Computerized Optical Impression Making of Fully Dentate Upper and Lower Jaws: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Full Dental Arch Scans
3.2. Full Dental Arch Scans: Maxilla Versus Mandibula
3.3. Left, Right and Front Segments
3.4. 3D Deviations
3.5. Interproximal Areas
3.6. Number and Distribution of Datapoints and Outliers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ender, A.; Mehl, A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int. J. Comput. Dent. 2013, 16, 11–21. [Google Scholar]
- Kachalia, P.R.; Geissberger, M.J. Dentistry a la carte: In-office CAD/CAM technology. J. Calif. Dent. Assoc. 2010, 38, 323–330. [Google Scholar] [CrossRef]
- Stanley, M.; Paz, A.G.; Miguel, I.; Coachman, C. Fully digital workflow, integrating dental scan, smile design and CAD-CAM: Case report. BMC Oral Health 2018, 18, 134. [Google Scholar] [CrossRef]
- Aswani, K.; Wankhade, S.; Khalikar, A.; Deogade, S. Accuracy of an intraoral digital impression: A review. J. Indian Prosthodont. Soc. 2020, 20, 27–37. [Google Scholar] [CrossRef]
- Patzelt, S.B.; Emmanouilidi, A.; Stampf, S.; Strub, J.R.; Att, W. Accuracy of full-arch scans using intraoral scanners. Clin. Oral Investig. 2014, 18, 1687–1694. [Google Scholar] [CrossRef]
- Patzelt, S.B.; Lamprinos, C.; Stampf, S.; Att, W. The time efficiency of intraoral scanners: An in vitro comparative study. J. Am. Dent. Assoc. 2014, 145, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Yuzbasioglu, E.; Kurt, H.; Turunc, R.; Bilir, H. Comparison of digital and conventional impression techniques: Evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health 2014, 14, 10. [Google Scholar] [CrossRef]
- Saccomanno, S.; Saran, S.; Vanella, V.; Mastrapasqua, R.F.; Raffaelli, L.; Levrini, L. The potential of digital impression in orthodontics. Dent. J. 2022, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Retrouvey, J.-M.; Kader, E.; Caron, E.; Tamimi, F.; Light, N. Printing Orthodontic Retainers Using CAD/CAM Technology; McGill University: Montreal, QC, Canada, 2013. [Google Scholar]
- Wiechmann, D.; Rummel, V.; Thalheim, A.; Simon, J.S.; Wiechmann, L. Customized brackets and archwires for lingual orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M. Die digitale Abformung mit dem Intraoralscanner: Intraorale Scansysteme: Kaufentscheidungen und System Übersicht. ZMK 2016, 32, 166–172. [Google Scholar] [CrossRef]
- Gimenez, C.M.M. Digital technologies and CAD/CAM systems applied to lingual orthodontics: The future is already a reality. Dent. Press J. Orthod. 2011, 16, 6. [Google Scholar] [CrossRef]
- Brown, M.W.; Koroluk, L.; Ko, C.C.; Zhang, K.; Chen, M.; Nguyen, T. Effectiveness and efficiency of a CAD/CAM orthodontic bracket system. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Wiechmann, D. A new bracket system for lingual orthodontic treatment. Part 2: First clinical experiences and further development. J. Orofac. Orthop. 2003, 64, 372–388. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Schumacher, P.; Jäger, F.; Wego, J.; Fritz, U.; Korbmacher-Steiner, H.; Jäger, A.; Schauseil, M. Novel lingual retainer created using CAD/CAM technology: Evaluation of its positioning accuracy. J. Orofac. Orthop. 2015, 76, 164–174. [Google Scholar] [CrossRef]
- Wilmes, B.; Willmann, J.H.; Drescher, D. Full Digital Workflow. Kieferorthopädie Nachrichten 2021, 13, 6–10. [Google Scholar]
- Layman, B. Digital Bracket Placement for Indirect Bonding. J. Clin. Orthod. 2019, 53, 387–396. [Google Scholar]
- Christopoulou, I.; Kaklamanos, E.G.; Makrygiannakis, M.A.; Bitsanis, I.; Perlea, P.; Tsolakis, A.I. Intraoral Scanners in Orthodontics: A Critical Review. Int. J. Environ. Res. Public Health 2022, 19, 1407. [Google Scholar] [CrossRef]
- Yoon, J.H.; Yu, H.S.; Choi, Y.; Choi, T.H.; Choi, S.H.; Cha, J.Y. Model Analysis of Digital Models in Moderate to Severe Crowding: In Vivo Validation and Clinical Application. BioMed Res. Int. 2018, 2018, 8414605. [Google Scholar] [CrossRef]
- Michou, S.; Lambach, M.S.; Ntovas, P.; Benetti, A.R.; Bakhshandeh, A.; Rahiotis, C.; Ekstrand, K.R. Automated caries detection in vivo using a 3D intraoral scanner. Sci. Rep. 2021, 11, 21276. [Google Scholar] [CrossRef] [PubMed]
- Schmalzl, J.; Róth, I.; Borbély, J.; Hermann, P.; Vecsei, B. The effect of generation change on the accuracy of full arch digital impressions. BMC Oral Health 2023, 23, 766. [Google Scholar] [CrossRef] [PubMed]
- Schmalzl, J.; Róth, I.; Borbély, J.; Hermann, P.; Vecsei, B. The impact of software updates on accuracy of intraoral scanners. BMC Oral Health 2023, 23, 219. [Google Scholar] [CrossRef]
- Alkadi, L. A Comprehensive Review of Factors That Influence the Accuracy of Intraoral Scanners. Diagnostics 2023, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- ISO 5725-1:1994(en); International Organization for Standardization. Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. International Organization for Standardization: Geneva, Switzerland, 1994.
- Kernen, F.; Schlager, S.; Seidel Alvarez, V.; Mehrhof, J.; Vach, K.; Kohal, R.; Nelson, K.; Flügge, T. Accuracy of intraoral scans: An in vivo study of different scanning devices. J. Prosthet. Dent. 2022, 128, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Dutton, E.; Ludlow, M.; Mennito, A.; Kelly, A.; Evans, Z.; Culp, A.; Kessler, R.; Renne, W. The effect different substrates have on the trueness and precision of eight different intraoral scanners. J. Esthet. Restor. Dent. 2020, 32, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Baghani, M.T.; Shayegh, S.S.; Johnston, W.M.; Shidfar, S.; Hakimaneh, S.M.R. In vitro evaluation of the accuracy and precision of intraoral and extraoral complete-arch scans. J. Prosthet. Dent. 2021, 126, 665–670. [Google Scholar] [CrossRef]
- Medina-Sotomayor, P.; Pascual-Moscardó, A.; Camps, I. Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions. J. Clin. Exp. Dent. 2018, 10, 361–366. [Google Scholar] [CrossRef]
- Ender, A.; Zimmermann, M.; Attin, T.; Mehl, A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin. Oral Investig. 2016, 20, 1495–1504. [Google Scholar] [CrossRef]
- Kim, R.J.; Park, J.M.; Shim, J.S. Accuracy of 9 intraoral scanners for complete-arch image acquisition: A qualitative and quantitative evaluation. J. Prosthet. Dent. 2018, 120, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Cuoghi, O.A.; Tondelli, P.M.; Aiello, C.A.; Mendonça, M.R.; Costa, S.C. Importance of periodontal ligament thickness. Braz. Oral Res. 2013, 27, 76–79. [Google Scholar] [CrossRef]
- Mortazavi, H.; Baharvand, M. Review of common conditions associated with periodontal ligament widening. Imaging Sci. Dent. 2016, 46, 229–237. [Google Scholar] [CrossRef]
- Nulty, A.B. A comparison of full arch trueness and precision of nine intra-oral digital scanners and four lab digital scanners. Dent. J. 2021, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Gkantidis, N. Trueness and precision of intraoral scanners in the maxillary dental arch: An in vivo analysis. Sci. Rep. 2020, 10, 1172. [Google Scholar] [CrossRef]
- Song, J.; Kim, M. Accuracy on scanned images of full arch models with orthodontic brackets by various intraoral scanners in the presence of artificial saliva. BioMed Res. Int. 2020, 2020, 2920804. [Google Scholar] [CrossRef] [PubMed]
- Hack, G.D.; Patzelt, S.B.M. Evaluation of the Accuracy of Six Intraoral Scanning Devices: An in-vitro Investigation. ADA Prof. Prod. Rev. 2015, 10, 1–5. [Google Scholar]
- Vag, J.; Nagy, Z.; Simon, B.; Mikolicz, A.; Kövér, E.; Mennito, A.; Evans, Z.; Renne, W. A novel method for complex three-dimensional evaluation of intraoral scanner accuracy. Int. J. Comput. Dent. 2019, 22, 239–249. [Google Scholar] [PubMed]
- Logozzo, S.; Franceschini, G.; Kilpelä, A.; Caponi, M.; Governi, L.; Blois, L. A Comparative Analysis of Intraoral 3D Digital Scanners for Restorative Dentistry. Internet J. Med. Technol. 2008, 5, 1–18. [Google Scholar]
- Berkovic, G.; Shafir, E. Optical methods for distance and displacement measurements. Adv. Opt. Photonics 2012, 4, 441–471. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015, 46, 9–17. [Google Scholar] [CrossRef]
- Vag, J.; Stevens, C.D.; Badahman, M.H.; Ludlow, M.; Sharp, M.; Brenes, C.; Mennito, A.; Renne, W. Trueness and precision of complete arch dentate digital models produced by intraoral and desktop scanners: An ex-vivo study. J. Dent. 2023, 139, 104764. [Google Scholar] [CrossRef]
- Logozzo, S.; Zanetti, E.M.; Franceschini, G.; Kilpelä, A.; Mäkynen, A. Recent advances in dental optics—Part I: 3D intraoral scanners for restorative dentistry. Opt. Lasers Eng. 2014, 54, 203–221. [Google Scholar] [CrossRef]
- Güth, J.-F.; Runkel, C.; Beuer, F.; Stimmelmayr, M.; Edelhoff, D.; Keul, C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin. Oral Investig. 2017, 21, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Weber, H.P.; Finkelman, M.; El Rafie, K.; Kudara, Y.; Papaspyridakos, P. Digital vs. conventional full-arch implant impressions: A comparative study. Clin. Oral Implant. Res. 2016, 28, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Mehl, A.; Mormann, W.H.; Reich, S. Intraoral scanning systems—A current overview. Int. J. Comput. Dent. 2015, 18, 101–129. [Google Scholar] [PubMed]
- Kämpe, H.S. Studie zur Dimensionsgenauigkeit Digitaler Abformungen von Implantaten Mittels Intraoraler Scansysteme. Ph.D. Thesis, Justus Liebig University, Giessen, Germany, 2019. [Google Scholar]
- Iturrate, M.; Eguiraun, H.; Etxaniz, O.; Solaberrieta, E. Accuracy analysis of complete-arch digital scans in edentulous arches when using an auxiliary geometric device. J. Prosthet. Dent. 2019, 121, 447–454. [Google Scholar] [CrossRef]
- Gimenez-Gonzalez, B.; Hassan, B.; Ozcan, M.; Pradies, G. An In Vitro Study of Factors Influencing the Performance of Digital Intraoral Impressions Operating on Active Wavefront Sampling Technology with Multiple Implants in the Edentulous Maxilla. J. Prosthodont. 2017, 26, 650–655. [Google Scholar] [CrossRef]
Scanner | Manufacturer | Data Capture Principle | Data Capture Mode |
---|---|---|---|
CS 3500 (CS) | Carestream Health, Rochester, MN, USA | Triangulation | Individual images |
iTero HD2.9 (IT) | Align Technology, San José, CA, USA | Parallel confocal imaging | Individual images |
Planmeca PlanScan (PS) | Planmeca/E4D Technologies, Richardson, TX, USA | Triangulation | Video sequence |
TRIOS Standard (TR) | 3Shape, Copenhagen, Denmark | Confocal microscopy | Video sequence |
3M True Definition (TD) | 3M ESPE, St. Paul, MN, USA | Wavefront sampling | Video sequence |
Scanner | Trueness | Precision |
---|---|---|
Mean Value ± SD (μm) | Mean Value ± SD (μm) | |
CS | 29.2 ± 9.7 | 25.6 ± 4.8 |
PS | 90.8 ± 31.0 | 95.0 ± 42.6 |
IT | 23.5 ± 5.3 | 26.0 ± 7.7 |
TR | 20.7 ± 5.8 | 18.8 ± 4.3 |
TD | 58.7 ± 22.2 | 34.7 ± 16.5 |
Scanner | Trueness | Precision |
---|---|---|
Mean Value ± SD (μm) | Mean Value ± SD (μm) | |
CS (Maxilla) | 34.0 ± 11.5 | 24.6 ± 6.3 |
CS (Mandibula) | 24.4 ± 4.6 | 26.7 ± 3.0 |
PS (Maxilla) | 77.5 ± 16.4 | 56.7 ± 7.1 |
PS (Mandibula) | 104.1 ± 37.7 | 133.3 ± 20.6 |
IT (Maxilla) | 20.9 ± 5.4 | 21.0 ± 3.6 |
IT (Mandibula) | 26.1 ± 3.9 | 31.0 ± 7.7 |
TR (Maxilla) | 23.8 ± 6.9 | 16.6 ± 3.2 |
TR (Mandibula) | 17.7 ± 1.7 | 21.0 ± 4.3 |
TD (Maxilla) | 65.4 ± 29.7 | 44.6 ± 18.2 |
TD (Mandibula) | 51.9 ± 9.9 | 24.7 ± 5.5 |
Trueness | Precision | |||||
---|---|---|---|---|---|---|
Left | Right | Front | Left | Right | Front | |
Scanner | Mean Value ± SD (μm) | Mean Value ± SD (μm) | ||||
CS (Maxilla) | 27.7 ± 7.9 | 28.8 ± 8.7 | 28.9 ± 8.5 | 20.9 ± 10.9 | 18.8 ± 1.3 | 18.3 ± 2.7 |
CS (Mandibula) | 21.1 ± 2.7 | 20.5 ± 2.5 | 18.8 ± 3.2 | 22.5 ± 4.4 | 21.1 ± 4.1 | 16.0 ± 2.0 |
PS (Maxilla) | 44.5 ± 16.5 | 46.0 ± 9.3 | 63.4 ± 32.1 | 38.1 ± 11.0 | 30.0 ± 3.1 | 56.4 ± 13.4 |
PS (Mandibula) | 53.2 ± 33.7 | 44.6 ± 17.7 | 59.5 ± 33.1 | 40.4 ± 5.6 | 46.5 ± 20.4 | 52.8 ± 9.8 |
IT (Maxilla) | 17.5 ± 5.2 | 18.9 ± 6.4 | 20.8 ± 4.2 | 16.4 ± 4.9 | 17.8 ± 4.2 | 19.3 ± 6.3 |
IT (Mandibula) | 11.2 ± 2.3 | 13.4 ± 1.5 | 19.7 ± 6.8 | 24.2 ± 9.8 | 18.1 ± 5.0 | 31.1 ± 8.5 |
TR (Maxilla) | 20.8 ± 5.1 | 21.5 ± 7.8 | 21.7 ± 5.9 | 15.1 ± 4.2 | 10.0 ± 2.0 | 15.3 ± 2.5 |
TR (Mandibula) | 12.8 ± 4.4 | 14.3 ± 1.6 | 15.9 ± 0.9 | 15.5 ± 4.1 | 12.8 ± 3.1 | 13.2 ± 2.9 |
TD (Maxilla) | 31.2 ± 13.4 | 35.3 ± 16.7 | 34.1 ± 10.9 | 11.7 ± 2.4 | 11.7 ± 1.9 | 17.8 ± 4.9 |
TD (Mandibula) | 24.0 ± 3.1 | 28.0 ± 4.9 | 25.0 ± 2.0 | 10.6 ± 2.4 | 14.7 ± 2.8 | 11.9 ± 1.7 |
Full Arch | Front Segment | Right Side Segment | Left Side Segment | |
---|---|---|---|---|
Scanner | Number of Datapoints | |||
Reference (Maxilla) | 400,149 | 137,490 | 123,344 | 139,376 |
Reference (Mandibula) | 306,242 | 92,101 | 115,615 | 98,593 |
CS (Maxilla) | 70,046 (70,586–69,691) | 26,551 (27,010–26,303) | 22,042 (22,581–21,546) | 21,423 (21,934–20,983) |
CS (Mandibula) | 65,005 (66,099–64,115) | 21,186 (21,550–20,540) | 21,388 (21,856–20,903) | 22,434 (22,858–21,747) |
PS (Maxilla) | 162,649 (163,987–161,689) | 58,909 (60,733–57,828) | 52,249 (52,746–51,709) | 51,489 (51,562–51,354) |
PS (Mandibula) | 148,577 (149,020–148,270) | 44,777 (45,134–44,563) | 51,191 (51,729–50,670) | 52,620 (53,204–51,577) |
IT (Maxilla) | 82,147 (88,124–77,413) | 28,455 (30,871–26,224) | 26,259 (29,167–24,368) | 27,390 (28,088–26,736) |
IT (Mandibula) | 72,575 (77,276–70,029) | 21,213 (23,598–19,088) | 25,617 (26,880–24,495) | 25,675 (26,800–24,968) |
TR (Maxilla) | 169,294 (169,730–168,868) | 57,687 (57,888–57,579) | 56,036 (56,383–55,527) | 55,428 (55,787–54,790) |
TR (Mandibula) | 144,721 (149,068–141,864) | 41,933 (43,095–41,236) | 50,684 (52,339–49,542) | 52,079 (53,601–51,050) |
TD (Maxilla) | 141,761 (142,367–140,987) | 52,054 (52,364–51,497) | 45,031 (45,307–44,692) | 44,678 (44,876–44,396) |
TD (Mandibula) | 128,186 (128,824–127,300) | 40,140 (40,361–39,952) | 43,702 (44,342–42,917) | 44,346 (44,615–44,149) |
Scanner | Number of Outliers |
---|---|
CS (Maxilla) | 157 |
CS (Mandibula) | 101 |
PS (Maxilla) | 413 |
PS (Mandibula) | 919 |
IT (Maxilla) | 259 |
IT (Mandibula) | 210 |
TR (Maxilla) | 376 |
TR (Mandibula) | 265 |
TD (Maxilla) | 50 |
TD (Mandibula) | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Droste, L.; Vach, K.; Kohal, R.J.; Patzelt, S.B.M. Computerized Optical Impression Making of Fully Dentate Upper and Lower Jaws: An In Vitro Study. Appl. Sci. 2024, 14, 2370. https://doi.org/10.3390/app14062370
Droste L, Vach K, Kohal RJ, Patzelt SBM. Computerized Optical Impression Making of Fully Dentate Upper and Lower Jaws: An In Vitro Study. Applied Sciences. 2024; 14(6):2370. https://doi.org/10.3390/app14062370
Chicago/Turabian StyleDroste, Lukas, Kirstin Vach, Ralf J. Kohal, and Sebastian B. M. Patzelt. 2024. "Computerized Optical Impression Making of Fully Dentate Upper and Lower Jaws: An In Vitro Study" Applied Sciences 14, no. 6: 2370. https://doi.org/10.3390/app14062370
APA StyleDroste, L., Vach, K., Kohal, R. J., & Patzelt, S. B. M. (2024). Computerized Optical Impression Making of Fully Dentate Upper and Lower Jaws: An In Vitro Study. Applied Sciences, 14(6), 2370. https://doi.org/10.3390/app14062370