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Abstract: Various abnormal scenarios might occur during the shield tunneling process, which have
an impact on construction efficiency and safety. Existing research on shield tunneling construction
anomaly detection typically designs models based on the characteristics of a specific anomaly, so
the scenarios of anomalies that can be detected are limited. Therefore, the research objective of this
article is to establish an accurate anomaly detection model with generalization and identification
capabilities on multiple types of abnormal scenarios. Inspired by energy dissipation theory, this paper
innovatively detects various anomalies in the shield tunneling process from the perspective of energy
consumption and designs the AD_SI model (Anomaly Detection and Scenario Identification model of
shield tunneling) based on machine learning. The AD_SI model first monitors the shield machine’s
energy consumption status based on the VAE-LSTM (Variational Autoencoder–Long Short-Term
Memory) algorithm with a dynamic threshold, thereby detecting abnormal sections. Secondly, the
AD_SI model uses the correlation of construction parameters to represent different known scenarios
and further clarifies scenarios of the abnormal sections, thus achieving anomaly identification. The
application of the AD_SI model in a shield tunneling construction project demonstrates its capability
to accurately detect and identify different anomalies, with a recall value exceeding 0.9 and F1
exceeding 0.8, thereby providing guidance for accurately detecting multiple types anomaly scenarios
in practical applications.

Keywords: shield tunneling; anomaly detection; scenario identification; energy consumption; time
series; data mining

1. Introduction

The demand for urbanization and the scarcity of spatial resources continuously drives
the development of underground spaces. The shield tunneling method has been widely
applied as the mainstream technology for underground space development. However, the
shield tunneling process is influenced by various factors, such as external construction
environment and equipment performance, leading to various abnormal scenarios that
might occur. Common abnormal scenarios include sudden geological change [1], mudcake
events [2], cutter wear [3], face instability [4], and excessive ground settlement [5]. These
not only affect the safety of tunnel construction but also increase project costs. Therefore,
our research objective is to develop an anomaly detection model that can detect and identify
multiple types of abnormal scenarios in shield tunneling construction, providing effective
support for risk monitoring and management in the shield tunneling construction process.

The existing analysis of anomalies in the shield tunneling process mainly focuses
on the following three issues: selecting monitoring parameters for anomaly detection,
designing anomaly detection models, and identifying anomaly scenarios.

The selection of monitoring parameters for anomaly detection can affect a model’s
performance. Existing research on anomaly detection in shield tunneling often selects
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suitable detection parameters according to the characteristics of abnormal scenarios. One
method for monitoring parameter selection is based on empirical research. For example,
Zhang et al. [6] used cover depth, advance rate, earth pressure, moisture content, soil elastic
modulus, and a standard penetration test value to detect excessive ground settlement
during shield tunneling. Similarly, Hu et al. [7] summarized advance speed, total thrust,
torque, type of conditioning agent, and seven other parameters associated with mudcake
events based on more than 30 literature cases and used them as inputs for the mudcake
event detection model. Another method for monitoring parameter selection is using feature
selection techniques in machine learning. Kannangara et al. [8] used the Shapley additive
explanations (SHAP) method to obtain input features of the excessive ground settlement
detection model: torque, vertical deviation, pitching angle, groundwater level, and jack
pressure. However, these studies require individual parameter selection for each abnormal
scenario, and the selected monitoring parameters are usually specific. Even for the same
abnormal scenario, the monitoring parameters summarized by different studies are also
different (references [6,8]). As a result, these studies are limited in the types of abnormal
scenarios they can detect, and they might not be able to detect some unknown anomalies.
Therefore, there is a need to find monitoring parameters that are more universally applicable
to detecting various abnormal scenarios in the shield tunneling process.

In terms of anomaly detection model design, traditional anomaly detection research
usually relies on supervised models, which need labeled data. Zhai et al. [9] proposed a
random forest-based classification method that needs labeled operational data as input and
predicts the abnormal states in the shield tunneling process. However, anomalies in the
shield tunneling process are diverse and constitute a minority of the entire dataset, making
it challenging to acquire labeled anomaly samples to train the models. Existing research
focuses more on unsupervised methods, which detect anomalies according to whether
parameter features change. Xu et al. [10] and Hu et al. [11] proposed anomaly detection
models that can learn features of construction parameters during a normal shield tunneling
process. They suggested that when anomalies occur, the features of the construction
parameters will change. This will lead to significant differences between expected features
and actual features, which can then be used to determine the occurrence of anomalies. These
methods do not require data with abnormal labels and can achieve anomaly detection only
by learning the features of normal data. There is an obvious imbalance between abnormal
and normal data in the shield tunneling process, and the proportion of normal data is more
significant. Therefore, compared with supervised-based anomaly detection algorithms,
unsupervised-based anomaly detection algorithms are more suitable.

The purpose of anomaly identification is to further analyze the nature or causes of
anomaly, which involves identifying the specific abnormal scenario. Current research
primarily relies on engineering experience and rule-based judgment to realize anomaly
identification. Relevant studies record the occurrence process of anomalies in shield
tunneling projects and describe the specific characteristics of parameters before and after
the occurrence of anomalies. This provides directional guidance for anomaly identification
in shield tunneling. Liu Wei [12] summarized the principles of hydraulic cylinder leakage,
reversing valve leakage, and overflow valve leakage in the propulsion system of the shield
machine based on expert experience. He then detected these anomalies based on if–then
rules and a fuzzy inference engine. However, the shield tunneling process contains many
parameters, and various abnormal scenarios involve complex correlations among multiple
parameters. Traditional anomaly identification methods based on empirical rules may
make it difficult to accurately describe the characteristics of different abnormal scenarios.

The occurrence of anomalies is often accompanied by some changes in the characteris-
tics of energy consumption. This point of view has been proved by many theories. Energy
dissipation theory suggests that in normal operating conditions, the transformation and
dissipation of energy in the system follow a stable process, while abnormal behavior may
result in abnormal energy flow and dissipation [13–15]. Catastrophe Theory also demon-
strates that anomalies can lead to the accumulation or release of energy, thereby causing
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a sudden change in energy consumption [15]. These theories provide a new perspective
for anomaly detection. Existing studies have demonstrated the feasibility of using energy
consumption to provide feedback on the operational state of the system. By monitoring the
energy consumption in various stages of construction, different anomalies can be detected
in time. Monferrer et al. [16] used the energy consumption of the spindle as an indicator
for the real-time monitoring of the CFRP drilling process and detected multiple types of
anomalies in the drilling process. Selvaraj et al. [17] and Quiroz et al. [18] collected and
extracted energy consumption data features from systems operating in different states.
They then constructed detection models using these features to differentiate between nor-
mal and abnormal operation modes of the systems, validating the effectiveness of using
energy consumption data as the monitoring parameter. Therefore, the energy consump-
tion in a system is often closely related to its stability. Using energy consumption as the
detection target provides an effective solution to the selection of monitoring parameters for
anomaly detection. In addition, since energy consumption can directly reflect the system’s
operational state, anomaly detection methods based on energy consumption can capture
different abnormal scenarios, thereby enhancing the generalization ability of the anomaly
detection methods.

Inspired by this, energy consumption during shield tunneling process can serve as an
indicator of anomalies. Compared with other operational data, it can make the anomaly
detection model more suitable for detecting various abnormal scenarios. Therefore, herein,
we analyze and monitor the shield tunneling process from the perspective of energy
consumption. Based on the characteristics of the energy consumption data of shield
tunneling, we design an anomaly detection model that can improve the accuracy of anomaly
detection. In addition, we further identify the scenarios of anomalies that are detected
based on the correlation among multidimensional variables. This can help engineers focus
on specific issues, allowing them to have a more targeted and appropriate response. So,
we propose the AD_SI model (Anomaly Detection and Scenario Identification model of
shield tunneling) to monitor the shield tunneling process and apply it to actual projects.
The proposed method can not only detect various anomalies that occur during the shield
tunneling process but also identify the scenarios of anomalies by considering the correlation
of multiple construction parameters.

The structure of this paper is organized as follows: Section 2 summarizes the research
status of anomaly detection and identification. The structure and principle of the AD_SI
model is introduced in Section 3. Section 4 presents the application of the model in a
subway tunnel construction project in Nanjing and compares its performance with other
anomaly detection models. Our main conclusions are provided in Section 5.

2. Literature Review
2.1. Anomaly Detection

Anomaly detection methods can usually be divided into supervised learning and
unsupervised learning according to the availability of sample labels in the dataset.

Supervised anomaly detection methods refer to model training using a labeled dataset,
where the target output labels indicate whether a sample is normal or abnormal. Gao
et al. [19] used a convolutional neural network (CNN) to extract features from normal data
and the data of known fault types in both temporal and spatial dimensions. This model
was employed to address anomaly detection problems in chemical production processes.
Reihane et al. [20] transformed time-series data into two-dimensional grayscale images,
extracted features of four known faults, and implemented fault identification for wind
turbines based on a CNN. Liu et al. [21] introduced a hierarchical clustering approach to
the random forest model and constructed a multi-class anomaly classification model using
a new random forest model that can combine decision tree selection and weighted voting
fusion strategy. In industrial fields where the types of anomalies are relatively limited,
supervised-based anomaly detection methods usually work better and can make better use
of labeled data for modeling. However, the amount of data generated during the shield
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tunneling process is relatively large, the proportion of abnormal data is small, and the types
of anomalies are diverse, resulting in sample imbalance in the dataset. Therefore, using
supervised learning for anomaly detection in shield tunneling faces greater challenges.

Unsupervised learning typically only requires normal data as input without the need
for annotated abnormal samples, mainly including proximity-based and reconstruction-
based methods [22]. Proximity-based methods usually rely on distance or similarity calcu-
lations between data points and assume that normal and abnormal data reside in different
regions. They define anomaly scores according to the degree to which the data are close to
the normal and abnormal regions. One Class SVM (OCSVM) only needs to learn the deci-
sion boundary of the normal data and detect any data falling outside the decision boundary
as an anomaly [23]. Ni et al. [24] proposed an anomaly detection algorithm based on the
Local Outlier Factor (LOF), which calculates the local density between each data point and
its neighboring points. If a data point has a low local density while its neighboring points
have high local densities, it is classified as an anomaly. Reconstruction-based methods
include autoencoders (AEs), generative adversarial networks (GANs), and their variations.
Among them, AE-based methods have made significant progress in anomaly detection
in recent years and have been widely applied due to their advantages in representation
learning. When using these methods to solve anomaly detection problems, they use normal
data for training and learn the distribution characteristics of normal data so that the model
can reconstruct normal data with a small reconstruction error. However, when the input
data contains anomalies, the model cannot reconstruct it effectively, resulting in more
reconstruction errors [25]. Sun et al. [26] proposed an improved unsupervised anomaly
detection method based on autoencoders by reconstructing the loss function. They trained
the model using fault-free data to learn the features of normal samples and constructed a
model capable of accurately identifying anomalies of cutting tools. Compared with an ordi-
nary AE structure, the VAE (Variational Autoencoder) model has better noise robustness
through latent variable modeling, sample generation ability, and latent space continuity
assumption. Therefore, it is more suitable for anomaly detection in industrial fields [27].
González et al. [28] proposed an anomaly detection method based on VAE and validated
its effectiveness on three different engineering datasets, showing significant improvement
compared to traditional autoencoders. However, since the VAE model does not consider
the temporal dependency of the data, its detection performance is limited when applied to
time-series data. Therefore, Lin et al. [29] introduced LSTM (Long Short-Term Memory)
into the VAE model to extract the temporal features of the data, thereby enhancing the
model’s capability for anomaly detection.

Combining existing research on anomaly detection, it can be concluded that the
applicability of supervised learning-based anomaly detection methods is limited due to
the diverse types of anomalies and the relatively small proportion of anomaly samples
in shield tunneling processes. In practical applications, it is easier to obtain data from
normal tunneling scenarios. Therefore, unsupervised anomaly detection algorithms that
train models using normal data are more suitable for anomaly detection in the field of
shield tunneling.

2.2. Anomaly Identification

In terms of abnormal identification, a traditional approach is to use knowledge-based
rule inference methods. Erfan et al. [30] and Buccieri et al. [31] both employed knowledge
rules to represent the reasoning process of several key anomalies, implementing expert
systems for anomaly identification. The other approach for anomaly identification is based
on parameter correlations, as research has revealed that the correlation among parameters
can represent features of the system’s operational state [32]. This correlation remains similar
within the same scenario but differs across different scenarios. Wang et al. [33] proposed a
two-stage anomaly detection method. In the first stage, they decomposed Hotelling’s T-
squared statistic to identify the variables with the highest contribution to anomalies. In the
second stage, they calculated the correlation between this variable and other multivariate
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variables to determine the root cause of the anomaly, enabling the identification of anomaly
types and analysis of their underlying causes.

Therefore, correlation among multidimensional parameters varies in different scenar-
ios, and anomaly identification can be achieved based on these correlations. Compared
to knowledge-based rule inference methods, anomaly identification based on parameter
correlation allows for the direct learning of abnormal patterns from data without needing
prior knowledge or rule construction.

3. Shield Tunneling Anomaly Detection and Scenario Identification
3.1. System Framework

The framework of the Anomaly Detection and Scenario Identification model (AD_SI) is
represented in Figure 1, and it can be divided into two phases: (1) detect abnormal sections
in the shield tunneling process, and (2) identify the specific scenarios of anomalies based on
anomaly detection. The first phase focuses more on the abnormal change within the time
series and the second phase focuses on the correlation among multidimensional parameters.
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The first phase constructs an anomaly detection model using energy consumption
as the monitoring parameter. Considering the advantages of unsupervised methods,
the proposed anomaly detection model is based on an improved reconstruction model
VAE-LSTM (Variational Autoencoder–Long Short-Term Memory). It can report potential
abnormal segments by detecting changes in the state of energy consumption time-series
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data. In addition, recognizing that threshold setting can affect the model’s detection
accuracy, we introduce a dynamic threshold setting within the model.

The first phase is accomplished through three steps: (1) Training the anomaly detection
model to learn the data features of energy consumption in normal scenarios. (2) Setting
a dynamic threshold based on the mean and variance of the reconstruction error of the
training set. This threshold will be continuously adjusted with the updating of the train-
ing set after the completion of each tunneling ring. (3) Detecting abnormal sections by
comparing the reconstruction error of testing data with the dynamic threshold. Data with
reconstruction errors exceeding the threshold will be detected as potential anomalies.

The core task of the second phase is to identify scenarios of the abnormal sections.
Based on the analysis of the feasibility and advantages of using the parameter correlation
to realize abnormal identification in Section 2.2, we represent and identify scenarios of
the abnormal sections detected in the first phase by using correlations among different
construction parameters.

Therefore, we use two steps to realize the second phase: (1) Extracting parameter
correlation from multidimensional data of known scenarios in historical projects. The
correlation is used to create a feature matrix representing each known scenario, which
is then stored in the parameter correlation base of known shield tunneling scenarios.
(2) The second step extracts the parameter correlation of abnormal sections detected in
the first phase. By comparing the parameter correlation of abnormal sections with that of
known scenarios, we can obtain the specific abnormal scenario and thus achieve anomaly
identification.

3.2. Anomaly Detection Model Based on Dynamic Threshold

The setting of the threshold in an anomaly detection model has an impact on the
accuracy of anomaly detection. When the threshold is set too high, the anomaly detection
model becomes conservative, leading to cases of missed anomaly detection. On the other
hand, if the threshold is set too low, the model becomes overly sensitive, resulting in
unnecessary false alarms. A reasonable and accurate threshold setting can reduce false
alarms while capturing more abnormal data effectively. Furthermore, noise data and
differences in data characteristics under different shield tunneling scenarios can introduce
more interference in determining the threshold for the anomaly detection model. Therefore,
to improve the performance of the anomaly detection model, we make improvements to
the VAE-LSTM model and design an anomaly detection model with a dynamic threshold
to monitor energy consumption in the shield tunneling process. The process of shield
tunneling detection model using the dynamic threshold, DT_VAE-LSTM (VAE-LSTM with
Dynamic Threshold), is illustrated in Figure 2.

The DT-VAE-LSTM model can be divided into three modules: offline training, dynamic
threshold setting, and online detection. The offline training module combines the VAE
and LSTM algorithms to implement a reconstruction-based anomaly detection model,
using anomaly-free data to train the model and learn data features in normal scenarios.
Specifically, the VAE algorithm is used to learn the latent distribution of the data, while the
LSTM algorithm can capture the temporal features. The dynamic threshold setting module
will dynamically update the threshold with each iteration of model training, which is set
based on the reconstruction error of the training data. The online detection module uses the
trained anomaly detection model to reconstruct the test data, obtaining the reconstruction
error. Finally, the final anomaly detection result is obtained by comparing the reconstruction
error of the test data with the threshold.

DT_VAE-LSTM first preprocesses the collected data. DT_VAE-LSTM primarily mon-
itors the operational segment where the shield machine is working. Therefore, the data
preprocessing stage initially removes data at the time of cessation. In addition, data are
smoothed and normalized. After data preprocessing, the training data and the data to be
detected enter the offline training phase and the online detection phase, respectively.
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3.2.1. Offline Training

During the offline training phase, the model is trained using data from the normal
tunneling scenario to learn the distribution characteristics of data in normal scenario.
We first use a sliding window with length D and step size 1 to cut the original training
time-series data X = [x1, x2, . . . xN ] into subsequences so that the input of the encoder
is a vector of the window size. Assuming a total of p subsequences are obtained after
segmentation, given a subsequence input [x1, x2, . . . , xD], the encoder transforms the input
data into a latent representation, and the mean vector and variance vector of the latent
space distribution can be obtained. The mean vector and variance vector generate the
corresponding latent variable z that satisfies the unit Gaussian distribution. We use E =
[e1, e2, . . . , ep] to represent all the embeddings output by the encoder, and ei represents
the embedding of the i-th subsequence of the input data. We use a sliding window of
length L to segment E and obtain k non-overlapping subsequences (where k is an integer).



Appl. Sci. 2024, 14, 2202 8 of 20

Afterwards, the LSTM model uses these subsequences of embeddings as inputs. We have
the LSTM model take the first L − 1 embeddings and predict the next L − 1 embeddings.
This process can be expressed using Formula (1):

[ê2
j , ê3

j , . . . , êL
j ]= LSTM([e1

j , e2
j , . . . , eL−1

j ]) (j = 1, 2, . . . k) (1)

where ei
j represents the i-th embedding in the j-th subsequence of embeddings.

When using Ê as the predicted results output by LSTM model, the decoder in the
DT_VAE-LSTM model uses Ê to reconstruct the data. The reconstructed data are the output
of the decoder, represented as X̂. The DT_VAE-LSTM model continuously optimizes its
parameters by minimizing the objective function (Formula (2)) to accurately reconstruct
the normal time-series data characteristics.

minimize KL(q(Z|X)∥p(Z)) +
N

∑
i=1

(xi − x̂i)
2 (2)

The objective function consists of two parts, representing the KL divergence loss and
the reconstruction error loss, respectively. KL(q(Z|X)∥p(Z)) measures the difference
between the latent variable distribution and the predefined prior distribution. The recon-

struction error loss
N
∑

i=1
(xi − x̂i)

2 measures the error between the reconstructed data X̂ and

the original data X.

3.2.2. Dynamic Threshold Setting

The setting of the threshold also impacts the results of anomaly detection, and it is
essential to avoid setting an inappropriate threshold that may cause false negatives or false
positives. In anomaly detection, thresholds are typically set as fixed values [34]. However,
during the shield tunneling process, differences in data characteristics under different
scenarios and local normal fluctuations in the time-series data can interfere with the
threshold setting process. The method of using a constant threshold is simple and intuitive,
but its lower flexibility leads to poorer performance in anomaly detection. Therefore, the
model dynamically adjusts the threshold based on the reconstruction error values of the
training data to ensure the reasonability of threshold setting. Assuming the reconstruction
error of the training data with a length of N is denoted as error = [er1, er2, . . . , erN ], eri is
the reconstruction error of the i-th sample in the training set, which is calculated as follows:

eri = (xi − x̂i)
2 (3)

Considering that the fluctuating data and outliers in the training set may cause signifi-
cant disturbances, using the maximum value of the reconstruction errors in the training set
as the threshold directly is not precise enough. Therefore, the threshold ε is dynamically
adjusted based on the mean and standard deviation of the reconstruction errors of the
training set.

ε = µ(error) + bσ(error) (4)

b is an ordered set of positive values, and the value is chosen to maximize Formula (5):

∆µ(error)
µ(error) + ∆σ(error)

σ(error)

|errora|
(5)

where ∆µ(error) = µ(error) − µ({eri ∈ error|eri < ε}), ∆σ(errors) = σ(error) −
σ({eri ∈ errors|eri < ε}), errora = {eri ∈ errors|eri > ε}.
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3.2.3. Online Detection

In the online detection phase, the trained DT_VAE-LSTM model is used to reconstruct
the time-series data to be tested, and the reconstruction error is used to represent the
anomaly score. When detecting whether the data at time t is abnormal, the sub-sequence
ending at time t is used as the test data. When using xtest to represent data at time t, the
DT_VAE-LSTM model can generate the reconstructed data denoted as x̂test and calculate the
reconstruction error ert between the reconstructed time series and the original time-series
data. Finally, ert is chosen as the anomaly score at time t. The anomaly detection result is
determined by comparing ert with the dynamic threshold ε, and yt ∈ {0, 1} is used to
represent the result. When ert > ε, xt will be detected as an anomaly and yt = 1.

3.3. Feature Presentation and Identification of Shield Tunneling Scenario

The anomaly detection model can only feedback whether anomalies occurred during
the shield tunneling process. To provide effective references for the construction process,
it is necessary to further identify the scenarios of anomalies that occur. Therefore, we use
accumulated historical shield tunneling data and corresponding scenarios to explore the
features of known shield tunneling scenarios, providing references for identifying pending
shield tunneling scenarios. We achieve the representation and identification of shield
tunneling scenarios based on the correlation of multidimensional construction parameters.
The model structure is shown in Figure 3.
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For a specific shield tunneling scenario r, it is assumed that the shield tunneling
scenario is represented by the correlation of m construction parameters in a continuous
sequence of n rings. The correlation is represented using the Pearson correlation coefficient,
which is calculated as follows:

corrX,Y =
cov(X, Y)
σXσY

(6)

In the Formula (6), cov(X, Y) represents the covariance between variable X and vari-
able Y, while σX and represent the standard deviations of variable X and variable Y,
respectively. Therefore, the final feature matrix representing the shield tunneling scenario r
is constructed as follows:

sr =


corr1

11 corr1
12 . . . corr1

(m−1)m
corr2

11 corr2
12 . . . corr2

(m−1)m
. . . . . . . . . . . .

corrn
11 corrn

12 . . . corrn
(m−1)m


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Assuming that there are q known scenarios in the historical project data, there
will be q feature matrices representing the known shield tunneling scenarios. These
matrices form a parameter correlation base of known shield tunneling scenarios, denoted
as Sknown =

{
s1, s2 . . . , sq

}
.

The different dimensions of the feature matrix representing the shield tunneling
scenarios have different meanings. The Mahalanobis distance takes into account the
differences between different dimensions when calculating matrix similarity [35]. Therefore,
we use the Mahalanobis distance between feature matrices of different shield tunneling
scenarios as a measure of similarity for shield tunneling scenarios. A smaller Mahalanobis
distance indicates a higher similarity between scenarios. Specifically, when identifying
a pending scenario, the first step is to construct a feature matrix s that represents the
characteristics of that shield tunneling segment. Next, s is compared with the feature
matrices in a parameter correlation base of known shield tunneling scenarios. The matching
formula is shown as Formula (7).

s_result = argmin MD(s, si) (i = 1, 2, . . . , q, si ∈ Sknown) (7)

In Formula (7), MD(s, si) represents the Mahalanobis distance between the feature
matrix s and that of a known shield tunneling scenario i. A smaller value indicates a higher
similarity between the pending scenario and scenario i. And s_result represents a known
shield tunneling scenario with a feature matrix most similar to s.

In addition, we also set a similarity threshold θ based on the distribution of MD
values for the same scenarios in the parameter correlation base of known shield tunneling
scenarios. If MD (s, ss_result) < θ, the pending scenario belongs to the shield tunneling
scenario s_result. If MD (s, ss_result) > θ, the pending scenario will be identified as a new
scenario.

4. Engineering Application

We applied the AD_SI model on the K section of a subway tunnel construction project
in Nanjing and analyzed its application performance. The AD_SI model allows for dynamic
and continuous model training and testing during the shield construction process and
continuously adjusts the model’s training data according to the anomaly detection results.
Therefore, this model can adapt to the dynamically changing external environment.

4.1. Engineering Background

The left line of the K section in the subway tunnel construction project in Nanjing
has a length of 734.514 m, with a total of 616 rings. The shield tunneling process uses
an earth pressure balance shield machine with a diameter of 6.2 m. The main geological
types that this project traverses are interlayers of silty clay and silt, silty clay with silt and
mud, clay, and weathered silty sandstone. The geological conditions within this section
exhibit alternating soft and hard characteristics, with significant variations and distinct
differences in engineering properties. The geological distributions of the K section are
shown in Figure 4.
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4.2. Application Overview

We applied the AD_SI model to the detection of the shield tunneling process in the
K section from ring 126. The shield tunneling information was obtained from real-time
data collected by sensors installed on the shield machine. The sensors collected data at a
sampling frequency of one sample per second. We also calculated the corresponding energy
consumption based on the real-time current and voltage information of the shield machine
collected during the tunneling process and the time taken to advance a unit distance.
During the application of the AD_SI model, the construction parameters mainly used
are the overall energy consumption of the shield machine, cutterhead torque, cutterhead
rotation speed, total thrust, speed, and earth pressure. In the AD_SI model, the sliding
window length for cutting the original time series is 48. Both the encoder and decoder of
VAE are set with a four-layer structure, and the dimension of the latent variable is set to 6.
The sliding window length for cutting the LSTM input data is set to 12, and the hidden size
of the LSTM unit is set to 64. Since the input of the LSTM is the embeddings obtained from
the VAE encoder and we have the LSTM model take the first L − 1 embeddings and predict
the next L − 1 embeddings, the dimension of the input vector of the LSTM network is (11,
6). We collect data samples with each 5 mm advancement of the shield tunneling machine,
using 2000 samples to construct the training set. In addition, we implement rolling training
for the model, updating the training set when the shield tunneling machine completes
one ring of advancement. We also built a base containing feature representation of three
known abnormal scenarios based on historical construction projects. The known abnormal
scenarios are cutter wear, mudcake event, and geological transition from soft soil to hard
rock layer.

The AD_SI model reported three anomalies within the K section. There were three
anomalies that occurred during the actual construction process, which were located at ring
210–221, ring 231–240, and ring 258–268, respectively. Figure 5 illustrates the variation in
energy consumption of this segment. It also notes the actual range of the three construction
risk events and the anomalies detected by the AD_SI model. Table 1 summarizes the
anomaly detection results of the AD_SI model and the corresponding actual anomalies.
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Table 1. Anomaly detection and identification results of AD_SI and actual anomalies.

Abnormal Event Actual Anomaly
Range

Actual Abnormal
Scenario

Anomaly Range
AD_SI Detected

Abnormal
Scenario AD_SI Identified

Abnormal event 1 ring 210~221 geological
transition ring 210~221 geological

transition

Abnormal event 2 ring 231~240 geological
transition ring 232~240 geological

transition
Abnormal event 3 ring 258~268 mudcake event ring 258~269 mudcake event

The AD_SI model initially detected a prolonged and continuous anomaly within the
range of ring 210–221 and determined the abnormal scenario to be the geological transition.
After the AD_SI model reported the anomaly, the engineers observed and analyzed the
muck and concluded that the geological conditions encountered by the shield machine
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began to change when the shield cutterhead approached near ring 216 (corresponding to
the actual ring number 210).

Subsequently, the AD_SI model detected long-lasting anomalies, again starting from
ring 231. It identified an abnormal scenario from ring 232 to ring 240, and the abnormal
scenario was geological transition. The engineers did not pay much attention to the
anomaly reported by the model at the beginning. They then noticed a significant change in
parameters starting from ring 235. Subsequently, they analyzed the muck and historical data
and concluded that the shield cutterhead gradually traversed from highly weathered silty
sandstone to moderately weathered silty sandstone from ring 231 to ring 240. Therefore,
the AD_SI model we propose can provide feedback on the changes in the operational status
of the shield machine and accurately identify the scenario when the geological condition
changes.

Finally, the AD_SI model detected continuous anomalies starting from ring 258 to
ring 269, and it determined that this segment’s anomaly corresponded to a mudcake event.
According to feedback from the engineers, the shield machine’s efficiency decreased sig-
nificantly from ring 265. Then, the engineers inspected the shield machine at ring 268. It
was discovered that there was a severe mudcake phenomenon inside the earth chamber
(see Figure 6). After expert analysis, it was estimated that the mudcake started forming
at ring 258. The anomaly continued until ring 268, when the mudcake was cleaned up.
Therefore, the AD_SI model we propose demonstrates good detection performance for mud-
cake events. It can detect anomalies earlier than engineers through energy consumption
monitoring and accurately identify specific abnormal scenarios.
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4.3. Model Performance Analysis

To validate the performance of the proposed anomaly detection method in this paper,
we compared the effectiveness of comparative models and the method we propose in
terms of three aspects and conducted three comparative experiments. The settings for
the comparative models are shown in Table 2. Firstly, to compare the performance of
different anomaly detection algorithms, we compared the anomaly detection results of
DT_VAE-LSTM with those of VAE and AE-LSTM. Furthermore, to validate the effectiveness
of the dynamic threshold proposed in Section 3.2, we constructed the VAE-LSTM with a
fixed threshold. The fixed threshold was set using the maximum reconstruction error of
the training dataset obtained during the initial model training. We compared its detection
performance with that of the DT_VAE-LSTM. Secondly, to investigate the impact of selecting
different monitoring parameters on detection performance, we replaced the monitoring
parameter of the anomaly detection model with the cutterhead torque and total thrust.
We compared the detection performance of the DT_VAE-LSTM (torque) and DT_VAE-
LSTM (thrust) with the DT_VAE-LSTM (energy) model using the same DT_VAE-LSTM
algorithm. Lastly, the proposed AD_SI model combined the results of the anomaly detection
model and scenario identification model to make the final decision. Therefore, we also
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verified whether the fusion of the two-stage results contributes to improving anomaly
detection performance.

Table 2. Comparative model settings.

Comparative Model Model Number Model

1

1-1 VAE
1-2 AE-LSTM
1-3 VAE-LSTM
1-4 DT_VAE-LSTM

2
2-1 DT_VAE-LSTM (torque)
2-2 DT_VAE-LSTM (thrust)
2-3 DT_VAE-LSTM (torque)

3 3 AD_SI

We used precision, recall, and F1 as evaluation metrics for the model’s performance,
as shown in Formulas (8)–(10). TP represents the number of data points correctly labeled
as anomalies, FP represents the number of data points incorrectly labeled as anomalies, TN
represents the number of data points correctly labeled as normal, and FN represents the
number of data points incorrectly labeled as normal.

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

F1 = 2 × precision × recall
precision + recall

(10)

4.3.1. Comparison of Anomaly Detection Algorithms

In comparative experiment 1, we compared the performance of different anomaly
detection algorithms when using energy consumption as the monitoring parameter. The
detection results and a comparison of the different threshold settings are shown in Figure 7.
To provide clearer visualization of threshold settings and anomaly detection results, we add
magnified insets of the detection results of VAE-LSTM and DT_VAE-LSTM for abnormal
events 2 and 3 in Figure 7. The detection performance of each algorithm is presented in
Table 3. The proposed DT_VAE-LSTM model exhibits significantly higher recall values for
various abnormal scenarios than other methods. This indicates that the proposed method
can more accurately identify abnormal information in the shield tunneling data, resulting
in a lower false negative rate. In particular, during the detection process of abnormal
event 2 and abnormal event 3, the DT_VAE-LSTM detected anomalies significantly earlier
than the AE-LSTM and VAE, demonstrating more stable and reliable anomaly detection
performance. Although the VAE-LSTM, which set a fixed threshold in the comparative
experiment, somewhat reduces the false positive rate, it lacks adaptability to data in
different scenarios, resulting in decreased detection performance when the construction
scenario changes. The dynamic threshold method proposed in this article can reduce the
influence of noise data and set more accurate thresholds by adapting to data from different
shield tunneling scenarios. The VAE-LSTM exhibited noticeable false negatives in the
detection of abnormal event 2 and abnormal event 3, with a reduction of 21% and 8% in
recall values, respectively, compared to the DT_VAE-LSTM based on dynamic threshold
setting. Therefore, the anomaly detection method we propose, which is based on dynamic
threshold setting, can achieve a better balance between recall and precision. The F1 score
consistently remains the highest, thereby enhancing the overall detection capability of
various abnormal scenarios.
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Table 3. Performance of different anomaly detection algorithms.

Abnormal Event Anomaly
Detection Model Precision Recall F1

Abnormal event 1

VAE 1.00 0.69 0.82
AE-LSTM 1.00 0.90 0.94

VAE-LSTM 1.00 0.92 0.96
DT_VAE-LSTM 1.00 0.98 0.99

Abnormal event 2

VAE 0.98 0.42 0.59
AE-LSTM 0.92 0.42 0.58

VAE-LSTM 1.00 0.73 0.85
DT_VAE-LSTM 0.84 0.94 0.89

Abnormal event 3

VAE 0.82 0.47 0.60
AE-LSTM 0.65 0.47 0.55

VAE-LSTM 0.77 0.56 0.64
DT_VAE-LSTM 0.70 0.64 0.67

4.3.2. Comparison of Monitoring Parameters

To compare the impact of different monitoring parameters on the results, we replaced
the monitoring parameter in Section 3.2 with cutterhead torque and total thrust as compar-
ative models. Cutterhead torque and total thrust are commonly used detection parameters
in the shield construction field. The detection results based on different monitoring parame-
ters are shown in Figure 8, and the anomaly detection performance of each model is shown
in Table 4. Firstly, we found that compared to DT_VAE-LSTM (energy), DT_VAE-LSTM
(torque) and DT_VAE-LSTM (thrust) are more susceptible to interference, which makes
them more prone to false alarms in the models, especially in the case of DT_VAE-LSTM
(thrust), which consistently had a precision value below 0.6. Such false alarms can introduce
interference to the precise localization of the anomaly range, thereby affecting the credi-
bility of the anomaly detection results. Secondly, DT_VAE-LSTM (thrust) failed to detect
abnormal event 1, having a recall value of only 0.53. Thirdly, during the detection process
of abnormal event 2, DT_VAE-LSTM (torque) reported the anomaly significantly later than
DT_VAE-LSTM (energy). Therefore, DT_VAE-LSTM (thrust) and DT_VAE-LSTM (torque)
exhibited a higher rate of missed detections, indicating poorer performance. In conclusion,
the F1 score of DT_VAE-LSTM (energy) is higher than the other two comparative models
on three abnormal events. Using energy consumption as a monitoring parameter can
better reflect the overall status of the shield tunneling process and provide more valuable
references for detecting and locating the range of anomalies.

Table 4. Performance of anomaly detection models based on different monitoring parameters.

Abnormal Event Anomaly
Detection Model Precision Recall F1

Abnormal event 1
DT_VAE-LSTM (torque) 0.87 0.98 0.92
DT_VAE-LSTM (thrust) 0.64 0.53 0.58
DT_VAE-LSTM (energy) 1.00 0.98 0.99

Abnormal event 2
DT_VAE-LSTM (torque) 0.83 0.46 0.60
DT_VAE-LSTM (thrust) 0.62 1.00 0.77
DT_VAE-LSTM (energy) 0.84 0.94 0.89

Abnormal event 3
DT_VAE-LSTM (torque) 0.43 0.68 0.52
DT_VAE-LSTM (thrust) 0.44 0.87 0.58
DT_VAE-LSTM (energy) 0.70 0.64 0.67
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4.3.3. Comparison of Fusion Effects of Anomaly Detection and Identification

The proposed AD_SI model uses the scenario identification model to determine the
scenarios of the detected abnormal sections after the anomaly detection model detects
continuous anomalies. It integrates the results of the anomaly detection model and scenario
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identification model to make the final judgment. A single-anomaly detection model may
have certain false positives or false negatives, but incorporating scenario identification as
supplementary information can help refine the anomaly detection results. Therefore, this
fusion method combines results from two perspectives, further enhancing the accuracy and
robustness of anomaly detection. Figures 9–11 demonstrate the performance of the AD_SI
model and all other comparative models on three abnormal events. It can be observed that
the anomaly detection performance of the AD_SI model has been further improved, with
its F1 score being consistently higher than that of any other model.
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Hu et al. [7] designed an anomaly detection model KMCED driven by data and
knowledge. They used the same shield tunneling project as the research object to detect
abnormal event 3. We compared the detection performance of the KMCED model and
the AD_SI model (Figure 11). Both KMCED and AD_SI demonstrated good capabilities
in capturing abnormal event 3, with recall values exceeding 0.9. However, KMCED had a
higher false alarm rate (precision = 0.6), leading to the imprecise localization of the actual
range of anomalies and impacting the reliability of the anomaly detection results. Therefore,
the AD_SI model performed significantly better in detecting abnormal event 3 (F1 = 0.81)
compared to the KMCED model proposed in reference [7] (F1 = 0.56).

5. Conclusions

This paper proposes the AD_SI model to realize anomaly detection and identification
for the shield tunneling process. This model has two main phases: detecting various anoma-
lies and identifying the specific abnormal scenarios. In this method, energy consumption
data are innovatively proposed as a monitoring parameter for anomaly detection. By
constructing an anomaly detection model based on energy consumption, we aim to detect
various anomalies during the shield tunneling process, thereby enhancing the model’s
applicability. In addition, we further identify the scenarios of the anomalies based on
the relationship among different parameters and thus provide a more straightforward
explanation for the detected anomalies.

The model was applied to a subway tunnel construction project in Nanjing, and the
following conclusions were obtained:

(1) The energy consumption data during the shield tunneling process can serve as a
monitoring parameter for anomaly detection. The AD_SI model we propose can
detect various anomalies in time based on the energy consumption data. Furthermore,
the AD_SI model performs better than models that are based on other commonly
used monitoring parameters.

(2) The representation and identification of shield tunneling scenarios can be realized
based on the correlation among construction parameters. After detecting prolonged
anomalies, the AD_SI model uses the verification based on the correlation of parame-
ters to accurately identify the shield tunneling scenario, thereby realizing anomaly
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identification. This provides a further explanation for abnormal energy consumption
behavior.

(3) Compared to all the comparative models, the AD_SI model exhibits higher sensitivity,
enabling it to detect various anomalies in time. Its warning time is significantly
earlier than the engineers’ discovery time, which can provide effective support for
risk monitoring and disposal in the shield tunneling process.

However, the AD_SI model still has certain limitations. Firstly, we only considered the
linear relationships among the parameters when realizing anomaly identification. Future
research could take into consideration the non-linear relationships among the parameters.
In addition, we only validated the detection and identification performance of the AD_SI
model on the geological transition and mudcake events. Future research could explore
applying the model to the detection of other shield tunneling abnormal scenarios, thus
further enhancing the model’s practicality.
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