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Abstract: Sugar derived from crops is a crucial organic energy source studied in the Earth sciences,
serving as a renewable and clean energy alternative. Biofuels produced from crop sugars are more
environmentally friendly than traditional fossil fuel sources and contribute to solar energy storage
and conversion within the Earth’s cycle. Using mangoes as a case study, this research employs
near-infrared spectral analysis technology to develop an algorithm for a mango brix detection device.
The study investigates the relationship between brix and absorbance, as well as changes in brix levels,
and their application for on-site mango brix detection. Near-infrared spectral data in the range of
1300 nm to 2300 nm were collected during the mango ripening season in summer and preprocessed
using various techniques. A neural network-based least squares modeling approach was utilized
to develop a mango sugar content detection model, resulting in a correlation coefficient of 0.9055
and a root-mean-square error of 0.2192. To enhance model accuracy and avoid local optimization
issues, this study incorporated the simulated annealing algorithm for model optimization, leading to
a correlation coefficient of 0.9854 and a root-mean-square error of 0.0431. The findings demonstrate
that the non-destructive testing model of mangoes based on near-infrared spectroscopy effectively
detects brix changes and storage potential post-harvest, offering valuable insights for mango quality
assessment, optimal picking and selling times, and market selection.

Keywords: near-infrared spectroscopy; non-destructive testing; mango; neural networks; simulated
annealing; detection method

1. Introduction

Crop-derived sugar is a significant organic energy resource that is studied in the Earth
sciences, playing a crucial role as a primary energy source [1,2]. Near-infrared spectroscopy,
recognized for its efficiency, non-destructiveness, and environmental friendliness, has been
extensively used in rapid fruit testing [3]. This technology enables the continuous mon-
itoring of brix levels in fruits without altering their visual appearance, offering essential
support and analysis for fruit research, development, cultivation, ripeness assessment,
harvest timing, storage, transportation, distribution, and pricing [4–6]. While NIR spec-
troscopy effectively captures essential fruit characteristics, its modeling process using
Fourier transform NIR spectroscopy can be impacted by irrelevant variables, leading to
model interference, weak predictive ability, and poor stability.

In recent years, extensive research efforts have focused on developing models for
detecting fructose content. McGlone et al. utilized the absorption method to assess whole
apples, measuring transmitted light in the 650–950 nm wavelength range to analyze absorp-
tion levels and predict dry matter content, and ultimately achieved favorable results [4].
In 2013, Travers et al. conducted predictive modeling of wave bandwidth in two specific
ranges, revealing that the modeling effectiveness was optimal within the wavelength range
of 1100–2350 nm [7]. Yande Liu et al. conducted investigations on apple brix degree models
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at varying measuring distances. Zhenhua Tu et al. employed a Charge-Coupled Device
(CCD) spectrometer for mango brix content detection, integrating spectrum pretreatment
to establish a reliable prediction model. Khodabakhshian et al. devised a multispectral
imaging system for evaluating total soluble solids (TSS), titratable acidity (TA), and pH lev-
els in pomegranates [8]. Xiao Chen et al. employed a neural network algorithm to enhance
the predictive model for estimating the brix content of pear fruits, assessing the impact
of uncorrelated factors on the test samples [9]. Yunqi Zhang et al. utilized near-infrared
(NIR) spectroscopy to detect sugar and acidity ratios in apples, developing a relationship
model between spectra and sugar and acidity levels using the partial least squares model.
Their findings demonstrate that this NIR rapid detection method enables non-destructive
assessment of the internal quality of apples [10]. While advancements have been achieved
in NIR spectral analysis techniques and related research findings, challenges persist in
addressing issues such as local miniaturization and inconsistent weight assignment in
the BP neural network, hindering the effective resolution of measurement challenges in
practical applications.

In this investigation, our research team collected spectral data and recorded sugar
content from various mango varieties within a controlled experimental setting, utilizing
primary equipment including the Ocean Optics NIR-Quest spectrometer. The acquired
spectral data underwent preprocessing techniques including Standard Normal Variate
(SNV) processing, Savitzky–Golay (S–G) smoothing, outlier removal, and interpolation. A
brix model was developed for the processed data using a partial least squares approach
integrated with the BP neural network algorithm, which was further optimized through
a simulated annealing algorithm to enable the non-destructive prediction of mango brix
levels. This methodology holds significance for enhancing quality control measures in
agricultural production and processing [11].

2. Equipment and Method
2.1. Experimental Materials and Instrument
2.1.1. Experimental Materials

Ninety-five samples of Tai Tainong and Jin Huang Awn mangoes, chosen for their
smooth surfaces, the absence of scars, even ripeness, and consistent size distribution,
were sourced from Haidian District, Beijing [12]. The samples were randomly divided
into distinct ratios and categorized into training and calibration sets. Purified water was
employed to cleanse each mango, ensuring the mango’s inherent quality remained intact
during the cleaning process. Following cleaning, the mangoes were uniformly positioned
in a controlled outdoor environment to minimize external factors, such as wind and surface
temperature, that could affect the prediction accuracy. Each mango was individually
numbered and marked in sequence [13].

2.1.2. Experimental Instrument

The experiment utilized a state-of-the-art NIR-Quest+ infrared spectrometer, an HL-
2000-LL series halogen light source (with a wavelength range of 360–2400 nm and a power
output of 4.75 W), and a Vision infrared light reflection probe, all procured from Ocean
Optics Company. The optical resolution of the final experimental system was 5.5 nm.

Following spectral data acquisition, the brix content of the mango samples was an-
alyzed. To ensure precise brix measurements, the experimental brix calibration Digital
Handheld Refractometer (DHR) 95 sun protection device from Schmidt + Haensch GmbH &
Co. (Berlin, Germany) was employed. The instrument’s operational temperature range was
5–40 ◦C, with a brix measurement error of 0.1%, meeting the experimental specifications.
Additionally, the Japan ATAGO Mango Non-Destructive Brix Meter PAL-HIKARi 15 was
utilized for comparison, boasting a brix measurement range of 10.0 to 22.0%, accuracy of
±1.5%, resolution of 0.1% Brix, and an automatic temperature compensation from 10.0 to
35.0 ◦C. All computations were conducted on Windows 11 using Matlab R2022a software.
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(Mathworks Inc., Massachusetts, USA) (Matlab R2022a v9.12.0.1884302 (accessed on 15
February 2024)).

2.1.3. Spectral Data Acquisition

• Spectrometer Parameter Setting

The spectrometer and light source are first preheated and allowed to stabilize before
performing a standard zero correction based on daily light intensity levels to minimize the
impact of experimental system instability on results. To mitigate the effects of field-of-view
constraints and unclear phase characteristics on spectral data acquisition, an intensity
calibration algorithm is employed after analyzing the subject’s phase properties to enhance
data accuracy [14]. Three detection points are chosen on the smooth equatorial region
of the mango sample to ensure precise alignment with the probe at each measurement
point [15]. Employing the OceanView software integral to the system, the parameters
are configured as follows: integration time is set to 4 milliseconds, average frequency to
120, smoothing frequency to 4, and the spectrometer is equipped with electronic dark
noise correction (EDC).(OceanView v2.0.16. https://www.oceaninsight.com/products/
software/acquisition-and-analysis/oceanview-70e79976/ (accessed on 2 February 2024))
Three specific points, namely the equator, base, and apex, are targeted for three successive
scans using the spectrometer, with the resultant average of the three scans deemed the
preliminary spectrum for the experiment.

• Selection of spectral data acquisition point

Following equipment preheating, the reflectance spectral curves of 95 mango samples
are obtained in a controlled environment. The wavelength is plotted on the horizontal
axis while spectral absorbance is depicted on the vertical axis. Uniform labeling is applied
to mark the equatorial, basal, and apex regions of the mangoes for near-infrared (NIR)
spectrum acquisition, as illustrated in Figure 1, with the red box indicating the measurement
location.
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2.2. Machine Learning Model
2.2.1. Back Propagation Neural Network Establishment

In this study, the linear fitting model is chosen over the BP neural network at the
software level [16]. In contrast to many neural networks, the BP neural network demon-
strates superior performance in handling tasks necessitating long-term memory, selective
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information updating and transmission, and information control. Moreover, its intricate
network structure enables more effective modeling of sequential relationships, enhancing
the capturing of patterns and features within the training dataset [17].

Traditional recurrent neural networks are composed of a series of interconnected
identical basic units, each capable of transmitting information to the succeeding unit. In
the BP neural network model, four interconnected neural network layers operate in unique
symbiosis. These layers encompass memory elements for system state maintenance and
nonlinear gate elements, facilitating information regulation within and outside the memory
element at any given period. Any recurrent neural network may be deconstructed into
an infinite array of recurring basic units. Equation (1) illustrates the input gate of the
neural network, with ht−1 and xt denoting the prior state output value and current state
input value, respectively. These values signify the acceptance or rejection of corresponding
information, thereby dictating the updating state.

it = σ(Wi[ht−1, xt] + bi) (1)

∼
Ct = tanh(WC[ht−1, xt] + bC) (2)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (3)

Equation (2) signifies the candidate cell state, where information is stored and subse-
quently assessed through dot multiplication to identify pertinent memories. A value of 0
denotes complete discard, while a value of 1 signifies total retention, thereby integrating
retained information as fresh memory into the new unit state. Within Equation (3), Ct−1
symbolizes the former cell state; σ denotes the sigmoid function which maps the input
values to a range between 0 and 1; ft denotes the output of the forget gate; Wi and Wc
reflect the parameter matrix; and bi and bc denote bias parameters. Equation (3) delineates
the formation of each novel unit state.

Ot = σ(W0[ht−1, xt] + b0) (4)

Equation (4) represents the updated cell state derived from the Sigmoid layer, respon-
sible for determining the portion of the unit state to be output. Subsequently, the necessary
memory is output as an output gate for the entire neural network, as illustrated in the
fundamental principle in Figure 2.
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2.2.2. Partial Least Squares Curve

In BP-PLS, the independent and dependent variables undergo dimensionality reduc-
tion through the principal component analysis method. The original data are thereby
converted into a fresh set of potential variables known as PLS components [18]. These
PLS components represent linear combinations that encapsulate the significant explana-
tory variance of both the independent and dependent variables. Each PLS component
can be leveraged to construct a regression model linking the independent and dependent
variables. Subsequently, through iterative refinement, BP-PLS identifies the optimal PLS
component capable of elucidating the variances in both variables. During each iteration,
BP-PLS computes the covariance matrix between the independent and dependent variables
and determines the direction that maximizes covariance as a novel PLS component [19].
This process undergoes multiple iterations until reaching a predefined quantity of PLS
components. Ultimately, within each PLS component, the contribution of that component
to the predicted dependent variable can be computed based on the loading coefficient
between the component and the independent and dependent variables [20]. The linear
regression model linking the independent and dependent variables is established utilizing
the BP neural network structure, which is formulated through the weighted summation of
these contribution values.

2.2.3. Optimization by Simulated Annealing Algorithm

In consideration of the linear regression curve derived from the BP-PLS model and
a thorough literature review, the propensity for overfitting during the BP neural network
training phase is elucidated, often accompanied by uncertain network topology. To address
these challenges, the study introduces the Simulated Annealing Algorithm (SAA) [21]. The
simulated annealing algorithm is initiated by drawing parallels between the annealing
process in solid matter physics and general combinatorial optimization problems. The
algorithm’s flowchart is depicted in Figure 3. Commencing from a designated high tem-
perature T and progressively decreasing temperature parameters, the algorithm facilitates
a probabilistic transition towards the global optimal solution of the objective function by
evading local optima. This approach helps in mitigating errors arising from local optima
entrapment and overfitting during the search process, thereby enhancing the optimization
of the neural network’s weight thresholds. Consequently, the study leverages the simulated
annealing algorithm to optimize the neural network and enhance its overall performance.

2.3. Results and Discussion
2.3.1. Data Processing

• Statistics of mango brix data

The effects of different point sites on mango brix levels were investigated by plotting
the curves of brix levels for each point site of various mango varieties as a function of time,
as depicted in Figure 4a–c. The mango varieties included in the study, such as Tainong,
Golden, Gaole, and Toffee, are known for their similar size and sugar content, containing
high levels of sugar and vitamin C ranging from approximately 14 to 20 percent. These
mango varieties predominantly originate from provinces such as Hainan, Guangxi, Yunnan,
and Sichuan in China. Specifically, the mango point location in Figure 4a corresponds to the
abdomen of the mango, which is exposed to sunlight for the majority of the day and plays
a significant role in photosynthesis [22]. The activity of the encoded convertase exhibits a
continuous increase, resulting in the elevated cleavage of sucrose into glucose and fructose,
consequently leading to a rise in soluble solid content and the highest brix content in mango.
In Figure 4c, the mango roots are exposed to greater sunlight, serving as the primary site
for soluble solid production and subsequent accumulation, resulting in a slightly higher
brix content compared to the top in Figure 4b. However, with prolonged storage, the
mango surface undergoes damage due to the diminished activity of antioxidant enzymes
and reduced brix content, potentially impacting the experimental outcomes. Hence, in
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the current study, efforts are made to minimize brix measurements following prolonged
preservation periods [23].
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• Spectral data preprocessing

The NIR spectral curves from various locations on the mango are captured and are
depicted in Figure 5. Notably, the spectral data from points 5-1, 5-2, and 5-3 exhibit relative
stability, showing minimal interference from noise factors and displaying distinct char-
acteristic peaks, rendering them more conducive for subsequent research endeavors [24].
Accordingly, the aforementioned three points are selected for analysis.
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Data were collected from all 95 samples at points 5-1, 5-2, and 5-3, with spectral
readings obtained over a span of 11 days, ensuring optimal mango freshness. Given the
performance attenuation of the NIR spectrometer at the extremities of the wavelength
range, significant noise is observed at these points in the spectral data. Consequently, only
spectral information within the wavelength range of 1300–2300 nm was preserved for the
experiment, as illustrated in Figure 6a.
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The spectral data underwent additional preprocessing following noise removal. Miss-
ing values were addressed using cubic spline interpolation implemented in MATLAB
R2022a software. To mitigate instrument noise effects on the spectral curve and enhance
the signal-to-noise ratio, Savitzky–Golay convolution smoothing was applied in the re-
search methodology [25]. The findings demonstrate the effective filtering of external noise,
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revealing characteristic peaks at 1400 nm and 1985 nm. Additionally, the original spectrum
underwent Standard Normal Variate (SNV) transformation to rectify spectral errors aris-
ing from sample scattering, resulting in enhanced clarity of the two characteristic peaks
while retaining the original spectral information. Ultimately, a second derivative treatment
was applied to the spectral curve to eliminate baseline drift and enhance spectral resolu-
tion [26,27]. The preprocessed spectral curve, depicted in Figure 6b, was acquired, setting
the stage for the model’s accuracy through meticulous data preprocessing.

As illustrated in Figure 6b, the absorption within the 1300–1500 nm range is prominent,
with diminished absorption observed within the 1600–2200 nm range. This distinctive peak
is attributed to the yellow hue of the mango peel and the absorption properties of pigments
like carrots present in the mango. Additionally, a subtle characteristic peak is noted around
1970 nm, signifying the absorption band associated with O-H and C-H components [10].
The observed outcomes can be attributed to the light absorption by substances present in
the mango [28].

• Calibration Data Acquisition

The mango sample undergoes processing involving peeling, crushing, and pressing,
while the sugar content is calibrated through visible spectrophotometry employing a DHR
95 refractometer [29]. Each point undergoes three measurements, with the average value
serving as the standard brix content for that specific point. Based on the aforementioned
analysis, points 5-1, 5-2, and 5-3 are identified as calibration data for mango brix content.
Corresponding boxplots are generated for the collected data, depicted in Figure 7a–c. No-
tably, point 5-1 represents the mango’s root section, point 5-2 reflects the equatorial region,
and point 5-3 corresponds to the mango’s top portion. Importantly, all brix values for these
points exhibit an absence of outliers, thus necessitating no additional data preprocessing.

Simultaneously, a statistical analysis was conducted on the brix content of the three
points and is presented in Table 1.

Table 1. Overall statistical table of mango brix content data.

Point
Positions Minimum Maximum Average Standard

Deviation
Coefficient
of Variation

5-1 12.571 18.916 15.160 1.274 0.084

5-2 11.635 20.125 15.948 2.534 0.158

5-3 13.734 19.491 16.645 1.504 0.091

2.3.2. Establishing the Partial Least Squares Curve

The instrument’s model encompasses the training of multiple neural network layers
involving 1000 training iterations, leveraging extensive data characteristics. Considering
the presence of weak spectral information in some samples revealed by PLS analysis, the
optimal model configuration is achieved with a selection of 12 principal factors exhibiting
enhanced clustering efficiency for sugar levels. Consequently, the initial number of hidden
layer units is assigned as 20. To address nonlinearities effectively, the tanh function is
adopted as the activation function for the hidden layer. During model training, a challenge
arises with the root-mean-square error (RMSE) curve demonstrating slow convergence. This
issue is mitigated through adjustments in the epoch number after multiple dataset iterations
through the network. Following network state initialization, single-step prediction is
performed utilizing the neural network to update predicted values, thereby optimizing
adaptation levels and enhancing curve adjustments. Key parameters of the BP neural
network include a learning rate of 0.05, training duration set at 1000 epochs, and the
adoption of RMSE as the error function [30]. Upon the completion of training, both the
RMSE function and the loss function are minimized.

A comparison of spectral curves post data preprocessing reveals the significant impact
of various parameter combinations on the adjustment of R-square and RMSEP values.
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Adjusted R-squared, often referred to as the model goodness-of-fit index, signifies the
portion of variability in the dependent variable explained by the independent variable
through regression. It essentially measures the equation’s conformity to observed values.
When employing a calibration set-to-training set ratio of 1:4, as per the Kennard–Stone
algorithm, the adjusted R-squared and RMSE values are computed as 0.9055 and 0.2192,
respectively. While the adjusted R-squared value nears unity in this scenario, the RMSE
surpassing 0.1 signals inadequate model fitting and hints at overfitting tendencies, leading
to local optimization issues, as demonstrated in Figure 8 [31]. Hence, this study employs
a simulated annealing algorithm to optimize the model, in line with rigorous research
principles [32].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 16 
 

content. Corresponding boxplots are generated for the collected data, depicted in Figure 
7a–c. Notably, point 5-1 represents the mango’s root section, point 5-2 reflects the equato-
rial region, and point 5-3 corresponds to the mango’s top portion. Importantly, all brix 
values for these points exhibit an absence of outliers, thus necessitating no additional data 
preprocessing. 

Figure 7. Cont.



Appl. Sci. 2024, 14, 2402 11 of 15

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 16 
 

Figure 7. (a) Point 5-1 brix data boxplot; (b) point 5-2 brix data boxplot; and (c) point 5-3 brix data 
boxplot. 

Simultaneously, a statistical analysis was conducted on the brix content of the three 
points and is presented in Table 1. 

Table 1. Overall statistical table of mango brix content data. 

Point Positions Minimum Maximum Average Standard Deviation Coefficient of 
Variation 

5-1 12.571 18.916 15.160 1.274 0.084 
5-2 11.635 20.125 15.948 2.534 0.158 
5-3 13.734 19.491 16.645 1.504 0.091 

2.3.2. Establishing the Partial Least Squares Curve 
The instrument’s model encompasses the training of multiple neural network layers 

involving 1000 training iterations, leveraging extensive data characteristics. Considering 
the presence of weak spectral information in some samples revealed by PLS analysis, the 
optimal model configuration is achieved with a selection of 12 principal factors exhibiting 
enhanced clustering efficiency for sugar levels. Consequently, the initial number of hid-
den layer units is assigned as 20. To address nonlinearities effectively, the tanh function is 
adopted as the activation function for the hidden layer. During model training, a challenge 
arises with the root-mean-square error (RMSE) curve demonstrating slow convergence. 
This issue is mitigated through adjustments in the epoch number after multiple dataset 
iterations through the network. Following network state initialization, single-step predic-
tion is performed utilizing the neural network to update predicted values, thereby opti-
mizing adaptation levels and enhancing curve adjustments. Key parameters of the BP 
neural network include a learning rate of 0.05, training duration set at 1000 epochs, and 
the adoption of RMSE as the error function [30]. Upon the completion of training, both the 
RMSE function and the loss function are minimized. 

Figure 7. (a) Point 5-1 brix data boxplot; (b) point 5-2 brix data boxplot; and (c) point 5-3 brix data
boxplot.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 16 
 

A comparison of spectral curves post data preprocessing reveals the significant im-
pact of various parameter combinations on the adjustment of R-square and RMSEP val-
ues. Adjusted R-squared, often referred to as the model goodness-of-fit index, signifies the 
portion of variability in the dependent variable explained by the independent variable 
through regression. It essentially measures the equation’s conformity to observed values. 
When employing a calibration set-to-training set ratio of 1:4, as per the Kennard–Stone 
algorithm, the adjusted R-squared and RMSE values are computed as 0.9055 and 0.2192, 
respectively. While the adjusted R-squared value nears unity in this scenario, the RMSE 
surpassing 0.1 signals inadequate model fitting and hints at overfitting tendencies, leading 
to local optimization issues, as demonstrated in Figure 8 [31]. Hence, this study employs 
a simulated annealing algorithm to optimize the model, in line with rigorous research 
principles [32]. 

 
Figure 8. BP-PLS brix fitting plot. 

In this study, the measured brix content value is utilized as the horizontal coordinate, 
and the residual difference between the predicted and measured values serves as the lon-
gitudinal coordinate, enabling the construction of the residual diagram, as illustrated in 
Figure 9. The analysis of the residual graph reveals a lack of systematic patterns and pre-
dictability in the differences between the prediction and measurement sets within this re-
gression model. This observation indicates that the points in the residual graph adhere to 
the essential criteria for the model’s validity [33]. 

Figure 8. BP-PLS brix fitting plot.

In this study, the measured brix content value is utilized as the horizontal coordinate,
and the residual difference between the predicted and measured values serves as the
longitudinal coordinate, enabling the construction of the residual diagram, as illustrated
in Figure 9. The analysis of the residual graph reveals a lack of systematic patterns and
predictability in the differences between the prediction and measurement sets within this
regression model. This observation indicates that the points in the residual graph adhere to
the essential criteria for the model’s validity [33].

2.3.3. Optimization of the Simulated Annealing Algorithm

The BP neural network demonstrates notable linear fitting capabilities; nonetheless,
upon careful examination of the aforementioned outcomes, it becomes apparent that the net-
work may encounter local optimization challenges that significantly influence the model’s
prediction accuracy. Employing a simulated annealing algorithm for optimization effec-
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tively addresses these local optimization issues, enabling the adjustment of the weights
and thresholds within the BP neural network to obtain an optimal predictive model solu-
tion [34]. Throughout the research process, the damping function parameter of controller
T is set at 0.99, with an initial temperature of 1, a minimum temperature threshold of
0.110, the maximum number of iterations denoted by K, and an acceptance based on the
Metropolis criterion [35]. The optimized neural network is configured with a hidden layer
unit count of 25 and utilizes a leaky ReLU activation function. The optimized fitting graph
is presented in Figure 10. A comparison between Figures 8 and 10 illustrates that the regres-
sion curve model, refined through the simulation algorithm, exhibits enhanced accuracy
and successfully addresses local optimization challenges. The refined model achieves an
adjusted R-squared value of 0.9854, with a decreased predicted root-mean-square error
(RMSE) of 0.0431, showcasing improved performance of the training network.
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The residuals of the measurement set data and the optimized prediction set data are
extracted and plotted, with the measurement set data representing the horizontal coor-
dinate and the residuals of the two datasets representing the longitudinal coordinate, as
illustrated in Figure 11. An analysis of the residual graph reveals ongoing randomness and
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unpredictability between the two dataset residuals, aligning with the model’s correct speci-
fications. A comparison of the predicted and measured values of both models is detailed in
Table 2. Ultimately, the evaluation demonstrates the superior predictive performance of the
SA-BP_PLS model over the BP-PLS model for mango prediction.
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Table 2. Comparison of results of the two models.

Model Types Fitting Equations Corrected R Square Root-Mean-Square
Error

BP-PLS Y = 0.9202 + 1.873x 0.9055 0.2192
SA-BP-PLS Y = 0.7912 + 3.447x 0.9854 0.0431

3. Conclusions

This study integrates insights from previous research to develop a predictive model
for non-destructive testing of mangoes using near-infrared spectroscopy (NIRS), establish-
ing the correlation between brix levels and spectral data acquired through NIR diffuse
reflectance. Under controlled conditions, suitably sized mangoes were selected for exper-
imental data collection. Within the 1300 nm to 2300 nm wavelength range, the BP-PLS
mango brix level prediction model exhibits a R-squared prediction set of 0.9055, with a
root-mean-square error (RMSE) of 0.2192. The elevated RMSE value suggests potential
overfitting issues necessitating further optimization to enhance prediction accuracy. Ad-
dressing this concern, this study employs the simulated annealing algorithm for model
refinement. The resultant SA-BP-PLS mango brix level prediction model showcases a corre-
lation coefficient of 0.9854 and an improved root-mean-square error of 0.0431, surpassing
the performance of the BP-PLS model. This research underscores the efficacy of spectral
acquisition technology in conjunction with stoichiometric measurement methods, appropri-
ate spectral systems, and refined spectral pretreatment techniques for mango brix content
determination, offering valuable insights for the development of online non-destructive
testing instruments.
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