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Abstract: The Qinghai–Tibet Plateau, abundant in mineral resources, is a treasure trove for geological
explorers. However, exploration has been hindered by the presence of dense vegetation, weath-
ering layers, and desert cover, particularly in the North Qaidam region. As a result, there is an
urgent need to develop efficient geochemical composition methods. In a study of stream sediment
geochemical data from the Lüliangshan area of the North Qaidam, the log-ratio transformation
was used for data processing, Robust Factor Analysis (RFA) was used for model construction, and
the spectrum–area (S-A) model was used for anomaly separation. The outcomes identified two
distinct groups of element combinations associated with mineralization. The first group consisted
of Au + Ag + Pb + Sb + Hg linked to tectonic-altered rock-type Au (antimony) deposits, while the
second group consisted of Cu + Zn + Co and was closely associated with Cu-Ni sulfide deposits. The
S-A fractal filtering technique amplified weak anomalies and minimized the area of anomalies against
strong backgrounds. The study successfully detected substantial Cu mineralization in the source areas
of geochemical anomalies in the Lüliangshan region. Consequently, the log-ratio–RFA–S-A fractal
model has been proven to be an effective combination of methods for identifying and extracting
geochemical anomalies from stream sediment samples and for mineral exploration in covered areas.

Keywords: geochemical anomaly; Robust Factor Analysis; multifractal filtering technology; mineral
exploration; North Qaidam

1. Introduction

Stream sediments are commonly sampled for geochemical prospecting in regional
mineral exploration [1]. However, the dispersion patterns of geochemical elements are
influenced by complex geological processes [2,3]. Additionally, geochemical anomalies
exhibit complex spatial patterns because of the influence that geologic, geomorphologic
and topographic factors have on the element contents in stream sediments [4–7]. Statis-
tical geochemical methods such as the Mean + 2 standard deviations (Mean ± 2SD) [8],
histograms, box plots [9], probability graphs, and univariate and multivariate analyses
have proven successful in separating the background and extracting anomalies associated
with straightforward geological settings [10–12]. However, in complex geological settings
influenced by spatially and temporally complicated processes, such as an area covered by
dense vegetation, weathering layers and deserts, etc., these statistical methods have limited
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effectiveness [3,10,13–16]. In this regard, the singularity mapping technique, which in-
volves data within a small singularity around a specific spatial location, can be an excellent
multifractal tool for identifying weak anomalies. Additionally, it facilitates local neighbor-
hood statistical analysis, reduces the effects of the regional background and provides useful
statistical information [5,10,11,14,17–22]. However, the above methods do not account for
the compositional nature of geochemical data [4,6,23]. Two issues must be addressed to
accurately obtain mineralization-related anomalies of multivariate geochemical footprints
from the data: (1) the presence of outliers in geochemical data sets, which can lead to biased
extraction of multivariate associations using classical statistical estimators [24–26], and
(2) the closure problem of compositional data [27–29].

Therefore, this study selected Robust Factor Analysis (RFA) to first extract combi-
nations of metallogenic elements. Subsequently, singularity mapping was employed to
investigate the spatial patterns of geochemical data and extract weak anomalies. Finally, we
compared the spatial associations between Cu anomalies identified by different methods
and known deposits in the North Qaidam (NQ) region. This comparison provided an
excellent opportunity to (1) identify primary element patterns related to mineralization,
(2) evaluate the advantages of using multifractal singularity mapping in covered areas, and
(3) guide the verification of weak anomalies and identification of potential deposits in the
Lüliangshan area.

2. Geological Setting

The NQ is situated within the Qinling–Qilian–Kunlun orogenic belt, a part of the
Central Orogenic Belt of China in the northern Tibetan Plateau. It delineates the boundary
between the Qilianshan block to the north and the Qaidam block to the south, stretching ap-
proximately six hundred kilometers from Tanjianshan, through Xitieshan and Lüliangshan,
to Dulan in a southeast–northwest direction (Figures 1 and 2).

The cover sequence consists of Neoproterozoic metamorphic sedimentary rocks in-
terspersed with marbles and eclogite blocks of varying size [30]. Additionally, it includes
volcano–sedimentary deposits overlain by the Tanjianshan Formation and Ordovician to
Silurian clastic rocks.

The NQ area in the Qinghai Province is a significant nonferrous metallogenic belt in
China, characterized by the occurrence of Cu-Au and Cu-Co deposits primarily within the
Cambrian–Ordovician meta-volcanic rock group and fault tectonic fracture zone. These de-
posits are controlled by intrusions and ductile and/or brittle faults [31], which not only pro-
vide energy but also serve as material sources for magmatic–hydrothermal mineralization.
The structures, depicted in Figure 2 and predominantly oriented in a southeast–northwest
direction, act as the primary ore-controlling faults for Cu, Ag, Zn, and Pb deposits. A
regional geological survey of Qinghai revealed numerous basic and ultrabasic rocks in
the NQ [30]. Notably, the discovery of the Niubiliang ultrabasic Cu-Ni sulfide deposit
represented the first of its kind in the NQ. Subsequently, the Beishan and Xiarihamu Cu-Ni
deposits were also identified. In recent years, 13 Cu ore bodies have been discovered in
the Lüliangshan Cu deposit. However, the relatively limited exploration of resources in
Lüliangshan, compared to other areas, suggests great potential and the need for further
exploration.
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Figure 1. Satellite image of China (a), Qinghai Province (b) and the research area (c) in the NQ. Data 
from Google Earth. 

 
Figure 2. Sketch map of geological structures in the NQ (a) and the research area (b). 
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3. Sampling and Analysis

Geochemical mapping is an important tool for both mineral exploration and envi-
ronmental studies [32]. China’s National Geochemical Mapping Project (Regional Geo-
chemistry National Reconnaissance) was initiated in 1979 [33], and has covered more
than 6 million km2 of China’s territory [34]. The research area, located in the Lüliangshan
area, NQ, Western China, is believed to have high potential for Cu, Co, Ni, Au mineral
resources. As part of the regional geochemical exploration program, 6481 stream sediment
samples were collected from an area of 66,900 km2 (latitude 94◦45′–95◦27′ E, longitude
37◦32′–38◦00′ N). For the purpose of verifying the feeble geochemical anomalies, more
than 600 stream sediment samples at a density of eight samples per square kilometer were
collected within an area of about 80 Km2 in the research area (Figure 3).
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The sample collection and chemical analytical methods for stream sediments can be
found in Xie et al. [33]. We selected 11 elements that are closely associated with miner-
alization for this research. The detection limits for Cu, Cr, Pb, Sb, Zn, Ag, Au, As, Cd,
Co, and Ni were 1, 15, 2, 0.1, 10, 0.02, 0.0003, 1, 0.05, 1, and 2 ppm, respectively. The
samples were analyzed for major and trace anions using ion chromatography on a Dionex
4000i Ion Chromatograph, with an AS14 analytical column for both UV/visible absorbance
detection and conductivity [37]. X-ray fluorescence (XRF) was utilized to determine the
concentrations of Cu, Co, Zn, and Cr, while inductively coupled plasma–mass spectrom-
etry (ICPMS) was used to determine the concentration of Cd. Graphite furnace-atomic
absorption spectrometry (GF-AAS) was employed to measure the Au concentrations and
hydride generation-atomic fluorescence spectrometry (HG-AFS) was applied to obtain
Sb and As concentrations. Emission spectrometry (ES) was used to determine the Ag
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concentrations [26,33,34,38]. The statistical characteristics of stream sediment elements
from Lüliangshan and Shuangkoushan in the NQ area are presented in Table 1.

Table 1. Statistical characteristics of stream sediment elements from Lüliangshan and Shuangk-
oushan, NQ.

Element Min Max Mean Median Standard
Deviation Skewness Kurtosis Coefficient of

Variation
Au 0 498 1.3 1 0.7 41.1 2207 0.57
Ag 0.02 0.08 0.04 0.04 0.01 61.42 4250 0.33
Cu 2.6 83.4 26.3 19.3 19 6.2 78 0.73
Pb 4.8 39.8 22.3 21.6 5.7 24.2 788 0.26
Zn 1.7 124.9 47.5 46.2 25.7 24.2 788 0.54
Cr 2.5 497.4 115 65.9 126.8 9.3 132 1.1
Ni 1.8 181.9 46.5 29.4 45.1 6.8 61 0.97
Co 1.3 46.8 15.1 11.3 10.5 2.2 12 0.7
W 0.21 4.36 1.47 1.19 0.96 23.94 755 0.65
Mo 0.01 2.16 0.67 0.54 0.49 21.85 664 0.74
Cd 0.01 0.23 0.092 0.08 0.05 16.55 518 0.5
As 0.64 14.85 5.37 4.45 3.15 16.2 394 0.59
Sb 0.1 1.05 0.42 0.37 0.21 8.51 122 0.49
Hg 0 0.03 0.01 0.01 0 34.63 1557 0.3
Bi 0.01 0.92 0.25 0.18 0.22 23.07 935 0.87

Note: The unit for the element Au is ppb, while the unit for other elements is ppm.

4. Methodology
4.1. Log-Ratio Approach

Using raw geochemical data for standard statistical methods can lead to misleading
and confusing results because they are compositional data [22,39,40]. Compositional
data refers to data that is distributed within a finite region and subject to unit and sum
constraints; therefore, geochemical element concentration data are considered as typical
compositional data [41]. The log-ratio transformation is a projection transformation of
compositional data based on the fact that the ratio of compositional components is not
affected by the “constant sum” constraint, and the logarithm of the ratio often follows a
normal distribution. The specific definition [27,38,42] is as follows:

SD =

{
x = (x1, · · · , xD)

′, xi > 0,
D

∑
i=1

xi = k

}
(1)

where SD represents the simplex space of compositional data, and k is an arbitrary
constant [42].

Therefore, it is recommended to perform a suitable data transformation before analy-
sis [42]. Log-ratio transformation of compositional data not only avoids the closure effect
but also allows for analysis using unconstrained multivariate statistics [39,42,43]. There
are three available transformations for compositional data: the centered log-ratio (CLR)
transformation proposed by Aitchison, the additive log-ratio (ALR) given by Aitchison, and
the isometric log-ratio (ILR) proposed by Egozcue [27,38,39] with the following functions:

alr(X) = ln
xi
xj
(i = 1, 2, · · · , D − 1) (2)

clr(X) = log
xi

D
√

∏D
i=1 xi

(x = 1, 2, 3, · · · , D − 1, D) (3)

ilr(X) =

√
i

i + 1
ln

 i
√

∏i
i=j xj

xi+1

(i = 1, 2, 3 · · · , D − 1) (4)

where X (n × D) is a sequence of observed compositional components, xi is the i-th compo-
nent, xj is the (i + 1)-th component, and D is the number of compositional components.
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While alr transformation has some arbitrariness in the choice of denominator, clr trans-
formation results in all variables summing to zero (i.e., matrix singularity issue, resulting in
parallel data) [21,43,44]. Hence, both alr and clr transformations are not suitable for robust
statistics. Instead, the ilr transformation is adopted. However, after ilr transformation, the
dimension of the data is reduced by one, making it difficult for geological interpretation.
Therefore, the ilr transformation is used to transform the compositional data into Euclidean
space, and combined with Robust Factor Analysis (RFA) to obtain loadings and scores.
Then, the loadings and scores are transformed into clr space to establish a connection with
the original data, thereby addressing the issue of data interpretation [45].

Therefore, when using RFA to analyze geochemical compositional data, the ILR
transformation should be performed first. However, because interpretation of the results is
not feasible in ILR space [42], the loadings and scores need to be back-transformed to the
CLR space. Histograms with ILR-transformed Cu, Co, and Zn data (Figure 4) showed that
the ILR-transformed datasets had a roughly normal distribution. However, considering
the presence of a small amount of outlier data, it is advisable to utilize robust estimates for
more accurate results when estimating the center and spread of the data [26].
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In addition, there is a close relationship between these three log-ratio transformations,
which allows for spatial transformations and inverse transformations of compositional data
among them [38,42].

clr(x) = ilr(x)U (5)

ilr(x) = clr(x)U
′
= alr(x)A (6)

alr(x) = ilr(x)UF (7)

A =
1
D


D − 1 −1 −1 · · · −1
−1 D − 1 −1 · · · −1
−1 −1 D − 1 · · · −1
· · · · · · · · · · · · · · ·
−1 −1 −1 −1 D − 1

 (8)

F is the inverse matrix of A, i.e., A = F − 1.
The row vectors of matrix U are composed of

ui =

√
i

i + 1

1
i

, · · · 1
i︸ ︷︷ ︸

i elements

,−1, 0, · · · , 0

(i = 1, 2, 3, · · · , D − 1) (9)

The relationship between matrix U and u is

U =
[
u1, u2, · · · , uD−2, uD−1]

T(i = 1, 2, 3, · · · , D − 1) (10)
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where U is the transformation matrix between ilr(x) and clr(x). u is a row vector of matrix U.
The main focus of this study is the application of the transformation formula between

CLR and ILR.

4.2. Robust Factor Analysis (RFA)

Factor analysis (FA) is a multivariate statistical method that establishes relationships
between observed variables and underlying latent variables to improve interpretation.
This is accomplished through axis rotation or loading reduction based on a covariance or
correlation matrix. However, FA is prone to significant bias when influenced by outliers and
is highly sensitive to extreme values [40,46]. Consequently, if the compositional geochemical
data contains outliers and/or extreme values, the results obtained through classical FA
are neither reliable nor robust [47]. Robust Factor Analysis (RFA) is designed to mitigate
the impact of outliers and minimize the influence of extreme values using the minimum
covariance determinant estimator [48]. RFA outputs, visualized in the compositional biplot,
are scores representing observations and loadings representing variables [39]. Furthermore,
the scores are considered indicative of mineralization presence [47]. The calculation relies
on the R Project, a statistical computing software, as well as the robust statistical analysis
of compositional data (robComposition) and the StatDA package [49]. A comprehensive
explanation of the RFA process for compositional data can be found in previous works [42].
The R language for data analysis and graphics, in conjunction with the StatDA package [49]
and robust statistical analysis [32], were used for calculation.

4.3. Spectrum–Area (S-A) Model

The scale-invariant properties of various geological processes, such as erosion, min-
eralization, the magnetic field of the Earth’s crust, earthquake distribution, and volcanic
eruptions, often exhibit “self-similarity” or “self-affinity”. These properties can be mea-
sured in both the frequency and spatial domains [50]. In the frequency domain, power
spectra can be used to represent such properties [51]. Spectral energy density functions
illustrate the distribution of power spectra in the frequency domain, whereas for certain
complex convolution operations in the spatial domain, such as correlation analysis, filtering,
and transformation, dealing with fields in the frequency domain can significantly simplify
the process [5].

Signal processing and time series analysis commonly employ Fourier and inverse
Fourier transformations [51,52]. The power spectrum–area (S-A) model is a fractal filter-
ing technique based on Fourier spectral analysis that is used to separate anomalies from
background values [51]. Scaling properties in the spatial domain are related to the spatial
geometry of patterns, histogram distributions of values, and changes in shape correspond-
ing to changes in value. This is employed in the multifractal inverse distance weighted
(MIDW) interpolation method. A fractal filter, derived from the S-A model [51], defines
components with similar scaling properties based on the power-law characteristics of a
power spectrum in the frequency domain [53]. This filter not only identifies anomalies
from the background but also extracts significant patterns from the original map. Due
to the complex intrinsic structure of geochemical datasets and anisotropy, the filter has
an irregular shape [54]. Detailed equations for S-A multifractal filtering are shown in
Equations (11) and (12) [54].

F(wx, wy) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)cos(wxx + wyy)dxdy−i

∫ ∞

−∞

∫ ∞

−∞
f (x, y)sin(wxx + wyy)dxdy (11)

f (x, y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
F(wx, wy)cos(wxx + wyy)dxdy− 1

2π

∫ ∞

−∞

∫ ∞

−∞
F(wx, wy)sin(wxx + wyy)dxdy (12)

In Equation (11) and Equation (12), F(wx, wy) represents the signal in the frequency
domain, f (x, y) represents the geochemical map in the space domain, wx and wy are the
“wave numbers” of the x and y axes respectively, i2 = −1.
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From a generalized scale invariance (GSI) viewpoint, the S–A fractal model [55,56] is
based on the power–law relationships between areas of sets of data consisting of wave num-
bers with spectral energy density above S[A(>S)] on the 2D frequency domain, and gives

A(≥ S) ∝ S−2d/β (13)

where β is the anisotropic scaling exponent, and D is the GSI generator parameter repre-
senting the degree of overall contraction [57]. For a 2D linear case, d = 1; thus

A(≥ S) ∝ S−2/β (14)

The expression A(S ≥ s) denotes the area where the spectral density (S = ∥F(wx, wy)∥)
exceeds a certain value s. β represents the fractal dimension, and ∝ stands for proportional.

G(wx, wy) =

{
1,
0,

s1 ≤ S(wx, wy) ≤ s2
other

(15)

FF(wx, wy) = F(wx, wy)G(wx, wy) (16)

Noise exists where spectral density is less than s1; background occurs when spectral
density is greater than s2; and anomalies exist where spectral density is between s1 and s2.

These power–law relations, including those in space domains [58] and Eigen do-
mains [59] have been demonstrated to be useful tools for identifying geochemical anoma-
lies for mineral resource exploration [5,60,61] and to determine geochemical baselines for
environmental assessments [1] according to distinctive generalized self-similarity.

4.4. Extraction of Combination Anomalies Based on Factor Load

Xu et al. proposed the presence of SEDEX (sedimentary exhalative deposit) and VMS
(volcanic massive sulfide deposit) mineralization in the Shuangkoushan and Lüliangshan
areas, located on the northern margin of the Qaidam [35]. They suggested that these
mineralizations underwent transformation into orogenic mineralization during the late
stage. This transformation signifies that the superimposition of different elements resulting
from multi-stage mineralization is conducive to mineralization. Zheng introduced the met-
allogenic strength complexity concept, which involves statistical analysis of geochemical
data, calculating the element lining value for each sampling point in the statistical region,
and identifying points with a value greater than 1 to serve as an index. A plane contour
map is then generated based on this index, quantitatively reflecting the most favorable
ore-forming target areas [62].

Prior research and geochemical exploration concepts were considered when setting
the factor load of each element as the weight value. This facilitated the weighted evaluation
of related combined elements and the delineation of abnormal target areas for the combined
elements. During this process, outliers were first eliminated and replaced with high value
elimination, using X + 3S (average value +3 times standard deviation of the average) as
the highest value of the elements. The replaced element was then normalized to (0, 1) and
multiplied by 100 to yield a range of (0, 100). Subsequently, RFA (CLR) was applied. The
composite element’s main factor sub-load was weighted by the combined elements’ weight
to produce the plane contour map (factor load combination element anomaly map).

5. Results and Discussion
5.1. Geochemical Anomalies Identified by Statistical Methods
5.1.1. Single Geochemical Element Anomaly Analysis by Statistical Methods

There were numerous Cu deposits in Lüliangshan, NQ. The spatial distributions of
Cu, Zn, Co, and Cr are shown in Figure 5. Notably, high concentrations of Cu and Co
were similarly located in Lüliangshan and Luofengpo, as depicted in Figures 5a and 5c,
respectively. The anomalies in Lüliangshan were large in size, and had high elemental
concentrations with a conspicuous coincidence of element assemblages. These anomalies
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were oriented along the NW–SE direction and demonstrated a pronounced correlation of
Cu and Co anomalies, indicating their role as ore-forming elements. We employed the
Mean + 2SD method (Table 2) to compute threshold values for identifying anomalies in
Lüliangshan and Luofengpo. The mean value, influenced by specific outlier values, was
often excessively large, leading to a discernible deviation between the anomalies identified
by the traditional method and the actual ore points. The distribution of Cu anomalies was
primarily concentrated in the Lüliangshan area. Consequently, due to the conspicuous Cu
anomalies in this region, all three known ore points were within the range of the anomalies.
In contrast, the anomalies in the Luofengpo area were relatively weak and the overlay was
quite thick, resulting in the absence of known ore sites within the anomalous range. This
indicated that statistical methods were not sufficiently precise in areas with thick overlay
or weak anomalies.

Table 2. Anomaly threshold values calculated using the Mean + 2SD method for regional geochemical
data in the NQ.

Element Au Ag Cu Pb Zn Cr Ni Co W Mo Cd As Sb Hg Bi

Calculated value 2.7 0.064 64.3 33.8 99 368.7 136.6 36.2 3.38 1.66 0.184 11.66 0.84 0.02 0.69
Applied value 2.7 0.065 65.0 34 100 370 137 36 3.38 1.66 0.18 12 0.84 0.02 0.70

Note: The unit for the element Au is ppb, while the unit for other elements is ppm.

The results for single geochemical elements Cu (Figure 5a), Zn (Figure 5b), Co (Figure 5c),
and Cr (Figure 5d), as well as statistical anomaly analysis, were as follows:
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5.1.2. Mineralization-Related Multi Elements Anomaly Analysis Using Statistical Methods

RFA was applied to the log-ratio transformed geochemical data to examine the as-
sociations among elements. The results are shown in the loading plot (Figure 6) and the
biplot (Figure 7). The first factor accounted for 33.0% of the total variance and the second
accounted for 15.0%, as shown in Figure 6. The observations from the biplot (Figure 7)
revealed two closely associated groups of elements. The first group consisted of Ag, Pb,
Hg, Au, Sb, and W, exhibiting positive loadings on factor 1 (F1), while the second group
was comprised of Cu, Zn, Co, Cr, Mo, and Ni. The prominent portion of the variance was
explained by the loadings of factor 2 (F2), which was mainly influenced by Cu, Zn, and Co.
This implied that a group of elements was associated with Cu, Zn, and Co mineralization
in the NQ, including the Lüliangshan Cu deposit, which primarily consisted of volcanic
massive sulfide deposits (VMS) and quartz vein-type Cu-Au mineralization. By applying
RFA to limit the influence of outliers, two factors (F1 and F2) were differentiated, as shown
in Figure 6.
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The higher correlations among the 15 elements were divided into two groups. The
first principal factor (F1) consisted of Au, Ag, Pb, Sb, and Hg, while the second principal
factor (F2) consisted of Cu, Zn, Co, Cr, and Zn. The factor loads for Cu, Zn, and Co were
greater than 0.5 and those of Cr and Ni were less than 0.25. In addition, considering that
Cu and Zn are chalcophile elements based on the geological situation of the research area,
it was more reasonable to reduce the combination of second main factor effective elements
to Cu, Zn, and Co. This was because the VMS deposit found in this area exhibited Cu-Zn
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mineralization and was associated with Co. For the first two principal factors, F1 and F2,
the contributions of each element to the main factor are shown in Table 3.

Table 3. Main factor loading.

Type Ag As Au Cu Cd Pb Sb Zn Ni Co Cr W Mo Hg Bi

F1 0.73 0.10 0.38 0.25 0.01 0.76 0.25 0.31 0.46 0.29 0.37 0.16 0.29 0.75 0.06
F2 0.14 0.38 0.02 0.71 0.02 0.35 0.17 0.51 0.23 0.77 0.09 0.48 0.36 0.13 0.21

In this study, outliers or high values were removed from the original element table
using X + 3S. The X + 3S value from the last iteration was then used to replace the high
value. The equation for this calculation is shown below:

V = 100X/(X + 3S) (17)

In Equation (17), V represents the normalized elemental data, while X denotes a
combination of elemental data following high-value substitution. Additionally, X + 3S is
an iterative value, and multiplying by 100 guarantees the normalization of all data within
the range of (0, 100).

The calculation of the combined element value is as follows:

P = ∑ aiVi (18)

In Equation (18), P is the combined element value of the main factor after weighting,
ai (i = 1, 2, . . ., n) represents the load of the element in the main factor (F) as a weight,
Vi (i = 1, 2, . . ., n) is the single-element data value after normalization.

5.2. Geochemical Anomalies Identified by the S-A Method

Given that unsatisfactory results were obtained using the statistical method in the
Lüliangshan area, which is characterized by a Gobi Desert landscape, the S-A method was
used to identify weak anomalies related to mineralization. The S-A method does not require
preprocessing of extreme or outlier values, thereby avoiding interference and extracting
geochemical anomalies directly from the original element data structure. Its advantages are
obvious: in addition to identifying the same anomalous areas as the statistical method, S-A
can effectively delineate weak geochemical anomalies caused by metallogenic singularities
while separating the anomaly field from the background field.

S-A was used to decompose the background and anomalies and obtain abnormal
information of chemical elements from grid images obtained through MIDW interpolation.
The data processing was as follows: spatial raster data were transformed from the spatial
domain to the spectral domain via positive Fourier transform, followed by double logarith-
mic processing of the energy spectrum density (S) and identification of densities greater
than a certain threshold. The least squares method was then utilized to fit three-segment
equations. This study focused on the geochemical element Cu and the combined elements
Cu + Zn + Co. Figure 8 shows the double logarithmic curve fitting results, where it can
be observed that each R2 value of the fitting equation was greater than 0.98, indicating
a significant fitting effect. For the individual geochemical element Cu (Figure 8a), the
leftmost line (y = −1.32x + 21.09, 6.72 < lnS < 8.78) represents the interference factor, the
middle line (y = −1.42x + 21.75, 8.78 < lnS < 9.74) represents the anomaly, and the right-
most line (y = −1.44x + 21.92, 9.74 < lnS < 10.88) represents the background. Similarly, for
the combined elements Cu + Zn + Co (Figure 8b), three segments can be identified: the
interference factor equation (y = −1.37x + 22.06, 9.90 < lnS < 12.20), the anomaly equation
(y = −1.62x + 25.18, 12.20 < lnS < 12.81), and the background equation (y = −0.84x + 15.06,
12.81 < lnS < 13.04).
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Results of the S-A fractal analysis for single elements Cu, Zn, Co, and Cr are shown in
Figure 9. The analysis results for the combined element anomalies of Au + Ag + Pb + Sb + Hg
and Cu + Zn + Co are shown in Figure 10.
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5.3. Comparison between the Statistical and S-A Methods

The single element Cu, Co, and Cr anomalies (Figures 5 and 10) were mainly distributed
in the Lüliangshan and Luofengpo areas where they were characterized by obvious and
wide-range anomalies. In other places, such as Tieshiguan and Shuangkoushan, there were
weak Cu, Co, and Cr anomalies. The Zn anomaly was mainly distributed in Shuangkoushan.

We focused on the local region of Lüliangshan and Luofengpo, where the geochemical
element Cu was predominantly distributed (Figure 11a,b), and the Shuangkoushan area,
where Zn was present (Figure 11c,d). The statistical analysis results (Figure 11a,c) were
compared with results from the S-A method (Figure 11b,d). The S-A results revealed
delineated Cu anomalies in the Luofengpo area that aligned with known mineral occur-
rences. Additionally, the S-A method enhanced weak Cu anomalies that were identified by
the statistical method, which were originally weakened by heavy cover or influenced by
low background levels. This enhancement resulted in more obvious and distinguishable
anomalies. In contrast, the S-A method highlighted more pronounced Zn anomalies in the
Shuangkoushan area compared to the statistical method, producing more and stronger
concentric centers.

The combined elements Cu, Zn, and Co were examined as an example in the lo-
cally enlarged regions of Lüliangshan, Luofengpo (Figure 12a,b), and Shuangkoushan
(Figure 12c,d) areas. The results obtained through the statistical method (Figure 12a,c) and
the S-A method (Figure 12b,d) were compared. They showed that S-A reduced the anoma-
lous area of the combined elements more than the statistical method, while highlighting the
geochemical anomaly. This allowed for more efficient discovery of potential mineralization.

The results for the single geochemical element Cu (Figure 11b) were compared with
results for the combined geochemical elements Cu + Zn + Co (Figure 12b), both using the
same S-A method. It was clear that the abnormal region of the combined elements Cu + Zn
+ Co covered a greater number of known Cu mining deposits compared to using only the
single geochemical element Cu.

In Lüliangshan-Yuka, two anomalies were detected using the statistical method and
three using the S-A method, with three known deposits present. In Luofengpo, the statistical
method detected one anomaly and the S-A method detected four, with five known deposits
present. No anomalies or known deposits were identified in Shuangkoushan.
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The spatial relationships between Cu anomalies identified by different methods and
the known deposits in the NQ were investigated. In the Lüliangshan-Yuka area, the sta-
tistical method detected two anomalies, while the S-A method detected three, and three
known deposits were present. For the Luofengpo area, the statistical method identified
one anomaly, and the S-A method revealed four, with five known deposits present. No
anomalies or known deposits were identified in the Shuangkoushan area. In comparison
to the less obvious anomalies delineated by the statistical method, the S-A method also
identified Zn anomalies in Lüliangshan. This indicated that S-A was more capable of
delineating the weak and small anomalies in the low background, considering the back-
ground variability. The results indicated that S-A had significant advantages for delineating
geochemical anomalies in the NQ: (1) it highlighted geochemical anomalies associated
with mineralization, and (2) it enhanced the identification of weak geochemical anomalies
within a low background affected by heavy overburden. By combining the known mining
deposits and ore points with the results obtained using the S-A method, a strong correlation
was observed between the highlighted Cu and Cu-Zn anomalies in Lüliangshan, thus
providing valuable targets for future exploration.
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5.4. Potential Exploration Targets and Their Verification

Three exploration targets were delineated in the research area using statistical methods
(Figure 13a) and four using the S-A method (Figure 13b), as shown by the combinatorial
anomaly maps (Figure 13). Target I was situated in the Yuka–Dashibei–Lüliangshan area at
the graph’s apex. The area has yielded several deposits, including the Yuka Au deposit
and the Lüliangshan Cu deposit, which are, respectively, a volcanic massive sulfide deposit
(VMS) and quartz vein-type Cu-Au deposit/mineralization. Additionally, significant
peacock fossilization and mylonitization have been discovered. Target II was located in
the Luofengpo area, where ferrochromite mineralization and several Cu mineralizations
have been identified. Target III was situated in the Shuangkoushan area, characterized by
various rock mixed areas, such as basaltic slate and ultrabasic rock in Cambrian Ordovician
beaches, reflecting a high geological background of Co (Cr, Ni).

Geological exploration was used to validate the delineated targets. In the target I area,
two types of mineralized ore bodies were identified. Firstly, the soil-like Cu mineralization’s
ore body generally measured 2–8 m in width and 30–100 m in length. The surface was nearly
cylindrical, with the drilling control extending well beyond the strike. After oxidation,
the ore body turned into brown weathered rock, mainly composed of alum, potassium
ferric alum, and secondary quartzite. The dominant sulfides were pyrite, chalcopyrite, and
pyrite after washing, suggesting the possibility of massive sulfide Cu mineralization in the
primary mineralization. Surface alteration of this ore body was not extensive. However, in
the upper plate or the same horizon of the same layer, multi-layer ferrosiliceous rocks were
produced in the 20–100 m green mud phyllite, forming intermittent interbeds influenced
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by late ductile deformation. Secondly, the Cu-Au mineralization related to the green mud
schist phyllite was found in the upper plate of the soil-like Cu mineralization, occurring in
the ductile shear zone. The exposed mineralized bodied had widths ranging from 0.3 to
3 m, determined by field geological observation and spectral analysis. Cu contents ranged
from 1500 to 18,000 ppm and Au contents were 2–189 ppm, including visible Au in some
sections. All the ore bodies in the Yuka area were found in an Au mineralization fracture
zone measuring 1300 m in length and 500 m in width. Nearby, Au-bearing areas with
364 ppm and Cu up to 1500 ppm, larger than the regional background values, indicated
good potential for Cu and Au prospecting in the area. Furthermore, multiple occurrences
of Cu mineralization (peacock petrifaction) were found in Target II. Cu mineralization was
identified in Luofengpo (Figure 14) using the target obtained by the S-A method in 2017,
indicating a high possibility of new Cu deposits in Target II.
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As verified above, more than industrial-grade Cu mineralization clues were found in
the delineated target area, which can be used to direct future Cu exploration in this area.

6. Conclusions

The following conclusions can be drawn from this integrated study of geochemical
anomalies.

(1) The RFA method applied to log-ratio-transformed regional stream sediment-sampling
geochemical data accurately identified associations between mineralization-related
elements, such as Au, Ag, Pb, Sb, Hg, Cu, Zn, and Co.

(2) The use of the S-A model on a single element or the component factor derived from
RFA effectively reduced the anomaly area in high anomaly fields and highlighted weak
anomalies in low background areas, surpassing the statistical Mean + 2SD method.
The anomaly maps generated by the S-A model demonstrated good ore potential,
with verification identifying numerous Cu ore bodies within the anomalous regions.

(3) The combination of the Cu, Zn, and Co combinatorial elements anomaly map, field
geological exploration, and regional geological structure revealed the presence of
Cu ore bodies and Cu mineralization in the targeted area. Notably, the Lüliangshan
and Luofengpo areas exhibited Au ore bodies primarily occurring in NW-striking
ductile fractures, which were oriented along the NW–SE direction and showed a high
coincidence of Cu and Co anomalies.

Therefore, the target area had considerable accuracy and economic value, pointing
to the possibility for future exploration of Cu deposits in this area. It was also concluded
that the combination of log-ratio, RFA and S-A is an effective method for identifying
geochemical anomalies.

Author Contributions: Writing—original draft, S.Z., H.J. and X.C.; writing—review and editing, J.W.,
R.X., X.C. and Y.Y.; visualization, S.Z., X.C. and C.F.; investigation, C.F., R.X. and Y.Y.; methodology,
J.W. and S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Research for this study was supported by the Qinghai Science and Technology Planning
Project (2021-ZJ-741).

Data Availability Statement: Data is contained within the article.

Acknowledgments: We would like to express our sincere gratitude to Wuhan SampleSolution
Analytical Technology Co., Ltd. for their generous support and assistance during the course of our
research. Their expertise and resources have significantly contributed to the successful completion of
our study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lima, A.; De Vivo, B.; Cicchella, D.; Cortini, M.; Albanese, S. Multifractal IDW interpolation and fractal filtering method in

environmental studies: An application on regional stream sediments of (Italy), Campania region. Appl. Geochem. 2003, 18,
1853–1865. [CrossRef]

2. Deecke, V.B.; Nykaenen, M.; Foote, A.D.; Janik, V.M. Vocal behaviour and feeding ecology of killer whales Orcinus orca around
Shetland, UK. Aquat. Biol. 2011, 13, 79–99. [CrossRef]

3. Jiang, X.J.; Chen, X.; Gao, S.B.; Zheng, Y.Y.; Ren, H.; Han, D.H.; Yan, C.C.; Jiang, J.S. The New Discovery of Ag-Pb-Zn
Mineralization via Modern Portable Analytical Technology and Stream Sediment Data Processing Methods in Dajiacuo Area,
Western Tibet (China). J. Earth Sci. 2020, 31, 668–682. [CrossRef]

4. Carranza, E.J.M.; Hale, M. A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay
Province, Philippines. J. Geochem. Explor. 1997, 60, 157–171. [CrossRef]

5. Cheng, Q.M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in
Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [CrossRef]

6. Yousefi, N.; Gudarzi, M.M.; Zheng, Q.B.; Lin, X.Y.; Kim, J.K. Highly aligned, ultralarge-size reduced graphene oxide/polyurethane
nanocomposites: Mechanical properties and moisture permeability. Compos. Part A 2013, 49, 42–50. [CrossRef]

https://doi.org/10.1016/S0883-2927(03)00083-0
https://doi.org/10.3354/ab00353
https://doi.org/10.1007/s12583-020-1323-9
https://doi.org/10.1016/S0375-6742(97)00032-0
https://doi.org/10.1016/j.oregeorev.2006.10.002
https://doi.org/10.1016/j.compositesa.2013.02.005


Appl. Sci. 2024, 14, 2597 18 of 19

7. Chen, X.; Xu, R.K.; Zheng, Y.Y.; Jiang, X.J.; Du, W.Y. Identifying potential Au-Pb-Ag mineralization in SE Shuangkoushan,
North Qaidam, Western China: Combined log-ratio approach and singularity mapping. J. Geochem. Explor. 2018, 189, 109–121.
[CrossRef]

8. Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration. Soil Sci. 1963, 95, 283. [CrossRef]
9. Tukey, J.W. Exploratory data analysis. J. Am. Stat. Assoc. 1977, 73, 885–887. [CrossRef]
10. Zuo, R.G.; Wang, J.; Chen, G.X.; Yang, M.G. Identification of weak anomalies: A multifractal perspective. J. Geochem. Explor. 2015,

148, 12–24. [CrossRef]
11. Zuo, R.G.; Carranza, E.J.M.; Wang, J. Spatial analysis and visualization of exploration geochemical data. Earth-Sci. Rev. 2016,

158, 9–18. [CrossRef]
12. Zhao, J.N.; Chen, S.Y.; Zuo, R.G. Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and

artificial neural network models in the Ningqiang district, Shaanxi, China. J. Geochem. Explor. 2016, 164, 54–64. [CrossRef]
13. Stanley, C.R.; Sinclair, A.J. Comparison of Probability Plots and the Gap Statistic in the Selection of Thresholds for Exploration

Geochemistry Data. J. Geochem. Explor. 1989, 32, 355–357. [CrossRef]
14. Cheng, Q.M. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting

undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [CrossRef]
15. Zhao, S.Y.; Kreuzer, P.O. Application of the tectono-geochemistry method to mineral prospectivity mapping: A case study of the

Gaosong tin-polymetallic deposit, Gejiu district, SW China. Ore Geol. Rev. 2015, 71, 719–734. [CrossRef]
16. Zheng, S.L.; Jiang, X.J.; Gao, S.B. Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Cu Deposit in

Gangdese Metallogenic Belt, Tibet, Western China. Appl. Sci. 2023, 13, 10123. [CrossRef]
17. Bai, J.; Porwal, A.; Hart, C.; Ford, A.; Yu, L. Mapping geochemical singularity using multifractal analysis: Application to anomaly

definition on stream sediments data from Funin Sheet, Yunnan, China. J. Geochem. Explor. 2010, 104, 1–11. [CrossRef]
18. Agterberg, F.P. Multifractals and geostatistics. J. Geochem. Explor. 2012, 122, 113–122. [CrossRef]
19. Liu, Y.; Cheng, Q.M.; Xia, Q.L.; Wang, X.Q. Application of singularity analysis for mineral potential identification using

geochemical data—A case study: Nanling W–Sn–Mo polymetallic metallogenic belt, South China. J. Geochem. Explor. 2013,
134, 61–72. [CrossRef]

20. Wang, W.L.; Zhao, J.; Cheng, Q.M. Application of singularity index mapping technique to gravity/magnetic data analysis in
southeastern Yunnan mineral district, China. J. Appl. Geophys. 2013, 92, 39–49. [CrossRef]

21. Zuo, R.G.; Xia, Q.L.; Wang, H.C. Compositional data analysis in the study of integrated geochemical anomalies associated with
mineralization. Appl. Geochem. 2013, 28, 202–211. [CrossRef]

22. Zuo, R.G.; Xia, Q.L.; Zhang, D.J. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical
anomalies in covered areas. Appl. Geochem. 2013, 33, 165–172. [CrossRef]

23. Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS; Pergamon: Oxford, UK, 1994; p. 398.
[CrossRef]

24. Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the
statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [CrossRef]

25. Filzmoser, P.; Hron, K.; Reimann, C.; Garrett, R. Robust factor analysis for compositional data. Comput. Geosci. 2009, 35, 1854–1861.
[CrossRef]

26. Filzmoser, P.; Todorov, V. An Object-Oriented Framework for Robust Multivariate Analysis. J. Stat. Softw. 2009, 32, 1–47.
[CrossRef]

27. Piepel, G.F. The Statistical Analysis of Compositional Data. Technometrics 1988, 30, 120–121. [CrossRef]
28. Buccianti, A. Frequency Distributions of Geochemical Data, Scaling Laws, and Properties of Compositions. Pure Appl. Geophys.

2014, 172, 1851–1863. [CrossRef]
29. Buccianti, A.; Grunsky, E. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural

processes? J. Geochem. Explor. 2015, 141, 1–5. [CrossRef]
30. Song, S.G.; Su, L.; Li, X.H.; Zhang, G.B.; Niu, Y.L.; Zhang, L.F. Tracing the 850-Ma continental flood basalts from a piece of

subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Res. 2010, 183, 805–816. [CrossRef]
31. Xu, G.D. The Genesis Study of Shuangkoushan Lead-Zinc Deposit, Qinghai Province. Master’s Thesis, China University of

Geosciences, Wuhan, China, 2012. (In Chinese).
32. González, M.T.; Wu, S.M.; Huber, R.; Van Der Molen, S.; Schönenberger, C.; Calame, M. Electrical Conductance of Molecular

Junctions by a Robust Statistical Analysis. Nano Lett. 2006, 6, 2238–2242. [CrossRef] [PubMed]
33. Xie, X.J.; Mu, X.; Ren, T.X. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [CrossRef]
34. Xie, X.J.; Wang, X.Q.; Zhang, Q.; Zhou, G.H.; Cheng, H.X.; Liu, D.W.; Cheng, Z.Z.; Xu, S.F. Multi-scale geochemical mapping in

China. Geochemistry 2008, 8, 333–341. [CrossRef]
35. Xu, R.K.; Zheng, Y.Y.; Zhou, B.; Wu, L.; Zhu, H.Y.; Zhang, Y.; Ma, C.; Lu, D. The Metallogenic Regularity and Inspiration

Prospecting of Copper Lead-Zinc Deposit Associated with Orogenic in the Lüliangshan Area Northern Margin of Qaidam Basin.
Northwestern Geol. 2012, 45, 192–201. (In Chinese) [CrossRef]

36. Chen, X. Metallogenic Conditions of Eclogite-Type Rutile Deposit from the North Qaidam UHP Metamorphic Belt and Their
Implications for Mineral Exploration. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2020. (In Chinese) [CrossRef]

https://doi.org/10.1016/j.gexplo.2017.04.001
https://doi.org/10.1097/00010694-196304000-00016
https://doi.org/10.2307/2286300
https://doi.org/10.1016/j.gexplo.2014.05.005
https://doi.org/10.1016/j.earscirev.2016.04.006
https://doi.org/10.1016/j.gexplo.2015.06.018
https://doi.org/10.1016/0375-6742(89)90076-9
https://doi.org/10.1016/j.gexplo.2012.07.007
https://doi.org/10.1016/j.oregeorev.2014.09.023
https://doi.org/10.3390/app131810123
https://doi.org/10.1016/j.gexplo.2009.09.002
https://doi.org/10.1016/j.gexplo.2012.04.001
https://doi.org/10.1016/j.gexplo.2013.08.006
https://doi.org/10.1016/j.jappgeo.2013.02.012
https://doi.org/10.1016/j.apgeochem.2012.10.031
https://doi.org/10.1016/j.apgeochem.2013.02.009
https://doi.org/10.1016/C2013-0-03864-9
https://doi.org/10.1007/s002549900081
https://doi.org/10.1016/j.cageo.2008.12.005
https://doi.org/10.18637/jss.v032.i03
https://doi.org/10.1080/00401706.1988.10488337
https://doi.org/10.1007/s00024-014-0963-z
https://doi.org/10.1016/j.gexplo.2014.03.022
https://doi.org/10.1016/j.precamres.2010.09.008
https://doi.org/10.1021/nl061581e
https://www.ncbi.nlm.nih.gov/pubmed/17034090
https://doi.org/10.1016/S0375-6742(97)00029-0
https://doi.org/10.1144/1467-7873/08-184
https://doi.org/10.3969/j.issn.1009-6248.2012.01.025
https://doi.org/10.27492/d.cnki.gzdzu.2019.000165


Appl. Sci. 2024, 14, 2597 19 of 19

37. Sandstrm, H.; Reeder, S.; Bartha, A.; Birke, M.; Berge, F.; Davidsen, B.; Grimstvedt, A.; Hagel-Brunnstr, M.M.; Kantor, W.; Kallio,
E. Sample preparation and analysis. Geochem. Atlas Eur. Part 2005, 1–14.

38. Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric logratio transformations for compositional
data analysis. Math. Geol. 2003, 35, 279–300. [CrossRef]

39. Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored
values. J. Geochem. Explor. 2011, 110, 167–185. [CrossRef]

40. Filzmoser, P.; Hron, K.; Reimann, C. Univariate statistical analysis of environmental (compositional) data: Problems and
possibilities. Sci. Total Environ. 2009, 407, 6100–6108. [CrossRef] [PubMed]

41. Zhao, J.; Wang, W.L.; Dong, L.H.; Yang, W.Z.; Cheng, Q.M. Application of geochemical anomaly identification methods in
mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. J. Geochem. Explor. 2012, 122, 81–89. [CrossRef]

42. Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Environmetrics 2009, 20,
621–632. [CrossRef]

43. Filzmoser, P.; Hron, K. Correlation Analysis for Compositional Data. Math. Geosci. 2009, 41, 905. [CrossRef]
44. Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Statist. Soc. B 1982, 44, 139–177. [CrossRef]
45. Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of mineralization zones in porphyry Cu

deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [CrossRef]
46. Filzmoser, P.; Hron, K. Outlier Detection for Compositional Data Using Robust Methods. Math. Geosci. 2008, 40, 233–248.

[CrossRef]
47. Zuo, R.G. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. J. Geochem.

Explor. 2014, 139, 170–176. [CrossRef]
48. Pison, G.; Rousseeuw, P.J.; Filzmoser, P.; Croux, C. Robust factor analysis. J. Multivar. Anal. 2003, 84, 145–172. [CrossRef]
49. Templ, M.; Hron, K.; Filzmoser, P. robCompositions: Robust Estimation for Compositional Data. Biosci. Biotechnol. Biochem. 2017,

70, 1875–1881. [CrossRef]
50. Turcotte, D.L. (Ed.) Fractals and Chaos in Geology and Geophysics: Fragmentation, 2nd ed.; Cambridge University Press: Cambridge,

UK, 1997; p. 414.
51. Cheng, Q.M. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [CrossRef]
52. Zuo, R.G. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl. Geochem. 2011, 26,

S271–S273. [CrossRef]
53. Cheng, Q.; Xia, Q.; Li, W.; Zhang, S.; Chen, Z.; Zuo, R.G.; Wang, W. Density/area power-law models for separating multi-scale

anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 2010, 7,
3019–3025. [CrossRef]

54. Cheng, Q.M. Multifractal and geostatistic methods forcharacterizing local structure and singularityproperties of exploration
geochemical anomalies. Earth Sci. (J. China Univ. Geosci.) 2001, 26, 161–166. (In Chinese)

55. Cheng, Q.M. Interpolation by means of multiftractal, kriging and moving average techniques. In Proceedings of the GAC/MAC
Meeting of GeoCanada2000, Calgary, AB, Alberta, 29 May 2000.

56. Zuo, R.G. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component
analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor. 2011, 111, 13–22. [CrossRef]

57. Cheng, Q.M. A New Model for Quantifying Anisotropic Scale Invariance and for Decomposition of Mixing Patterns. Math. Geol.
2004, 36, 345–360. [CrossRef]

58. Qiuming, C.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J.
Geochem. Explor. 1994, 51, 109–130. [CrossRef]

59. Cheng, Q.M. Multifractal distribution of eigenvalues and eigenvectors from 2D multiplicative cascade multifractal fields. Math.
Geol. 2005, 37, 915–927. [CrossRef]

60. Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS; Elsevier: Amsterdam, The Netherlands, 2008;
p. 368.

61. Cheng, Q.M.; Agterberg, F.P. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci.
2009, 35, 234–244. [CrossRef]

62. Pang, B.; Wu, S.; Yu, Z.Z.; Fan, L.Y.; Li, J.B.; Zheng, L.; Chen, H.; Li, X.X.; Shi, G.W. Rapid Exploration Using pXRF Combined
with Geological Connotation Method (GCM): A Case Study of the Nuocang Cu Polymetallic District, Tibet. Minerals 2022, 12, 514.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1016/j.gexplo.2011.05.007
https://doi.org/10.1016/j.scitotenv.2009.08.008
https://www.ncbi.nlm.nih.gov/pubmed/19740525
https://doi.org/10.1016/j.gexplo.2012.08.006
https://doi.org/10.1002/env.966
https://doi.org/10.1007/s11004-008-9196-y
https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
https://doi.org/10.1016/j.gexplo.2011.03.005
https://doi.org/10.1007/s11004-007-9141-5
https://doi.org/10.1016/j.gexplo.2013.08.013
https://doi.org/10.1016/S0047-259X(02)00007-6
https://doi.org/10.1271/bbb.60049
https://doi.org/10.1016/S0375-6742(99)00028-X
https://doi.org/10.1016/j.apgeochem.2011.03.122
https://doi.org/10.5194/bg-7-3019-2010
https://doi.org/10.1016/j.gexplo.2011.06.012
https://doi.org/10.1023/B:MATG.0000028441.62108.8a
https://doi.org/10.1016/0375-6742(94)90013-2
https://doi.org/10.1007/s11004-005-9223-1
https://doi.org/10.1016/j.cageo.2008.02.034
https://doi.org/10.3390/min12050514

	Introduction 
	Geological Setting 
	Sampling and Analysis 
	Methodology 
	Log-Ratio Approach 
	Robust Factor Analysis (RFA) 
	Spectrum–Area (S-A) Model 
	Extraction of Combination Anomalies Based on Factor Load 

	Results and Discussion 
	Geochemical Anomalies Identified by Statistical Methods 
	Single Geochemical Element Anomaly Analysis by Statistical Methods 
	Mineralization-Related Multi Elements Anomaly Analysis Using Statistical Methods 

	Geochemical Anomalies Identified by the S-A Method 
	Comparison between the Statistical and S-A Methods 
	Potential Exploration Targets and Their Verification 

	Conclusions 
	References

