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Abstract: To investigate the influence of non-singular terms (T stress) in the stress field on the
composite fractures of hard rock Type I–II, such as rock splitting failure and hydraulic fracture
propagation, this study focused on hard rocks in metallic mines. Through splitting tests and hydraulic
fracturing experiments, the impact of T stress on the characteristics of Type I–II composite fractures
in hard rocks was analyzed. Utilizing the generalized maximum tangential (GMTS) stress criterion
considering T stress, the stress intensity factors of hard rock Type I–II composite fractures with
different pre-existing crack angles were predicted. The critical fracture pressure expression for hard
rocks was derived based on the maximum tangential stress (MTS) criterion. The results indicate
that the GMTS criterion, considering T stress, is more suitable for describing the characteristics of
Type I–II composite fractures under rock-splitting loads. However, under hydraulic fracturing, T
stress has a minor influence on the fracture characteristics of hard rock hydraulic fractures. Therefore,
when predicting the critical fracture pressure of hydraulic fractures, T stress can be disregarded. This
study provides a scientific basis and guidance for hard rock hydraulic fracturing engineering.

Keywords: generalized maximum tangential stress criterion; I–II mixed type fracture; T stress;
hydraulic fracture; critical rupture pressure

1. Introduction

Studying the characteristics of Type I–II composite fractures in hard rocks enables
theoretical predictions of the fracturing behavior of ore rocks and serves as a foundational
research basis for establishing mechanisms of rock breaking under hydraulic fracturing
conditions [1–5].

In the field of fracture mechanics, a variety of traditional composite fracture criteria
have been proposed to predict the linear elastic fracture behavior of cracked materials [6].
These criteria include the maximum shear stress criterion proposed by Erdogan et al. [7],
the strain energy density factor theory proposed by Sih [8], and the maximum energy
release rate theory developed based on the Griffith theory [9]. They analyzed the fracture
characteristics of the material by considering the singular term of the stress field at the
crack tip. However, studies have shown that there are significant differences between
the prediction results of the traditional composite fracture criterion and the experimental
observation results, mainly due to the influence of the non-singular term (T stress) in the
stress field of the crack tip [10–15]. Therefore, to more accurately analyze the fracture
characteristics of materials, scholars began to retain the non-singular term (T stress) in
the stress field. This concept was first proposed by Williams and Ewing [16] and led to
the development of the generalized maximum shear stress criterion [17], the generalized
minimum strain energy density factor criterion [18], and the generalized average strain
energy density factor criterion [19].
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The impact of T stress on material fracture characteristics is closely related to the critical
fracture distance, and the greater the critical fracture distance, the greater the influence of T
stress on material fracture characteristics [20]. Hard rocks, as brittle materials, are generally
considered to have a very small critical fracture distance [21]. Currently, there has been a
considerable amount of research on the influence of T stress on the fracture characteristics
of brittle materials. For example, Li et al. [22] derived analytical formulas for T stress in
edge-cracked Brazilian disc (ECBD) specimens under distributed loads and found that
its influence should be considered for larger crack angles. Shen et al. [23] modified the
traditional G criterion, considering the influence of T stress on crack propagation. Tang
et al. considered the influence of T stress and established the maximum tangential stress
(MTS) criterion that simultaneously considers rock properties, crack parameters, strength,
and deformation parameters, predicting Type I–II composite stress intensity factors [24].

Under the combined influence of in situ stress and hydraulic pressure, hydraulic
fractures often exhibit Type I–II composite fractures [25–27]. Existing theoretical research
calculates Type I–II composite stress intensity factors at the tip of hydraulic fractures by
modeling without considering the wellbore, simplifying it as a model with inclined cracks
in an infinite plate [28–30]. Moreover, hydraulic fracturing rocks are often treated as brittle
materials, and to simplify calculations, linear elastic fracture criteria are used to describe
the rock-breaking process of hydraulic fractures [31–34].

The effect of T stress on the fracture characteristics of brittle materials was investigated.
Based on the generalized maximum tangential stress (GMTS) criterion, the effect of T stress
on the fracture characteristics of hard rock is verified in the splitting test. In addition,
we also analyze the influence of T stress on the fracture characteristics of hydraulic frac-
turing and derive the calculation formula for the critical fracture pressure of hydraulic
fracturing. Compared with the existing research, the main innovation of this study is
that the influence of T stress on the hard rock fracture process is fully considered, which
provides an important theoretical basis for hard rock hydraulic fracturing engineering.
These findings provide new insights to the scientific community in understanding hard
rock hydraulic fracturing behavior and provide a valuable reference for future related
research and engineering practices.

2. Composite Fracture Characteristics in the Fracture Toughness Test
2.1. The GMTS Criterion

Considering that there are more I–II composite faults [35–38] in rock engineering, and
I–II composite faults only crack on the fracture cross-section [39], this study conducted
theoretical analysis on the fracture cross-section. This study considered the influence of
non-singular terms on the fracture of medium cracks and represented the stress field at the
crack tip using the stress intensity factors KI, KII, and T stress, as shown below [40]:

σr =
1√
2πr

cos θ
2

[
KI

(
1 + sin2 θ

2

)
+ KII

(
3
2 sin θ − 2 tan θ

2

)]
+ T cos2 θ

σθ = 1√
2πr

cos θ
2

(
KI cos2 θ

2 − KII
3
2 sin θ

)
+ T sin2 θ

τrθ = 1√
2πr

cos θ
2 [KI sin θ + KII(3 cos θ − 1)]− T sin θ cos θ

(1)

In this equation, σr, σθ, and τrθ represent the radial stress, tangential stress, and
shear stress at the crack tip, respectively, measured in megapascals (MPa). The variables
r and θ denote the radius and angle at the crack tip, measured in millimeters (mm) and
degrees (◦), respectively. KI and KII are the stress intensity factors for Mode I and Mode II
cracks, measured in megapascals per square root meter (MPa·m−1/2), respectively. T is
the non-singular term of the stress field, i.e., T stress, representing the stress component
parallel to the crack direction, measured in megapascals (MPa).

The MTS theory was primarily employed to explain the fracture problems associated
with Mode I, Mode II, and Mode I–II compound cracks. This criterion posits the following:
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1. Cracks initiate at the crack tip radially in the direction of the maximum tangential
stress σθ.

2. Based on the tangential stress σθ achieving its maximum value σθmax, the angle of
crack propagation θ0 is determined.

3. A fracture occurs at a radial distance rc along the crack tip, simultaneously with the
tangential stress σθ exceeding the tensile strength σt.

Therefore, the mathematical expression for the MTS criterion is [41]:
∂σθ/∂θ|θ=θ0

= 0

∂2σθ/∂2θ
∣∣
θ=θ0

< 0

σθmax = σt

(2)

Substituting Equation (1) into Equation (2) and defining η0 =
√

2πrc, the crack ini-
tiation criterion for the central straight Brazilian disk (CSTBD) splitting test specimen
was obtained:

{
− 3

4 cos θ0
2 [KI sin θ0 + KII(3 cos θ0 − 1)] + η0T sin 2θ0

}
= 0 3

8

 KI

(
sin θ0

2 sin θ0 − 2 cos θ0
2 cos θ0

)
+

KII

(
3 cos θ0 + 6 cos θ0

2 sin θ0 − 1
) + 2η0T cos 2θ0

 < 0
(3)

After obtaining the crack propagation angle θ0 using Equation (3), based on the
boundary conditions of the CSTBD test, the tangential stress at the crack tip was determined.
In Equation (3), there exists a critical distance rc from the crack tip. For compound cracks,
the critical break distance is variable and depends on the stress state at the crack tip.
Therefore, we adopted the method from reference [42] to determine the critical distance at
the tip of the compound crack:

rc = cos γrc1 + sin γrc2 (4)

tan γ =
KII/KIIC

KI/KIC
(5)

In this equation, KIC is the pure Mode I fracture toughness; KIIC is the pure Mode II
fracture toughness; rc1 is the critical fracture distance for pure Mode I; and rc2 is the critical
fracture distance for pure Mode II.

We substituted the crack propagation angle θ0 into Equation (1) when θ0 = 0, KI = KIC,
and KII = 0. Then, by comparing with Equation (2), the pure Mode I fracture toughness KIC
was obtained:

KIC = σt
√

2πrc (6)

2.2. The Composite Stress Intensity Factor of the CSTBD Specimen

The CSTBD sample splitting test is an effective method for testing fracture toughness,
and the specimen processing is simple. By adjusting the β angle between the central straight
crack and the point load line, the specimen was loaded by point load until the specimen
ruptured. Based on the peak load at rupture and the corresponding shape parameters of
the specimen, the I–II composite stress intensity factor of the specimen material could be
obtained, as shown in Figure 1.

Using the following equations to estimate the corresponding Mode I stress intensity
factor, Mode II stress intensity factor, and T stress [43]:

KI =
P
√

πa
πRB

YI (7)

KII =
P
√

πa
πRB

YII (8)
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T =
P

πRB
1

1 − α
T∗ (9)

where KI, KII, and T represent the Mode I stress intensity factor, Mode II stress intensity
factor, and T stress, respectively, at the initiation of rock cracking in the CSTBD specimen.
P is the critical fracture load at the rock failure stage; R is the radius of the disk specimen;
B is the thickness of the disk specimen; and a is the half-length of the central straight-crack
in the disk specimen. YI, YII, and T* are dimensionless intensity factors that depend on the
shape and loading conditions of the test specimen. For the CSTBD splitting test, YI, YII,
and T* are defined as follows:

YI = f11 + 2
n

∑
i=1

A1i f1iα
2(i−1) (10)

YII = 2
n

∑
i=1

A2i f2iα
2(i−1) (11)

T∗ = (1 − α)g1 + 2(1 − α)
n

∑
i=1

(A1igi − A1i − A3i)α
2(i−1) (12)

In the equation, when i = 100, YI, YII, and T* are negligible, so the range of i is
from 1 to 151. α is the ratio of the crack’s half-length to the radius of the disk specimen,
α = a/R. The coefficients f ji, gi, and Aji (where j = 1,2; i = 1,2,3, . . ., n) were determined by
the following equations:

f ji =
(2i − 3)!!
(2i − 2)!!

[
1 +

C1
j1

2i
+

3C1
j2

4i(i + 1)

]
(13)

gi =
2C2

1
(2i − 1)(2i + 1)

+
8C2

2
(2i − 1)(2i + 1)(2i + 3)

(14)

A1i(β) = i cos(2iβ)− i cos[2(i − 1)β] (15)

A2i(β) = i sin(2iβ)− (i − 1) sin[2(i − 1)β] (16)

A3i(β) = i cos(2iβ)− (i − 2) cos[2(i − 1)β] (17)

where C1
11, C1

12, C1
21, C1

22, C2
1 , and C2

2 are the structure coefficients associated with α.
To analyze the applicability of the MTS criterion to the stress intensity factors during

the CSTBD specimen splitting test and investigate the characteristics of compound fractures
under the conditions of KI > 0 and KII > 0 in practical scenarios, combining Equations (7)–(9),
and by comparing Equations (1) and (6), KI/KIC and KII/KIC were obtained:{ KI

KIC
= 1

g1(θ)−(YII/YI)g2(θ)+(T∗/YI)g3(θ)
KII
KIC

= 1
(YI/YII)g1(θ)−g2(θ)+(T∗/YII)g3(θ)

(18)

where g1(θ) = cos3(θ0/2), g2(θ) = (3/2)sin(θ0) cos(θ0/2), and g3(θ) = [η(1 − α)]sin2(θ0).
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3. Composite Fracture Characteristics in Hard Rock
3.1. The CSTBD Splitting Test and Results

The lithology of this test specimen is metamorphic granite porphyry. Considering the
processing cost of the specimen and the applicability of mechanical analysis, the central
straight-crack Brazilian disc (CSTBD) specimen was selected for the splitting test. The
size of the specimen is ϕ × h = 25 mm × 25 mm, and a crack with half-length (a) of
5 mm and width (b) of 1 mm is prefabricated on the central axis of the specimen. In this
experiment, six specimens were designed, and the central straight-crack angle (β) increased
from 0◦ to 28.7◦. The basic physical and mechanical parameters measured are shown in
Table 1. For example, the cohesive force c and the internal friction angle of rock φ were
determined by the triaxial compression test. The compressive strength σp, the modulus of
elasticity E, and the Poisson’s ratio v were determined by the uniaxial compression test.
The tensile strength σt was determined by the Brazilian splitting test.

Table 1. Basic physical and mechanical parameters.

Parameter Value

Cohesive force c 24.44 MPa
Internal friction angle of rock φ 40.77◦

Compressive strength σp 155.81~210 MPa
Tensile strength σt 7.5~13.5 MPa

Modulus of elasticity E 82.3~92.5 GPa
Poisson’s ratio v 0.17~0.3

The load–displacement curves of specimens under different central direct crack angles
(β) were obtained through the splitting test, as shown in Figure 2. According to the analysis
in Figure 2, it can be seen that under a certain crack angle (β), CSTBD specimens can
withstand a load of more than 8.9 kN, such as specimen C02. In the initial loading stage,
the internal micro-cracks of the specimen were compacted and showed a certain plastic
deformation, which then developed linearly. When the peak load is reached, the strength
of the sample decreases rapidly, showing obvious brittle failure. This trend is consistent
across different beta values.
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The peak loads obtained from each set of numerical simulation experiments were used
to calculate the values of KI, KII, and T at the failure of each specimen using Equations (7)–(9),
as shown in Table 2.
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Table 2. KI, KII, and T values of different β specimens.

β (◦) KI (MPa·m1/2) KII (MPa·m1/2) T (MPa)

0 0.5498 0 −17.5319
5 0.5873 0.2192 −19.0127
10 0.5106 0.4175 −17.3881
15 0.4124 0.6038 −15.6009
20 0.2858 0.7739 −13.4206

28.7 ≈0 0.9040 −7.7515

The crack path of the specimen is shown in Figure 3. The red crack represents the
primary crack generated from the prefabricated crack tip, while the yellow crack represents
the secondary crack generated from contact with the loading plate. When β = 0, the crack
appears as a pure type I fracture, and the direction of main crack propagation is consistent
with the original crack’s direction. When β > 0, the crack occurs in the I–II composite
fracture and deviates from the original direction. As the crack spreads to the boundary of
the specimen, the crack path shifts to the central axis of the specimen to a certain extent. In
addition, the loading will be maintained for a short time after the failure of the specimen in
the laboratory test, leading to secondary cracks in the specimen.
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3.2. Verification of Fracture Criteria

The maximum tangential strain criterion is utilized to evaluate the results of the
fracture tests in this study, verifying the effectiveness of this criterion. The fracture angle
θ0 is calculated using Equation (3) with and without considering the T stress, as shown in
Figure 4.
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Combining the fracture angle θ0, the theoretical values of KI/KIC and KII/KIC for the
Copper Mine Gorge ore rock are calculated using Equation (17), as shown in Figure 5.
Simultaneously, the stress intensity factors from the CSTBD indoor splitting tests are
included in the graph for comparison. It can be observed that in the CSTBD splitting
test of the Copper Mine Gorge ore rock, the theoretical predictions of the GMTS criterion,
considering the influence of T stress, matched well with the experimental results compared
to the MTS criterion.
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4. Characteristics of Composite Hydraulic Fracturing in Hard Rock
4.1. Composite Stress Intensity Factors in Hydraulic Fractures

To effectively reveal the initiation pattern of hydraulic fractures under the influence of
in situ stress and hydraulic pressure, combined with laboratory experiments on hydraulic
fracturing, it is possible to establish a hydraulic fracturing plane model with pre-existing
fractures. This model represents an infinite strip with a circular hole plate and symmetric
cracks on both sides of the hole, as shown in Figure 6a. The mechanical analysis of the
pre-existing fracture hydraulic fracturing model can be controlled by horizontal principal
stresses (maximum horizontal principal stress σH, minimum horizontal principal stress σh),
as shown in Figure 6b, and is superimposed with the stress field controlled by the injection
pressure, as depicted in Figure 6c.
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controls; and (c) pw controls.

Using the conformal mapping method, the region of the rock matrix outside the
borehole and pre-existing fractures in the rock specimen are mapped from the z-plane with
coordinates x and y to the ξ-plane with coordinates ζ and η, centered within the interior of
the unit circle. The boundaries of the borehole and pre-existing fractures on the z-plane are
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mapped onto the circumference of the unit circle. This transforms the problem of boreholes
and pre-existing fractures into a study of the unit circle, as shown in Figure 7.
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When the horizontal principal stresses σH and σh, along with the injection pressure pw,
jointly control, the Mode I and II stress intensity factors at the crack tip are given by [32]:

KHF
I =

{
pw − 1

2
[(σH + σh)− (σH − σh) cos(2β)]

}√
πa

(
1 − rw4

a4

)
(19)

KHF
II =

1
2
(σH − σh) sin(2β)

√
πa

(
1 − rw4

a4

)
(20)

where KHF
I and KHF

II represent Mode I and II stress intensity factors in hydraulic
fractures, respectively.

According to Equations (19) and (20), hydraulic pressure determines the type I stress
intensity factor of hydraulic fracture in the rock, and the larger the hydraulic pressure, the
higher the type I stress intensity factor. In hydraulic fracturing, a higher water pressure is
usually required, exceeding the ground stress, resulting in a higher type I stress intensity
factor than the type II stress intensity factor for hydraulic fractures.

4.2. Calculation of Critical Rupture Pressure

Using Equation (3), the initiation angle θ0 is determined without considering the T
stress, and using the same procedure, the initiation angles θ0 and θ0,T are obtained when
considering the T stress. The magnitudes of the initiation angles θ0 and θ0,T depend on the
stress intensity factors KI and KII. Therefore, the calculated values of KI and KII affect the
prediction of the initiation path of hydraulic fractures.

When hydraulic fractures initiate, the initiation angles of the hydraulic fractures are θ0
and θ0,T. At this point, the hydraulic pressure inside the pre-existing fractures and inside
the hydraulic fracture hole is equivalent to the formation breakdown pressure. Substituting
θ0 and θ0,T into the tangential stress formula of the stress field at the crack tip in polar
coordinates, we obtain:

σθc =
1

2
√

2πrc
cos

θc

2

[
KHF

I (1 + cos θc)− 3KHF
II sin θc

]
+ T′ (21)

{
θc = θ0, T′ = 0 , No T stress

θc = θ0,T , T′ = THF sin2 θ0,T , T stress
(22)

where σθc

√
2πrc = KHF

IC , KHF
IC is the pure Mode I fracture toughness of the rock under true

triaxial hydraulic fracturing conditions. By substituting the stress intensity factors KHF
I

and KHF
II , given by Equations (19) and (20), respectively, into Formula (21), we obtain the

breakdown pressure pw:
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pw ≥ pb = 2a2(KIC−T′)

cos θc
2 (1+cos θc)

√
πa(a4−rw4)

+ 1
2

[
(σH + σh)− (σH − σh) cos(2β) + 3(σH − σh)

sin(2β) sin θc
(1+cos θc)

] (23)

Here, according to the calculation formula for KII, it is known that when the crack
angle is 0◦ or 90◦, i.e., when the pre-existing fracture direction aligns with the direction
of the principal stress, the value of KII is 0, resulting in a pure Mode I fracture. There-
fore, Equation (23) should be an implicit function equation, requiring numerical iterative
calculations. The solution process involves confirming parameters such as in situ stress,
fracture hole radius, and pre-existing fracture length. Initially, set the injection pressure
pw = 0. Subsequently, determine the values of stress intensity factors KI and KII using
Equations (19) and (20), respectively, followed by calculating the initiation angle θ0 or θ0,T.
Using Equation (23), compute the breakdown pressure pb and check whether pb is equal
to pw. If the condition is not satisfied, increase the value of pw until pb = pw. Since pw
gradually increases from 0 to equal pb, pb decreases with the increase in pw from a larger
value in the calculation process, so pw gradually approaches the value of pb and is finally
equal. Finally, output pb. This solution process is illustrated in the flowchart in Figure 8.
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4.3. Influence of T Stress on pb and θc

The hydraulic fracture mechanics model under biaxial compression can be simplified
as an inclined crack in an infinite plate under biaxial compression [30,44,45]. This mechani-
cal model can directly provide a closed-form solution for the T stress parallel to the crack.
Therefore, the T stress level is calculated according to the following equation:

T = −0.5[(σH + σh)− (σH − σh) cos 2β] (24)

As indicated in Section 3.2, T stress has a certain impact on the mixed-mode fracture
characteristics of hard rocks, and this impact becomes more significant with the increase
in the proportion of the Mode II stress intensity factor. To investigate the influence of
T stress on the hydraulic fracture characteristics, based on Equations (3) and (23) and
combined with the physical and mechanical parameters of the test material, the critical
fracture pressure and fracture angle considering T stress and without considering T stress
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are calculated. The results are shown in Figure 9. Here, considering the study focus on hard
rocks, the critical fracture distance rc is relatively small, with values of 0.08 mm and 1 mm,
respectively. The Poisson’s ratio is v = 0.235; the maximum horizontal principal stress is
σH = 9 MPa; the minimum horizontal principal stress is KIC = 0.84; the rock tensile strength
is σt = 13.5 MPa; the fracture width is rw = 0.006 m; and the fracture length is a = 0.009 m.
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Figure 9 presents the critical hydraulic fracturing pressure and fracture angle calcu-
lated using Equation (23) considering and not considering T stress. The results show that
when T stress is considered, the calculated critical fracturing pressure and fracture angle
are relatively lower compared to the case without considering T stress. Particularly when
the symmetric crack makes an angle β = 45◦ with the maximum horizontal principal stress,
the impact of T stress on the critical fracturing pressure is most significant. Regarding the
influence of T stress on the fracture angle, at β = 45◦, T stress has the most notable effect
on the fracture angle θc. However, at β = 0◦ and 90◦, θc is almost unaffected by T stress.
By comparing the critical fracturing pressure and fracture angle calculated for different
β values, it can be concluded that as β increases, the influence of T stress on the critical
fracturing pressure gradually increases, but its impact on the fracture angle is relatively
small. Furthermore, comparing Figure 9a,b, it can be observed that during the hydraulic
fracturing process, when the critical crack size rc of the rock is larger, T stress has a more
significant impact on both the critical hydraulic pressure and fracture angle. In contrast,
for rock materials with a smaller rc, T stress tends to affect the fracture angle more, with a
relatively smaller impact on the critical fracturing pressure. The rock samples in this study
exhibit obvious brittleness and belong to hard rocks with a very small critical crack size rc.
Therefore, the influence of T stress can be neglected in practical calculations.

5. True Triaxial Hydraulic Fracturing Test Verification
5.1. Test Scheme

To investigate the fracture characteristics of hydraulic fractures, this study conducted
true triaxial hydraulic fracturing tests. Considering that in true triaxial hydraulic frac-
turing tests, rock specimens need to have injection holes with a certain radius to ensure
that the injection pressure acts on the pre-existing fractures, grooves were made on the
200 × 200 × 200 cubic specimens, as shown in Figure 10. This experiment was primarily
conducted for the mechanical analysis of the hydraulic fracture propagation characteristics.

Setting the crack angle, defined as the angle between the crack and the maximum
horizontal principal stress, as β, with β ranging from 0 to 90 degrees. The parameters for
the true triaxial pre-existing crack hydraulic fracturing test are shown in Table 3.
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hydraulic fracturing of the ore and rock in Copper Valley. This device is composed of three 
parts: a true triaxial loading system (including true triaxial loading bin, operation, and oil 

Figure 10. Precast crack making.

Table 3. Hydraulic fracturing test scheme.

ID σz (MPa) σH (MPa) σh (MPa) Injection Rate (mL/min) β (◦)

HF-1 12 9 6 20 0
HF-2 12 9 6 20 15
HF-3 12 9 6 20 30
HF-4 12 9 6 20 45
HF-5 12 9 6 20 60
HF-6 12 9 6 20 75
HF-7 12 9 6 20 90

The upper end of the specimen was sealed by adding epoxy resin glue to the liquid
injection pipe. After the lower end was sealed using the rubber plug, epoxy resin glue was
injected into the specimen, as shown in Figure 11.
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In this study, the rock true triaxial fracturing simulation experimental device devel-
oped by Guizhou University (as shown in Figure 12) was used to simulate the hydraulic
fracturing of the ore and rock in Copper Valley. This device is composed of three parts: a
true triaxial loading system (including true triaxial loading bin, operation, and oil pressure
control system), a pump pressure injection system (hydraulic injection pump), and a data
acquisition system.

This test followed the construction procedures for hydraulic fracturing at the copper
mine site. The experimental steps were as follows: (1) specimen placement: place the
specimen in the loading chamber, adjust the clamps to stabilize the specimen, connect
the water injection pump valve, and seal the loading chamber cover; (2) triaxial loading:
activate the servo triaxial pressurization system, uniformly load the three principal stresses
of the specimen to predetermined values at a constant rate, and maintain stability for
1–2 h. This step is primarily for simulating the triaxial stress state of fractured rock due to
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hydraulic fracturing; (3) fluid injection: open the constant-flow water pump, set the injection
flow rate and protective pressure, and achieve constant-flow water injection into the
specimen until the water injection pump suddenly drops or is no longer rapidly increasing.
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5.2. Test Results

The pumping pressure time history curve of specimens HF-1~7 is shown in Figure 13.
The top view of the fracture morphology of some specimens after fracturing is shown in
Figure 14. The prefabricated fractures under different β result in the diversified morphology
of hydraulic fracturing fractures. Regardless of the change in azimuth of the prefabricated
fracture, the fracture will crack along the tip of the prefabricated fracture, forming a single
flat or turned fracture with basic symmetry. Under the action of the stress field, these cracks
gradually deflect from the direction of prefabricated cracks (the direction of the green line
in the figure) to the direction of the maximum horizontal stress. The results show that the
angle between the prefabricated fracture and the maximum horizontal principal stress has
a significant influence on the morphology of the hydraulic fracture, and the symmetry and
deflection direction of the fracture are regulated by the stress field. However, compared
with previous studies, the degree of deflection of hydraulic fractures in the direction of
maximum horizontal stress is relatively low. Excluding the influence of hydraulic fracturing
parameters, the possible factor is that the hole-sealing method in this study is epoxy resin
cementation, which causes a cementation force in the hole-sealing section and reduces the
filtration property of initial hydraulic fractures [46].
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5.3. Verification of pb

This study revealed that under conditions where the water pressure exceeds the critical
fracturing pressure (pb), the fracture angle of hydraulic fractures decreases with increasing
water pressure. In such cases, the influence of the critical fracture distance on hydraulic
fractures diminishes. The hydraulic fracturing indoor experiments conducted in this study
utilized a constant-flow water injection method, leading to an increase in internal water
pressure over time within the fractures. The specimen experiences instability at the most
vulnerable point, i.e., the initiation of the pre-existing crack. Therefore, considering the
fracture pressure at this moment as the critical fracturing pressure, it is justified. When
β = 0◦, the specimen undergoes a pure Mode I fracture, and the Mode I stress intensity
factor is equivalent to the pure Mode I fracture toughness. By substituting the experimental
parameters into Equation (23), the theoretical prediction for the critical fracturing pressure
(pb) is calculated. Comparing the experimental fracturing pressure values with the theo-
retical predictions, as shown in Figure 15, it can be observed that the derived formula for
critical fracturing pressure performs well in predicting the hydraulic fracturing pressure
for β = 0◦, 30◦, and 45◦. However, due to the heterogeneity of rocks, some experimental
data points exhibit deviations from the predicted values.
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6. Conclusions

Based on the GMTS criterion, the I–II composite stress intensity factor and the critical
fracture pressure of hydraulic fracture under splitting load are predicted, respectively. The
theoretical formula is verified by the corresponding CSTBD specimen splitting test and
true triaxial hydraulic fracturing test. The conclusions are as follows:

(1) T stress affects the I–II fracture characteristics of hard rock. Based on the GMTS
criterion considering T stress, the ratio of I–II composite stress intensity factor to the
pure I-type fracture toughness of rock is derived, which can be used to predict I–II
composite stress intensity factor of rock. By substituting the boundary conditions of
CSTBD samples into GMTS criteria, it is found that GMTS criteria are more effective
in predicting the I–II stress intensity factor of hard rock CSTBD samples.

(2) In the hydraulic fracturing environment, the hydraulic fracture has an angle with the
maximum horizontal principal stress, resulting in I–II composite fracture. At this time,
the influence of T stress on the I–II fracture characteristics of hard rock is relatively
small. In engineering practice, the pure I-type fracture toughness of hydraulic fracture
is obtained, and the critical fracture pressure at different angles between hydraulic
fracture and maximum horizontal principal stress can be predicted based on the
traditional MTS criterion, which does not consider T stress.
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