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Abstract: Background: Acute Bilirubin Encephalopathy (ABE) is a major cause of infant mortality
and disability, making early detection and treatment essential to prevent further progression and
complications. Methods: To enhance the diagnostic capabilities of multi-modal Magnetic Resonance
Imaging (MRI) for ABE, we proposed a deep learning model integrating an attention module (AM)
with a central network (CentralNet). This model was tested on MRI data from 145 newborns
diagnosed with ABE and 140 non-ABE newborns, utilizing both T1-weighted and T2-weighted
images. Results: The findings indicated the following: (1) In single-modality experiments, the
inclusion of AM significantly improved all the performance metrics compared to the models without
AM. Specifically, for T1-weighted MRI, the accuracy was 0.639 ± 0.04, AUC was 0.682 ± 0.037,
and sensitivity was 0.688 ± 0.09. For the T2-weighted images, the accuracy was 0.738 ± 0.039 and
the AUC was 0.796 ± 0.025. (2) In multi-modal experiments, using T1 + T2 images, our model
achieved the best accuracy of 0.845 ± 0.018, AUC of 0.913 ± 0.02, and sensitivity of 0.954 ± 0.069,
compared to models without an AM and CentralNet. The specificity remained relatively stable,
while the precision and F1 scores significantly increased, reaching 0.792 ± 0.048 and 0.862 ± 0.017,
respectively. Conclusions: This study emphasizes the effectiveness of combining attention modules
with CentralNet, significantly enhancing the accuracy of multi-modal MRI in classifying ABE. It
presents a new perspective and possibility for the clinical application of multi-modal MRI imaging in
the diagnosis of ABE.

Keywords: acute bilirubin encephalopathy; multi-modal MRI; deep learning; spatial attention
module; channel attention module; CentralNet; neonatal care

1. Introduction
1.1. Background

Neonatal jaundice, also known as neonatal hyperbilirubinemia, is a common condition
in newborns, manifested by yellowing of the skin and eyes [1,2]. This condition arises
from the accumulation of bilirubin, a yellow pigment produced during the normal break-
down of red blood cells. Newly formed bilirubin, being lipophilic and non-water-soluble,
is referred to as unconjugated bilirubin. In the bloodstream, it predominantly binds to
albumin for safe transport to the liver. Once in the liver, unconjugated bilirubin is conju-
gated with glucuronic acid, forming conjugated bilirubin, which is water-soluble and more
easily excreted via bile [3]. While most full-term infants experience physiological jaundice,
typically benign and self-resolving within a few weeks or treatable through short-term
phototherapy, some newborns may struggle to efficiently process unconjugated bilirubin
due to an immature hepatic enzyme system, leading to more pronounced jaundice. Ad-
ditionally, certain diseases and conditions can disrupt this metabolic process, resulting in
elevated bilirubin levels. In some infants, rapidly increasing bilirubin levels pose a risk
for developing kernicterus. If bilirubin crosses the blood–brain barrier, it can lead to the
death of brain cells, resulting in Acute Bilirubin Encephalopathy (ABE) [4,5]. Without
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prompt intervention, ABE can progress to kernicterus, a severe neurological condition
causing permanent brain damage, lifelong disabilities such as cerebral palsy, hearing loss,
and developmental problems, or even death [6,7]. Therefore, the early identification and
accurate diagnosis of ABE are crucial in neonatal care to prevent these severe outcomes.

Traditional diagnostic methodologies for ABE predominantly rely on clinical assess-
ments and serum bilirubin measurements. Clinicians typically initiate the diagnosis of
Neonatal Acute Bilirubin Encephalopathy (NABE) by noting signs of jaundice, such as the
yellowing of skin and eyes. These clinical observations are commonly verified through
blood tests that measure the total serum bilirubin (TSB) or transcutaneous bilirubin (TcB)
levels. However, the reliance on these traditional diagnostic methods presents significant
limitations [8]. The visibility of jaundice, crucial for initial assessment, can be markedly
less apparent in darker-skinned infants, potentially leading to underdiagnosis or delayed
intervention. Additionally, the variability in serum bilirubin, affected by age, health status,
and blood test timing, can introduce diagnostic uncertainties, further complicating the
effective identification and management of NABE.

The Bilirubin-Induced Neurologic Dysfunction (BIND) scoring system is commonly
used in conjunction with traditional methods to enhance accuracy in assessing neurological
impairments. The BIND score provides an objective tool by combining clinical features, ab-
normalities in brain Magnetic Resonance Imaging (MRI), and aberrant auditory brainstem
responses [9]. This system categorizes impairment severity into mild (1–3 points), moderate
(4–6 points), and severe (7–9 points) levels based on parameters like mental status, muscle
tone, and crying characteristics [10]. A score of 0 indicates normal neurological function in
newborns. Despite its significance in evaluating NABE and identifying bilirubin deposition
within brain nuclei, the BIND scoring system has limitations. Neurological assessments
in suspected ABE cases often focus on symptoms of central nervous system involvement,
such as lethargy, hypotonia, irritability, high-pitched crying, poor feeding, and, in severe
cases, seizures. However, these symptoms are not exclusive to ABE and may overlap with
other neonatal diseases, making differential diagnosis challenging without more definitive
tests. Moreover, there is a lack of sensitivity in detecting early brain changes caused by
bilirubin, often leading to severe damage before clinical symptoms manifest. Therefore,
the need for more advanced and sensitive diagnostic tools is highlighted, especially in
scenarios where direct observation of bilirubin deposition in the brain is challenging.

1.2. Related Works

In recent years, brain MRI has emerged as a vital tool for diagnosing neurological
conditions, including ABE [11,12]. MRI provides detailed images of the brain, enabling
clinicians to detect subtle changes and plan appropriate treatment. Research has particularly
focused on specific MRI techniques such as T1, T2, and Apparent Diffusion Coefficient
(ADC) imaging in patients with ABE. T1-weighted imaging often shows increased signal
intensity in the bilateral Globus Pallidus (GP) during the acute phase of ABE, attributed
to the accumulation of bilirubin in these areas [13–15]. However, these findings are not
consistent across all patients, as some individuals with elevated bilirubin levels do not show
these changes. T2-weighted imaging abnormalities are less common during the acute phase
of ABE but may be observed in more severe or advanced cases [16]. These changes can
include hyperintensity in the bilateral GP, which may correspond with T1 hyperintensity
seen during the acute phase. Diffusion-weighted imaging (DWI) and its derived ADC
values have shown promise in correlating with blood bilirubin levels, although their use in
routine diagnosis is still being explored [17,18]. Research findings indicate that Magnetic
Resonance Spectroscopy (MRS) plays a significant role in the differential diagnosis of
Neonatal Bilirubin Encephalopathy (NBE) and severe hyperbilirubinemia, especially when
NBE presents with atypical (subtle) symptoms and conventional MRI fails to reveal distinct
abnormalities [19,20].

The advent of advanced medical Image analysis techniques, particularly in the realms
of traditional machine learning and deep learning, has revolutionized the approach to
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clinical disease diagnosis. Liu et al. used machine learning techniques to differentiate
between abnormal brain enhancement and normal myelination in neonates [21]. Their
method involved manual segmentation of the region of interest (ROI) on MRI images,
feature extraction, and the selection of specific features based on T1-weighted images. This
approach, while effective, is labor-intensive and not easily adaptable to clinical settings
due to the need for manual segmentation and feature definition. However, Wu et al.
explored the use of deep learning networks, specifically ResNet18 and DenseNet201, for
the classification of multi-modal MRI images in ABE [22]. Their findings suggested that
the integration of data from multiple imaging modalities could significantly improve
the classification performance of ABE. However, a limitation of this approach is that
simple concatenation of data from different modalities might not fully capture the unique
characteristics of each, potentially limiting the neural network’s performance. The study
by Zhang et al. [23]. presents a novel approach for differentiating ABE from normal
myelination in newborns. They developed a feature fusion attention network, utilizing
an attention mask and element-wise multiplication for feature fusion. Their experimental
results demonstrated the feasibility of using attention modules and feature fusion to
enhance the classification performance of ABE. However, the classification outcomes were
not ideal due to certain limitations in the model structure. This work underscores the
potential and challenges of applying deep learning techniques in medical image analysis
for ABE classification.

1.3. Contributions of This Study

In this study, we have developed a new multi-modal MRI classification network specif-
ically designed for diagnosing Acute Bilirubin Encephalopathy (ABE), which represents a
significant step forward in medical imaging and diagnostic procedures. The key scientific
contributions of our research are as follows:

Effective integration of attention mechanisms: Our model, built upon the 3D ResNet18
architecture, innovatively incorporates spatial and channel attention modules within the
feature extraction networks for T1- and T2-weighted MRI images. This integration allows
the network to focus precisely on crucial features within specific areas and channels of the
images, thereby significantly enhancing the accuracy of ABE diagnosis. This demonstrates
a marked improvement over traditional methods, showcasing the power of attention
mechanisms in medical image analysis.

CentralNet as a key feature fusion method: A central element of our architecture is
CentralNet, strategically positioned between the feature extraction models of T1 and T2 modal
images [24]. CentralNet achieves effective feature fusion by calculating the weighted sum of
different modal feature data and their preceding layers. This novel approach fosters mutual
supervision and learning in the cross-modal feature extraction process, enhancing the model’s
precision in classifying ABE. The successful integration of CentralNet and its validation through
several control experiments underline its efficacy, paving the way for new possibilities in the
clinical application of multi-modal MRI imaging for diagnosing ABE.

Collectively, these contributions highlight the effectiveness of our proposed model in
improving the diagnostic accuracy of multi-modal MRI for ABE. Looking forward, we aim
to integrate more advanced MRI technologies and larger datasets in our future research.
This will enable us to further validate the effectiveness and reliability of our methodology,
continuing to contribute to the field of medical imaging and diagnostics.

2. Materials and Methods
2.1. Study Subjects

The data for this study were obtained from routine clinical examinations conducted
at Wuxi People’s Hospital between 2020 and 2022, with all research protocols receiving
approval from the Clinical Research Ethics Committee. We recruited 285 newborns with
high bilirubin levels, among whom 145 were diagnosed with ABE, and 140 were identified
as non-ABE cases. Experienced pediatricians confirmed the diagnosis for all participants
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based on clinical examination results and the Neonatal Behavioral Neurological Assess-
ment (NBNA). The NBNA, developed by Professor Bao Xiulan from Peking Union Medical
College Hospital, combines the strengths of the American Brazelton Neonatal Behav-
ioral Assessment Scale [25] and the French Amiel-Tison neonatal neuromotor assessment
method [26]. This assessment is primarily used to evaluate the integrity of neonatal nervous
system development, covering five domains: behavioral capability, passive muscle tone,
active muscle tone, primitive reflexes, and overall assessment. The assessment comprises
20 items, with a total score of 40 points. Newborns diagnosed as non-ABE did not exhibit
the corresponding clinical neurological symptoms.

2.2. MRI Acquisition

MRI images were acquired using a 1.5 T Siemens MRI scanner (Siemens Shenzhen
Magnetic Resonance Ltd., Shenzhen, China), adhering to experimental requirements. T1-
weighted images were obtained with the following parameters: TR/TE of 200/4.8 ms, a
slice thickness of 4 mm for 20 slices, a flip angle of 90◦, a matrix size of 272 × 288, and
a field of view (FOV) of 217 × 230 mm. For T2-weighted images, the parameters were
TR/TE of 2800/98 ms, a slice thickness of 4 mm for 20 slices, a flip angle of 150◦, a matrix
size of 256 × 256, and an FOV of 230 × 230 mm. All images were manually inspected by
pediatricians to ensure they met quality standards for subsequent analysis.

2.3. Image Preprocessing

During the image preprocessing, MRI images underwent several processing steps. First,
the FSL v7.0 SynthStrip module was used for skull stripping of both T1- and T2-weighted
images [27]. To standardize inter-image variability and enhance model robustness and com-
putational efficiency, images were normalized to a grayscale range of 0–1 and resized to
128 × 128 pixels. From each T1 and T2 image modality, 6 consecutive slices surrounding
the GP were selected as the 3D input for the model, resulting in a 3D tensor of intensity values
with a size of 128 × 128 × 6. All preprocessing tasks were performed using Python 3.8 and FSL
6.0.6 software on an Ubuntu 20.04 system.

To address the challenges of limited training data and potential overfitting, we incorpo-
rated robust data augmentation techniques into our methodology. These involved random
horizontal and vertical translations of images ranging from −10 to 10 pixels, rotations
between −30 and +30 degrees, and scaling of images from 0.8 to 1.2 times their original
size (Figure 1).
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Figure 2. The proposed deep learning framework for ABE prediction, leveraging a multi-modal fea-
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Figure 1. Axial images of T1 and T2 modality MRI scans. (a–d) represent images from the ABE
group, while (e–h) are from the non-ABE group. (a,e) are original T1 modality images, (b,f) are the
corresponding T1 images after data augmentation, (c,g) are original T2 modality images, and (d,h) are
the corresponding T2 images after data augmentation.



Appl. Sci. 2024, 14, 2464 5 of 13

2.4. Deep Learning Framework

In this study, we developed a multi-modal image classification network based on the
3D ResNet18 architecture (Figure 2). The primary function of 3D ResNet18 in our frame-
work is the extraction of features from T1- and T2-weighted MRI images. We chose 3D
ResNet18 for its inherent capability to handle three-dimensional data, crucial for accurately
interpreting the complex structures within MRI images. Unlike other models primarily
designed for 2D image processing, 3D ResNet18 employs 3D convolutional kernels, effec-
tively capturing spatial details across all dimensions. This feature makes it particularly
suitable for medical imaging applications where precision is of the utmost importance.
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Figure 2. The proposed deep learning framework for ABE prediction, leveraging a multi-modal
feature fusion approach. The architecture employs dual 3D ResNet18 networks for parallel feature
extraction from T1- and T2-weighted MRI images. The input for the model is a 3D construct
composed of a sequence of six adjacent slices centered around the GP region from the MRI scans.
A CentralNet module integrates the feature maps derived from both T1- and T2-weighted images,
ensuring comprehensive feature representation. The model is subsequently trained, utilizing a joint
multi-task learning strategy aimed at enhancing the predictive accuracy for ABE.

To enhance the model’s feature extraction capabilities, we strategically incorporated
spatial and channel attention modules within different residual blocks of the 3D ResNet18
network [28]. Concurrently, CentralNet, proven to be effective in integrating features
from different modalities, as demonstrated by Valentin Vielzeuf et al. [24], is deployed
between the two feature extraction pathways to integrate stage-specific features from T1
and T2 modalities. This architecture offers a more dynamic and effective feature integration
compared to traditional feature fusion methods. The multi-layered approach of CentralNet
allows for a richer and more nuanced representation of data, making it an optimal choice
for the complex requirements of medical image analysis.

This design leads to a robust model, fine-tuned through joint multi-task training, and
specifically aimed at the classification of ABE. This method represents a harmonious inte-
gration of advanced attention mechanisms with multi-modal feature fusion, significantly
boosting the model’s diagnostic accuracy.

In our methodology, attention modules are integrated within the residual blocks of
the 3D Res-Net18 network (Figures 3 and 4) [28]. These modules enhance the model’s
focus across spatial and channel dimensions, substantially enhancing its feature extraction
capacity. The spatial attention module uses maximum and average pooling operations
to generate spatial weight maps, directing the model’s attention towards crucial image
regions for classification. The channel attention module computes maximum and average
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pooling along the channel axis, producing two sets of shared weight coefficients for the
channels. These coefficients are processed through a shared-weight multi-layer perceptron
(MLP) and subsequently aggregated via weighted summation to derive unique channel
weight coefficients. This dual attention mechanism ensures balanced and prioritized
comprehension of spatial and channel-specific features, essential for high precision in
classification tasks.
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Figure 3. Diagrammatic representation of the spatial and channel attention modules. (a) The
spatial attention module computes separate outputs from maximum pooling and average pooling
operations along the channel axis. The outputs are then concatenated and further processed through
a convolutional layer followed by a Sigmoid activation function to yield spatial attention features.
(b) The channel attention module calculates outputs from maximum pooling and average pooling
processes. These outputs are subsequently fed into a shared multi-layer perceptron (MLP) network.
The combined weighted sum of these MLP outputs, after application of a Sigmoid activation function,
produces the channel attention features.
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CentralNet’s architecture integrates features from different modalities by taking the
weighted sum of layers from the corresponding unimodal networks and its own preceding
layers as input. Each modality is processed by a distinct deep convolutional network, with
a central network integrating these modality-specific features. Traditional methods of multi-
modal feature fusion involve independently extracting features from each modality and
then combining them. In contrast, the CentralNet structure enables mutual supervision and
learning from each other during the feature extraction process across different modalities.
This method represents progress in addressing the complexity of multi-modal data fusion,
offering a flexible and effective framework for integrating various data types.
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2.5. Model Training and Evaluation

In this study, the model’s generalization ability was evaluated by dividing the dataset
into training, validation, and test sets in a 6:2:2 ratio. The dataset underwent random
partitioning to ensure unbiased evaluation. Subsequently, the evaluation metrics were
calculated based on the average results from 50 tests, providing robust insights into the
model’s performance under diverse conditions.

These evaluation metrics, including classification accuracy, Area Under the Curve
(AUC), sensitivity, specificity, recall rate, and F1 score, were utilized to comprehensively
assess the model’s performance. Each metric offers unique insights into different aspects
of the model’s predictive capabilities. For instance, accuracy measures overall correctness
in predictions, while precision and recall focus on correctly identifying positive instances.
Specificity evaluates the model’s ability to identify negative instances accurately, and the F1
score provides a balanced measure of precision and recall. The calculations of these metrics
were based on Equations (1)–(5), where TP, FP, TN, and FN represent true positive, false
positive, true negative, and false negative cases, respectively. The performance indicators
are represented as the mean value plus or minus the standard deviation from these tests.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

In our study, we conducted a two-part experimental investigation to assess the impact
of attention modules and CentralNet on MRI data classification. The first part focused on
single modality experiments, where the model was individually fed with either T1 or T2
modality images. The primary objective here was to compare the classification performance
of models without the attention module against those equipped with it. This comparison
aimed to elucidate the specific contribution of an AM in enhancing the model’s ability to
classify MRI images based on single modalities.

Following the single modality experiments, we delved into multi-modal classification.
Initially, we adopted the early fusion method as described in Wu et al.’s study [22], where
T1 and T2 MRI modalities were concatenated at the outset before being input into the model.
This approach set the baseline for our multi-modal analysis. Subsequently, we implemented
a later fusion strategy, differing from early fusion by merging features from T1 and T2
modalities at a later stage in the model’s processing. This step was crucial in understanding
the benefits of fusing features at different stages of the model. The experiments were further
extended by integrating attention modules into the later fusion framework. Finally, our
proposed model, incorporating both an AM and CentralNet, was evaluated to determine
its efficacy in optimizing classification performance in a multi-modal MRI context.

To achieve effective model parameter initialization and improved training efficiency,
we utilized transfer learning techniques. The pre-trained weights from ImageNet were
downloaded from the PyTorch website (https://download.pytorch.org/models/resnet18-
5c106cde.pth, accessed on 7 December 2023) to initialize the weights of the feature extraction
module in our model. The hyperparameters for training were set as follows: an initial
learning rate of 0.0001, maximum epoch of 200, and a minibatch size of 32. The Adam
algorithm was used to train the model. This experiment was conducted using Python 3.10
on a Windows 11 operating system.

https://download.pytorch.org/models/resnet18-5c106cde.pth
https://download.pytorch.org/models/resnet18-5c106cde.pth
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3. Results

The demographic and clinical characteristics of the subjects are summarized in Table 1,
which compares the group of 145 subjects with ABE to the group of 140 subjects with
non-ABE. When considering the gender distribution, the ABE group had 79 males and
66 females, while the non-ABE group consisted of 85 males and 55 females. However,
the difference in the gender ratio between the groups was not statistically significant, as
indicated by a p value of 0.287 (Pearson’s Chi-Squared test). The average weight of the
subjects in the ABE group was 3.78 ± 0.68 kg, slightly lower than the average weight of
3.98 ± 1.06 kg in the non-ABE group, but this difference was not statistically significant
(p = 0.138, Mann–Whitney U test). A significant difference was observed in the age of the
subjects, with the ABE group exhibiting a younger age profile (9.89 ± 5.67 days) compared
to the non-ABE group (15.76 ± 11.69 days). The age difference was statistically significant
(p < 0.001, Mann–Whitney U test).

Table 1. The demographic and clinical characteristics of the subjects.

Clinical Features ABE (n = 145) Non-ABE (n = 140) p Value

Gender
(male/female) 79/66 85/55 0.287 1

Weight (kg) 3.78 ± 0.68 3.98 ± 1.06 0.138 2

Age (days) 9.89 ± 5.67 15.76 ± 11.69 <0.001 2

1 The p value is the two-sided asymptotic significance from the Pearson’s Chi-Squared test. 2 For weight and age,
which did not pass normality tests (p < 0.05 in both Kolmogorov–Smirnov and Shapiro–Wilk tests), the p values
are from the non-parametric Mann–Whitney U test.

In the assessment of the single-modality MRI data, the incorporation of an attention
module (AM) resulted in a significant improvement in all the performance metrics for both
the T1- and T2-weighted images (see Table 2). Specifically, the application of the attention
module on the T1-weighted MRI resulted in an accuracy of 0.639 ± 0.04, an AUC of 0.682
± 0.037, and a sensitivity of 0.688 ± 0.09. For the T2-weighted images, the performance
was even more significant, with an accuracy of 0.738 ± 0.039 and an AUC reaching 0.796 ±
0.025. This improvement suggests that the attention module offers a significant advantage
in interpreting MRI data.

Table 2. Performance evaluation of single-modal MRI data with and without attention module across
various metrics.

Module MRI
Modality Accuracy AUC Sensitivity Specificity Precision

Score F1 Score

None T1 0.606 ± 0.041 0.636 ± 0.047 0.655 ± 0.114 0.555 ± 0.123 0.609 ± 0.046 0.624 ± 0.057
None T2 0.688 ± 0.034 0.736 ± 0.04 0.779 ± 0.087 0.593 ± 0.065 0.666 ± 0.03 0.716 ± 0.042
AM T1 0.639 ± 0.04 0.682 ± 0.037 0.688 ± 0.09 0.588 ± 0.068 0.634 ± 0.034 0.657 ± 0.052
AM T2 0.738 ± 0.039 0.796 ± 0.025 0.764 ± 0.083 0.711 ± 0.048 0.733 ± 0.029 0.746 ± 0.048

AM = attention module; None = model without attention module.

In our multi-modal experiment, we rigorously evaluated five distinct models for
classifying combined T1 and T2 MRI modalities (Table 3). These models encompassed
various fusion strategies and attention mechanisms to optimize the classification accuracy.
We first examined the “None (Early Fusion)” model, following Wu et al.’s early fusion
strategy [22], which concatenates T1 and T2 modalities before inputting into the model.
This baseline approach achieved an accuracy of 0.648 ± 0.043, a sensitivity of 0.709 ± 0.078,
and a specificity of 0.586 ± 0.048. The subsequent integration of attention modules (AMs)
into the early fusion framework, denoted as “AM (Early Fusion)”, yielded noticeable
improvements across all the metrics, with an accuracy of 0.663 ± 0.046, a sensitivity of
0.714 ± 0.103, and a specificity of 0.611 ± 0.062.
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Table 3. Impact of attention modules and CentralNet on classification metrics using combined T1
and T2 MRI modalities.

Module MRI Modality Accuracy AUC Sensitivity Specificity Precision Score F1 Score

None (Early Fusion) T1 + T2 0.648 ± 0.043 0.693 ± 0.039 0.709 ± 0.078 0.586 ± 0.048 0.639 ± 0.033 0.671 ± 0.048
AM (Early Fusion) T1 + T2 0.663 ± 0.046 0.738 ± 0.034 0.714 ± 0.103 0.611 ± 0.062 0.655 ± 0.034 0.68 ± 0.056

None (Later Fusion) T1 + T2 0.728 ± 0.054 0.77 ± 0.024 0.747 ± 0.103 0.708 ± 0.035 0.724 ± 0.038 0.733 ± 0.067
AM (Later Fusion) T1 + T2 0.766 ± 0.013 0.804 ± 0.027 0.795 ± 0.055 0.735 ± 0.059 0.759 ± 0.027 0.775 ± 0.017
AM + CentralNet T1 + T2 0.845 ± 0.018 0.913 ± 0.02 0.954 ± 0.069 0.732 ± 0.077 0.792 ± 0.048 0.862 ± 0.017

AM = attention module; None = model without attention module; fusion strategy: early fusion, later fusion,
CentralNet.

Following early fusion, we explored the “None (Later Fusion)” model, wherein the T1
and T2 features were combined at a later stage in the model’s processing. This later fusion
strategy outperformed early fusion, achieving an accuracy of 0.728 ± 0.054, a sensitivity
of 0.747 ± 0.103, and a specificity of 0.708 ± 0.035. Integrating attention modules (AMs)
into the later fusion framework further improved the performance, resulting in the “AM
(Later Fusion)” model, which attained an accuracy of 0.766 ± 0.013 and a sensitivity of
0.795 ± 0.055. The most significant advancements, however, were observed with the
“AM + CentralNet” model, where attention modules were combined with CentralNet
for feature fusion. This approach achieved the highest performance, with an accuracy of
0.845 ± 0.018 and sensitivity of 0.954 ± 0.069, underscoring the effectiveness of attention
mechanisms and advanced fusion techniques in enhancing multi-modal MRI classification.

Figure 5 presents the performance metrics of different models for ABE classification.
Panel (a) shows the confusion matrix for our proposed model, illustrating the number of
true positives (ABE correctly identified as ABE) at 26 and true negatives (non-ABE correctly
identified as non-ABE) at 23, indicating a strong predictive capability. However, there are
instances of misclassification, with 7 false negatives (ABE incorrectly identified as non-ABE)
and 1 false positive (non-ABE incorrectly identified as ABE), which suggests areas for
potential improvement in the model’s sensitivity.
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In our study, we meticulously evaluated the processing times across different compu-
tational models during various stages of our experiment, including preprocessing, training,
and testing (Table 4). The preprocessing stage displayed a uniform duration across all the
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models, with each taking approximately 59 s per sample. During the training and testing
phases, we noted significant differences in the processing times depending on whether
an attention module was used and the type of fusion strategy employed. The ‘None’
model, which did not include an attention module, exhibited the shortest processing times.
Conversely, models using either early fusion or later fusion strategies, especially those
incorporating an attention module, required longer processing times due to the increased
computational complexity.

Table 4. Comparative processing times in different computational models.

Procedure None (Early Fusion) None (Later Fusion) AM (Later Fusion) Ours Model

Preprocessing 59.0 (s/sample) 59.0 (s/sample) 59.0 (s/sample) 59.0 (s/sample)
Training 2.10 (s/epoch) 2.20 (s/epoch) 3.80 (s/epoch) 4.50 (s/epoch)
Testing 0.25 (s/epoch) 0.27 (s/epoch) 0.35 (s/epoch) 0.60 (s/epoch)

The presence of an AM and the choice of fusion strategy, particularly later fusion, led to
a modest increase in the processing time but significantly enhanced the model’s analytical
capabilities. This trade-off is particularly evident in the accuracy and reliability improve-
ments in multi-modal MRI analysis for diagnosing Acute Bilirubin Encephalopathy (ABE).
Our findings highlight the effectiveness of these approaches, balancing computational
efficiency with advanced performance capabilities.

4. Discussion

Bilirubin-induced brain injury is distinctive, with the pallidum, basal ganglia, sub-
stantia nigra, hippocampus, thalamic nuclei, and putamen being notably and selectively
affected in a symmetrical pattern [9,13,29]. The most common and characteristic finding in
ABE is bilateral symmetric high signals on T1-weighted MRI. In cases of severe neurological
damage caused by bilirubin, MRI can, to some extent, detect signal changes caused by
the injury. This change is a long-term progression, characterized by bilateral symmetric
high signals in T1-weighted sequences transitioning to high signals in T2-weighted se-
quences and fluid-attenuated inversion recovery (FLAIR) sequences in specific areas of the
brain [10,13,30]. However, not all patients with hyperbilirubinemia exhibit typical radio-
logical findings that are visible to the naked eye in conventional MRI sequences commonly
used in current clinical practice. This is particularly true for patients who are not critically
ill or are in the early stages of the condition. Identifying ABE or hyperbilirubinemia using
MRI based on traditional radiological experience is quite challenging in clinical practice.

In this study, we proposed a deep learning framework based on multi-modal feature
fusion and attention modules to distinguish ABE from non-ABE conditions in newborns.
The application of the attention module and CentralNet has demonstrated the potential for
advanced diagnostic accuracy in the evaluation of MRI data. The attention module’s ability
to refine the focus on salient features within the imaging data is evidenced by the observed
improvements in sensitivity and precision scores. Furthermore, the incorporation of Cen-
tralNet has notably enhanced the model’s accuracy and AUC. This is largely attributed
to CentralNet’s ability to effectively uncover inter-modal associative information. During
the feature extraction phase, there is mutual supervision and learning across modalities,
thereby more efficiently distilling critical diagnostic information from the complex imag-
ing data. This collaborative process facilitated by CentralNet leads to a more insightful
synthesis of diagnostic features, improving the model’s overall diagnostic capability.

Although the specificity did not improve at the same rate, it remained relatively
consistent, which implies that the models did not lose their ability to identify true negatives
correctly. This is particularly important in clinical practice to avoid false positives that
could lead to unnecessary interventions. The notable increase in the F1 score with the use
of both the attention module and CentralNet indicates a balanced improvement in the
precision and recall, which is critical for the reliable classification of medical imaging data.

However, our study still has certain limitations. First, the source of our patient sample
is singular and the sample size is relatively small. Although we have employed different
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strategies, such as data augmentation and transfer learning, to address overfitting, these
measures may not completely offset the effects of the small sample size, which could affect
the model’s ability to generalize. This limitation may also impede the attainment of a
consistent sample distribution across training, validation, and test datasets. Secondly, as
illustrated in Table 1, there is a notable age difference between subjects in the ABE group
and those in the non-ABE group. Given the rapid and distinctive development of the infant
brain, we cannot entirely dismiss the impact of different stages of brain development on
our findings. Furthermore, the incorporation of additional modalities, such as Magnetic
Resonance Spectroscopy (MRS), perfusion MRI, and comprehensive clinical data, could
potentially improve the diagnostic effectiveness of our approach [31,32]. Although the
classification accuracy of our current model is not yet suitable for clinical deployment, this
study lays a valuable foundation for future investigations into the use of multi-modal MRI
for diagnosing ABE.

In future studies, we aim to stay at the forefront of deep learning and medical image
analysis by focusing on innovative models, especially Vision Transformers (ViTs) [33]. ViTs,
with their advanced performance in image data processing, use a novel method of image
segmentation into patches and a self-attention mechanism. This approach is critical in
medical imaging, enabling the detection of minute but diagnostically crucial variations. ViTs
excel in modeling long-range dependencies within images, offering a substantial advantage
over traditional Convolutional Neural Networks (CNNs), especially for complex medical
image analysis. Their strong transfer learning capabilities are well suited for specific
medical imaging tasks, potentially increasing diagnostic efficiency [34]. Furthermore, the
interpretability aspect of ViTs, through their attention mechanism, is invaluable in clinical
settings for understanding model decisions. Integrating Vision Transformers into our
research, we aim to create more accurate, reliable, and interpretable diagnostic models for
ABE diagnosis.

5. Conclusions

In our study, we developed a multi-modal MRI classification network based on the 3D
ResNet18 architecture. This network exhibited outstanding capability in extracting features
from T1- and T2-weighted MRI images. Integrating spatial and channel attention modules
within various residual blocks, our network effectively concentrated on key image features.
CentralNet, a pivotal component of our architecture, facilitated mutual supervision and
learning in the cross-modal feature extraction process, enhancing the model’s precision
in classifying ABE. The rationality of our model structure and the efficacy of combining
attention mechanisms with CentralNet were validated through several control experiments,
demonstrating the significance of this approach in medical imaging data analysis. Future
research could investigate the integration of more advanced MRI technologies and larger
datasets to further confirm the effectiveness and reliability of our methodology.
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Abbreviations

ABE Acute Bilirubin Encephalopathy
MRI Magnetic Resonance Imaging
AM Attention module
CentralNet Central network
T1 T1-weighted MRI
T2 T2-weighted MRI
AUC Area Under the Curve
BIND Bilirubin-Induced Neurologic Dysfunction
GP Globus Pallidus
ADC Apparent Diffusion Coefficient
DWI Diffusion-weighted imaging
MRS Magnetic Resonance Spectroscopy
NABE Neonatal Acute Bilirubin Encephalopathy
TSB Total Serum Bilirubin
TcB Transcutaneous bilirubin
NBNA Neonatal Behavioral Neurological Assessment
ROI Region of interest
MLP Multi-layer perceptron
ViT Vision Transformer
CNN Convolutional Neural Network
FOV Field of view
FSL FMRIB Software Library 6.0.6
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