws away a layer of self-attention to the number of distillation layers, making
the output dimensions of the two stacks aligned. Finally, the feature map connecting the
two stacks is used as the output of the encoder. In the decoder layer, this paper uses the
GCN module to extract the characteristics of adjacent contacts and the use of multi-output
output together to solve the efficiency of long sequence prediction. Detailed description of
the embodiments will be described in detail in Sections 2.2.3 and 2.3.

2.2. Informer
2.2.1. Probsparse Self-Attention

The ProbSparse self-attention is used in this paper. The previous self-attention is
defined as a probabilistic nuclear smoothing method:

A(qi, K, V) = ∑
j

k(qi, k j)

∑
l

k(qi, kl)
vj = Ep(kj |qi)

[vj] (1)

where p(k j|qi) =
k(qi ,kj)

∑
l

k(qi ,kl)
and k(qi, k j) select asymmetric exponential kernel exp (

qikT
j√
d
).

The attention weight of the i-th query for all keys can be regarded as a probability
distribution p(k j|qi) and some significant attention weights will make p(k j|qi) deviate from
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the uniform distribution. If p(k j|qi) is close to a uniform distribution q(k j|qi) =
1

LK
, then

self-attention is redundant, which indicates that the i-th query is lazy.
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Figure 1. The structure of the GCN–Informer model.
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Figure 2. Diagram of EncoderStack in our model.
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The difference between the distribution p(k j|qi) of a query and the uniformly dis-
tributed p(k j|qi) can be measured by KL divergence:

KL(q||p) = ln
LK

∑
l=1

exp(
qikT

l√
d
)− 1

LK

LK

∑
j=1

qikT
l√
d
− ln LK (2)

By removing the constant, the sparsity measure of the i-th query can be defined as:

M(qi, K) = ln
LK

∑
j=1

exp(
qikT

l√
d
)− 1

LK

LK

∑
j=1

qikT
l√
d
− ln LK (3)

The process of ProbSparse self-attention is expressed:

A(Q, K, V) = so f t max(
Q̂KT
√

dk
)V (4)

This improved self-attention filters out the most important query, reduces the computa-
tional complexity, and solves the computational complexity of the square level of self-attention.

2.2.2. Self-Attention Distilling

According to the ProbSparse self-attention process introduced by the above algorithm,
the attention result will inevitably produce redundancy. This paper uses self-attention
distilling to solve the redundancy problem mentioned above. Specifically, the distillation
operation from layer j to layer j + 1 is:

Xt
j+1 = MaxPool(ELU(Conv1d([Xt

j ]AB
))) (5)

Therefore, the self-attention distillation operation is used to extract the main attention,
which greatly shortens the input time dimension and the amount of network parameters,
and solves the bottleneck of memory consumption caused by stacking multi-layer networks.

2.2.3. Multi-Output Output

The original decoder structure, which is stacking two identical multi-headed attention
layers, is a dynamic decoding process that is iteratively output one by one. The difference
is that this paper uses batch generation prediction to directly output multi-step prediction
results in order to improve the speed of reasoning. The decoding process of the whole
decoder abandons the dynamic decoding process and uses a forward process to decode
the whole output sequence. In addition, the input fed into the decoder is also different.
The formula is as follows:

Xt
f eedde = Concat(Xt

token, Xt
0) ∈ R(Ltoken+Ly)×d mod el (6)

where Xt
0 represents the placeholder and Xt

token ∈ RLtoken×d mod el represents the start character.
This method is derived from dynamic decoding in NLP technology, which originally

consists of a single character as the ‘start character’, but it is extended to a generative
approach, namely, dynamically sampling a partial sequence from the input sequence close
to the prediction target as the ‘start Token’. Therefore, the problem in long sequence time-
series forecasting (LSTF) is solved by calculating the output together with multiple outputs:
the efficiency of predicting long-term output. This paper applies this method to solve the
problem in Transformer where only one result can be output at a time, thus meeting the
real-time requirement of prediction.

2.3. GCN

GCN, at its core, functions as a feature extractor, with the fundamental idea of updating
its own nodes by aggregating the features of neighboring nodes. Traditional CNNs struggle
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to capture its spatial features, which are inherently irregular, and GCN proves to be an
effective tool for this purpose. By constructing the adjacency matrix and degree matrix,
coupled with the graph’s inherent feature matrix, it becomes possible to extract the influence
of other nodes on the target node. Taking this graph as an example, GCN can capture
the mutual influence between adjacent nodes, a task that CNN networks find challenging
to accomplish.

The feature vector at layer l associated with node i in the graph convolution network
is represented by xl

i . We apply a nonlinear transformation to the eigenvector xl
j of all nodes

j in the neighborhood node i, and activate xl+1
i in the next layer. Therefore, the eigenvector

xl+1
i at the vertex i of the graph convolution network is represented:

xl+1
i = f (xl

i , {xl
i : j ∼ i}) (7)

where {j ∼ i} represents the set of adjacent nodes centered on node i. In this article, node
feature x and edge feature y are defined:

xl+1
i = xl

i + Re LU(BN(W l
1xl

i + ∑
j∼i

σ(el
ij)

∑j′∼i σ(el
ij′) + ε

⊙ W l
2xl

j)) (8)

el+1
ij = el

ij + Re LU
(

BN
(

W l
3el

ij + W l
4xl

i + W l
5xl

i

))
(9)

where W ∈ Rh×h, σ is the sigmoid function, ε is a very small value, ReLU is the activation
function, and BN represents batch normalization. The final updating rule of the GCN is
as follows:

H(l+1) = σ
(

D̃− 1
2 Attention(Q, K)D̃− 1

2 H(l)W(l)
)

(10)

where H(l+1) represents the feature matrix of the next layer’s nodes. σ denotes the activation
function. H(l) stands for the feature matrix of the current layer’s nodes. W(l) signifies the
weight matrix of the current layer.

Up to this point, each node in GCN is associated with a query vector and key vec-
tors related to other nodes. Edges represent the strength of connections between nodes.
The strength of these connections is computed by the dot product of query and key, and it
can reflect the degree of interaction between nodes. This information can be utilized to
construct a graph in which the edge weights are determined by attention scores.

After passing the dynamic adjacency matrix and node features as input to the GCN
layer, the GCN layer will use this adjacency matrix to perform graph convolution operations,
aggregating information from neighboring nodes. Since the adjacency matrix is constructed
based on attention scores, the GCN layer considers the importance of different neighboring
nodes when aggregating information. After processing by the GCN layer, each node
will obtain an updated feature vector. These feature vectors not only contain the node’s
own information but also incorporate information from neighboring nodes, taking into
account the importance of different neighbors. This information may include direct causal
relationships (for example, increased irradiance leads to increased photovoltaic power
generation) or more complex indirect relationships (such as a certain combination of
temperature and humidity that may cause changes in photovoltaic power generation).

During training, we update the model’s parameters through the backpropagation
algorithm and gradient descent optimizer. This includes the parameters in the Informer
model (such as the linear transformation weights for query and key vectors) and the
parameters in the GCN layer (such as the weights and biases of the convolution kernels).
Specifically, we first calculate the difference between the model’s predicted values and the
actual photovoltaic power generation data, using Mean Absolute Error (MAE) and Mean
Squared Error (MSE) as loss functions. Then, we utilize the backpropagation algorithm to
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compute the gradients of the loss function with respect to the model’s parameters. Finally,
we use the gradient descent optimizer to update the model’s parameters based on the
calculated gradients. By repeatedly performing these steps (forward propagation, loss
calculation, backpropagation, and parameter update), the model gradually learns effective
ways to extract hidden features from photovoltaic power generation data and optimizes its
performance during the training process.

This module solves the problem that the output of the encoder layer in the Informer
model cannot be well extracted to the characteristics between adjacent contacts. After using
this GCN module, the information output of the encoder layer can be more accurate, and the
output after combining with the decoder layer can better fit the curve of the real data.

3. Experimental Preparation and Framework
3.1. Experimental Preparation

This paper applies the GCN–Informer model to the prediction of solar power gener-
ation. The study utilizes solar power data sampled every 5 min over the past decade in
Australia, which is a publicly available dataset consisting of 966,771 time-series data. In
addition, the dataset encompasses 12 feature values, including temporal characteristics,
and one target value of active power generation. The feature values comprise Active Energy
Delivered Received, Current Phase Average, Wind Speed, Weather Temperature Celsius,
Weather Relative Humidity, Global Horizontal Radiation, Diffuse Horizontal Radiation,
Wind Direction, Weather Daily Rainfall, Radiation Global Tilted, and Radiation Diffuse
Tilted. Notably, the dataset contains a significant amount of missing values, and the specific
handling methods will be detailed in the subsequent paragraphs.

3.2. Experimental Framework

According to Figure 3, the photovoltaic power generation prediction model is based on the
following framework: data preprocessing, data splitting, model training, and model scoring.

Data preprocessing: The dataset exhibits some instances of missing values, prompt-
ing this study to employ interpolation techniques for their imputation. As illustrated in
Figure 4, Pearson correlation analysis played a pivotal role in the feature selection process,
enabling the removal of those features with weak correlations to the target prediction
values. In the chart, if the absolute value of the Pearson coefficient between two features
is less than 0.4, then we consider the correlation between these two features to be weak.
Specifically, after observing the Pearson correlation coefficients between all the features
and the prediction target, features displaying an absolute Pearson correlation coefficient
below 0.4 were excluded from consideration, on the grounds of their limited relevance to
the predictive target. Consequently, seven carefully chosen features were designated as
inputs for the GCN–Informer model, with the actual power output serving as the target
variable as showcased in Table 1. Following the comprehensive data cleaning procedures,
an upsampling method was implemented to transform the original dataset, initially col-
lected at 5 min intervals, into a dataset with 1 h intervals. During this consolidation process,
feature values were aggregated using their respective mean values, while the predicted
target variable was amalgamated through summation.

Data splitting: When employing the hold-out method combined with temporal split-
ting, we initially divide the dataset into three temporally consecutive and non-overlapping
parts: training, validation, and test sets. This ensures that the model does not have access
to future information during training and evaluation, preventing data leakage issues.

Specifically, we allocate 98% of the entire time series to the training set, which is used
to train the model and learn the underlying patterns in the data. Of the remaining 2%,
half (i.e., 1% of the entire dataset) is designated as the validation set. This set is utilized
for tuning model parameters and hyperparameters during the training process and for
obtaining initial performance estimates. The other half (also 1% of the dataset) serves as
the test set, providing a final assessment of the model’s performance and its ability to
generalize to unseen data.
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It is worth noting that while further subdivisions within each set could potentially be
created using the hold-out method (e.g., through random sampling) for cross-validation
purposes, in the context of time-series data, random sampling can disrupt the temporal
dependencies. Therefore, when combining the hold-out method with temporal splitting,
we prefer to maintain the temporal order within each subset to ensure that the model learns
the correct time-series patterns.

By following this approach, we can effectively leverage the temporal characteristics of the
time-series data while ensuring reliable and valid model training and evaluation processes.

Table 1. Input of GCN–Informer.

Input Variable

x1 Timestamp
x2 Current Phase Average
x3 Weather Temperature Celsius
x4 Weather Relative Humidity
x5 Global Horizontal Radiation
x6 Diffuse Horizontal Radiation
x7 Radiation Global Tilted

Data cleaning

Data processing

Training set

Data splitting

GCN-Informer

Model processing

Testing set Validation set

Informer

Autoformer Preformer

Reformer Transformer

FEDformer LSTM

BP neural 

network
GRU

MSE

MAE

Figure 3. The framework of the model.
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Figure 4. The result of the Pearson’s correlation.

Model processing: A comparison of the GCN–Informer performance with other
models will be conducted in this experiment. To evaluate the model’s performance, MAE
and MSE are used in this paper. MAE represents the mean of the absolute error between
the predicted value and the observed value. The MSE represents the mean of the sum of
squares of the error corresponding to the predicted data and the original data. The results
will be visualized, and the model performance will be better compared and evaluated:

MAE =
1
m

m

∑
i=1

∥(yi − ŷi)∥ (11)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (12)

where yi is the value of the original power generation, and ŷi is the value of the predicted
power generation.

3.3. Parameter Selection

As shown in Table 2, we conducted experiments using three different sets of data
configurations for prediction. These configurations included setting the seq_len to 96
and label_len to 48, setting seq_len to 192 and label_len to 96, and setting seq_len to 144
and label_len to 72. Among these configurations, it was observed that the best predictive
performance was achieved when the seq_len was set to 96 and label_len was set to 48.

The input features for the encoder and decoder layers were represented by enc_in
and dec_in, respectively. The c_out variable represented the final prediction output. When
evaluating different batch sizes, namely 32, 64, and 96, it was found that a batch size of
32 yielded the most optimal results in terms of prediction accuracy.

In order to ensure the reliability of the experiment, we chose to set a relatively large
value for the train_epochs parameter. However, since there is an early stopping mechanism
in place, not all 1000 epochs will be executed. To strike a balance between experiment



Appl. Sci. 2024, 14, 2181 12 of 17

reliability and time efficiency, we decided to run only 50 training epochs. This approach
allowed us to obtain reliable results without sacrificing too much time.

Table 2. Parameters of GCN–Informer.

Input Variable

seq_len 96
label_len 48
pred_len 168

enc_in 7
dec_in 7
c_out 1

d_model 512
n_heads 8
e_layers 2
d_layers 1

d_ff 2048
factor 5

dropout 0. 05
itr 50

train_epochs 1000
batch_size 32
patience 3

learning_rate 0.0001

4. Experiment and Analysis
4.1. Implementation Details and Benchmark Model

The task of predicting power generation is divided into two parts: encoder and
decoder. The encoder section consists of an attention layer and a distillation layer, which
work to extract relevant information from the input data. The attention layer aims to focus
on key portions of the input while ignoring the rest while the distillation layer works to
reduce the size of the input by eliminating redundant features.

As a complement to the encoder, the decoder consists of a multi-head self-attention
layer and a GCN module. In the multi-head self-attention layer, this paper introduces
a creative technique that uses the product of attention between query and key as the
adjacency matrix for GCN, iteratively updating the values of query and key. The purpose
of this step is to extract hide features between neighboring data points more effectively.

The initial parameters we set are as shown in Table 2. All models are implemented
using the PyTorch library, which is a well-known machine learning framework for efficiently
deploying deep neural networks. Overall, this architecture appears to be a promising
approach to addressing the challenging task of predicting electricity generation.

This paper aimed to compare the performance of the GCN–Informer model with
nine other deep learning and non-deep learning models in predicting power generation
for a week using the same dataset. The objective was to evaluate each model’s accuracy
in making accurate predictions within the designated time frame. Through Table 3 and
Figure 5, an overview of the accuracy levels of all the models is provided.

Table 3. The evaluation indicators for all models.

Ours Informer Autoformer Preformer Reformer Transformer FEDformer LSTM BP Neural
Network GRU

MSE 0.159 0.165 0.177 0.34 0.169 0.164 0.31 0.504 0.703 0.473
MAE 0.199 0.218 0.24 0.347 0.2 0.222 0.374 0.622 0.759 0.695
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Figure 5. The evaluation indicators for all models.

Upon analyzing the results in Figure 6, it is evident that all models are capable of pro-
ducing final predictions. However, the GCN–Informer model demonstrated significantly
superior performance compared to the other models. In the first 24 h, all models exhibited
remarkably similar predictive abilities to the actual values. However, as we approached
the final three days, significant disparities emerged among the various models’ forecasting
capabilities. Not only did these differences evolve over time, but all models displayed
fairly accurate predictions on sunny days. On cloudy days, however, the GCN–Informer
model showcased a substantial advantage over the other models in terms of its predictive
accuracy. Several factors can help explain this notable advantage.

Figure 6. The predicted results for all models.

Firstly, the GCN–Informer model utilizes Graph Convolutional Networks (GCNs),
which excel at capturing relationships between data points in a graph-like structure. Since
power generation involves intricate interdependencies and interactions between vari-
ous factors such as weather conditions, energy demand, and network infrastructure, the
GCN–Informer model’s ability to incorporate these complex relationships enhances its
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predictive capabilities. In contrast, traditional machine learning models may struggle to
capture these intricate dependencies effectively.

Furthermore, the GCN–Informer model incorporates Informer, a popular architecture
in deep learning, known for its exceptional performance in sequence modeling tasks.
With the ability to capture long-term dependencies and learn from extensive historical
data, Informer empowers the GCN–Informer model to understand complex temporal
patterns inherent in power generation datasets. The utilization of Informer allows the
GCN–Informer model to outperform other models that lack this advanced architecture.

The reasons why the GCN–Informer model achieves better performance than standard
models like Transformer or Autoformer can be summarized as follows:

(1) Dynamic relationship modeling: Standard GCNs use static adjacency matrices
to represent spatial relationships between nodes. However, in many applications, the re-
lationships between nodes may be dynamically changing, especially when dealing with
time-series data. By using the product of query and key from the Informer attention
mechanism to construct the adjacency matrix, GCN–Informer is able to capture the dy-
namic relationships between nodes that change over time, thereby better adapting to the
characteristics of the data.

(2) Combination of spatiotemporal features: The Transformer model captures temporal
dependencies in sequences through its self-attention mechanism, but it does not directly
consider spatial structural information. By combining the self-attention mechanism with
GCN, GCN–Informer is able to consider both temporal and spatial features simultaneously.
Specifically, the product of query and key reflects the importance of different time steps,
and incorporating this information into the adjacency matrix of GCN enables the model to
perform targeted feature aggregation in the spatial dimension as well.

Certainly, after demonstrating the excellent predictive capabilities of GCN–Informer, it
is crucial to pay attention to the efficiency of our model. As the GCN–Informer model and
Preformer proposed in this article both incorporate the GCN structure, their specific time
complexity cannot be represented by O notation. Similarly, the time complexity of LSTM
and GRU also depends on the feature dimensions and hidden state dimensions. Therefore,
we provide the running time for all models to predict one week of power generation
using the dataset mentioned in the article (time refers to the required time for one epoch,
with other parameters consistent with the article). Our graphics card is an NVIDIA GeForce
RTX 4070Ti. As shown in Table 4, although our proposed model is slower than other deep
learning models, it is still within the same order of magnitude. If a NVIDIA GeForce RTX
4090 is used for calculation, the computation time should be faster.

Table 4. The computational complexity and running time for all models.

Ours Informer Autoformer Preformer Reformer Transformer FEDformer LSTM BP Neural
Network GRU

Complexity - O(nlogn) O(nlogn) - O(nlogn) O(n2) O(n) - - -
time (s) 228.86 86.49 91.3 223.78 181.86 203.5 90.45 302.75 417.33 278.98

In summary, the GCN–Informer model’s superior performance can be attributed to its
ability to capture complex relationships, exploit Informer architectures for sequence mod-
eling, and effectively leverage both spatial and temporal information. These advantages
enable it to surpass traditional machine learning models in accurately predicting power
generation. The findings of this study have significant implications for various industries,
particularly those involved in energy production and management. By providing more
accurate and reliable power generation predictions, advanced deep learning models like
the GCN–Informer model can assist these industries in optimizing their operations and
making informed decisions.



Appl. Sci. 2024, 14, 2181 15 of 17

4.2. The Practical Application in Photovoltaic Power Generation Forecasting

This section provides an in-depth exploration of the application of the GCN–Informer
model for forecasting photovoltaic power generation. The conventional method for pre-
dicting photovoltaic power generation relies on the backpropagation (BP) neural network,
which is plagued by challenges like local minima and sluggish convergence rates. Conse-
quently, these issues lead to suboptimal identification accuracy and diminished reliability
in existing prediction methodologies.

To address these limitations, we introduce the GCN–Informer model, which har-
nesses extensive power generation data and incorporates information from adjacent time
points within the power grid. By capitalizing on the historical power grid data for photo-
voltaic power generation prediction, the GCN–Informer model brings about a substantial
improvement in the dependability and precision of power generation forecasting. This
innovation bolsters our ability to deliver more reliable and accurate predictions in the realm
of power generation.

Furthermore, the GCN–Informer model exhibits strong versatility, as it can be inter-
changeably used with other deep learning models in the photovoltaic industry, highlighting
its significant practicality. However, potential technical limitations may arise during indus-
trial implementation, such as compatibility issues with legacy systems.

5. Conclusions

The growing demand for precise medium and long-term forecasts of photovoltaic
power generation has surged in tandem with the swift advancement of new energy gener-
ation technologies. In light of this pressing demand, this study introduces an innovative
approach that integrates both GCN and Informer methodologies into the realm of pho-
tovoltaic power generation prediction. This pioneering endeavor is poised to meet the
increasing need for dependable energy forecasting in the evolving landscape of new energy
power generation.

More precisely, the introduced approach is denoted as the GCN–Informer model. This
model has been meticulously crafted to extract invaluable insights between successive
time intervals, featuring both an encoder layer and a decoder layer. In the encoder layer,
the incorporation of an attention distillation mechanism facilitates the coarse-grained
capture of long-range dependencies among inputs, even in scenarios where memory
resources are limited. On the other hand, the inclusion of a GCN module within the decoder
layer bolsters the precision of feature extraction between adjacent time points. This strategic
enhancement effectively addresses the issue of missing features in the original model,
further elevating the overall performance and reliability of the GCN–Informer model.

The experimental results suggest that the GCN–Informer model may offer advan-
tages in terms of accuracy compared to traditional machine learning and deep learning
approaches. However, further investigation and validation may be warranted. Through
the strategic integration of GCN and Informer methodologies, our proposed model excels
in precisely forecasting photovoltaic power generation for medium-term horizons. At the
same time, while meeting the real-time requirements of photovoltaic power generation
prediction, the extraction of hidden information of different features also ensures the pre-
diction accuracy of the model. This accomplishment not only meets but also exceeds the
elevated demands set forth by the burgeoning landscape of new energy power generation.
The GCN–Informer model stands as a testament to the power of advanced techniques in
shaping the future of energy forecasting, ensuring the reliable and efficient utilization of
photovoltaic power in the ever-evolving energy sector.

In future studies, we aim to develop an enhanced model for interval forecasting,
leveraging the strengths of the GCN–Informer architecture. To better align with the realities
of photovoltaic power generation in industrial and electrical sectors, we will introduce a
tailored loss function. This custom metric will quantify the economic ramifications arising
from discrepancies between predicted and actual power output, ultimately leading to more
meaningful contributions in the field of photovoltaic forecasting.
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