Enhancing Cement Paste Properties with Biochar: Mechanical and Rheological Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Biochar Characterization
2.3.1. Laser Granulometry
2.3.2. X-ray Diffraction
2.3.3. X-ray Fluorescence
2.3.4. Field Emission Scanning Electron Microscopy (FESEM)
2.3.5. Water Retention Capacity
2.3.6. Thermogravimetric Analysis (TGA)
3. Results
3.1. Effect of Biochar Addition on Flow Curves
3.2. Mechanical Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. Available online: https://ourworldindata.org/world-population-growth (accessed on 20 October 2023).
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Poudyal, L.; Adhikari, K. Environmental Sustainability in Cement Industry: An Integrated Approach for Green and Economical Cement Production. Resour. Environ. Sustain. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Ige, O.E.; Olanrewaju, O.A.; Duffy, K.J.; Obiora, C. A Review of the Effectiveness of Life Cycle Assessment for Gauging Environmental Impacts from Cement Production. J. Clean. Prod. 2021, 324, 129213. [Google Scholar] [CrossRef]
- de Brito, J.; Kurda, R. The Past and Future of Sustainable Concrete: A Critical Review and New Strategies on Cement-Based Materials. J. Clean. Prod. 2021, 281, 123558. [Google Scholar] [CrossRef]
- Singh, A.; Sampath, P.V.; Biligiri, K.P. A Review of Sustainable Pervious Concrete Systems: Emphasis on Clogging, Material Characterization, and Environmental Aspects. Constr. Build. Mater. 2020, 261, 120491. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Zhang, J.; Yu, R.; Hou, D.; Shui, Z. Design of Sustainable Ultra-High Performance Concrete: A Review. Constr. Build. Mater. 2021, 307, 124643. [Google Scholar] [CrossRef]
- Van Damme, H. Concrete Material Science: Past, Present, and Future Innovations. Cem. Concr. Res. 2018, 112, 5–24. [Google Scholar] [CrossRef]
- Habel, K.; Viviani, M.; Denarié, E.; Brühwiler, E. Development of the Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cem. Concr. Res. 2006, 36, 1362–1370. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in Concrete—A Review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Lavagna, L.; Bartoli, M.; Suarez-Riera, D.; Cagliero, D.; Musso, S.; Pavese, M. Oxidation of Carbon Nanotubes for Improving the Mechanical and Electrical Properties of Oil-Well Cement-Based Composites. ACS Appl. Nano Mater. 2022, 5, 6671–6678. [Google Scholar] [CrossRef]
- Tugelbayev, A.; Kim, J.H.; Lee, J.U.; Chung, C.W. The Effect of Acid Treated Multi-Walled Carbon Nanotubes on the Properties of Cement Paste Prepared by Ultrasonication with Polycarboxylate Ester. J. Build. Eng. 2023, 64, 105638. [Google Scholar] [CrossRef]
- Silvestro, L.; Jean Paul Gleize, P. Effect of Carbon Nanotubes on Compressive, Flexural and Tensile Strengths of Portland Cement-Based Materials: A Systematic Literature Review. Constr. Build. Mater. 2020, 264, 120237. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, C.; Wei, J. Microscopic Reinforcement for Cement Based Composite Materials. Constr. Build. Mater. 2013, 40, 14–25. [Google Scholar] [CrossRef]
- Merodio-Perea, R.G.; Páez-Pavón, A.; Lado-Touriño, I. Reinforcing Cement with Pristine and Functionalized Carbon Nanotubes: Experimental and Simulation Studies. Int. J. Smart Nano Mater. 2020, 11, 370–386. [Google Scholar] [CrossRef]
- Restuccia, L.; Ferro, G.A. Promising Low Cost Carbon-Based Materials to Improve Strength and Toughness in Cement Composites. Constr. Build. Mater. 2016, 126, 1034–1043. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Low, C.Y. Use of Biochar as Carbon Sequestering Additive in Cement Mortar. Cem. Concr. Compos. 2018, 87, 110–129. [Google Scholar] [CrossRef]
- Mishra, G.; Danoglidis, P.; Shah, S.P.; Konsta-Gdoutos, M. Optimization of Biochar and Fly Ash to Improve Mechanical Properties and CO2 Sequestration in Cement Mortar. Constr. Build. Mater. 2023, 392, 132021. [Google Scholar] [CrossRef]
- Lin, X.; Li, W.; Guo, Y.; Dong, W.; Castel, A.; Wang, K. Biochar-Cement Concrete toward Decarbonisation and Sustainability for Construction: Characteristic, Performance and Perspective. J. Clean. Prod. 2023, 419, 138219. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Tan Cynthia, S.Y. Use of Biochar-Coated Polypropylene Fibers for Carbon Sequestration and Physical Improvement of Mortar. Cem. Concr. Compos. 2017, 83, 171–187. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci. Total Environ. 2018, 619–620, 419–435. [Google Scholar] [CrossRef]
- Danish, A.; Ali Mosaberpanah, M.; Usama Salim, M.; Ahmad, N.; Ahmad, F.; Ahmad, A. Reusing Biochar as a Filler or Cement Replacement Material in Cementitious Composites: A Review. Constr. Build. Mater. 2021, 300, 124295. [Google Scholar] [CrossRef]
- Qin, Y.; Pang, X.; Tan, K.; Bao, T. Evaluation of Pervious Concrete Performance with Pulverized Biochar as Cement Replacement. Cem. Concr. Compos. 2021, 119, 104022. [Google Scholar] [CrossRef]
- Sirico, A.; Bernardi, P.; Sciancalepore, C.; Vecchi, F.; Malcevschi, A.; Belletti, B.; Milanese, D. Biochar from Wood Waste as Additive for Structural Concrete. Constr. Build. Mater. 2021, 303, 124500. [Google Scholar] [CrossRef]
- Mo, L.; Fang, J.; Huang, B.; Wang, A.; Deng, M. Combined Effects of Biochar and MgO Expansive Additive on the Autogenous Shrinkage, Internal Relative Humidity and Compressive Strength of Cement Pastes. Constr. Build. Mater. 2019, 229, 116877. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Novel Biochar-Concrete Composites: Manufacturing, Characterization and Evaluation of the Mechanical Properties. Sci. Total Environ. 2018, 616–617, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Haris Javed, M.; Ali Sikandar, M.; Ahmad, W.; Tariq Bashir, M.; Alrowais, R.; Bilal Wadud, M. Effect of Various Biochars on Physical, Mechanical, and Microstructural Characteristics of Cement Pastes and Mortars. J. Build. Eng. 2022, 57, 104850. [Google Scholar] [CrossRef]
- Gunasekaran, P.K.; Chin, S.C. Performance of Bamboo Biochar as Partial Cement Replacement in Mortar. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Zaid, O.; Alsharari, F.; Ahmed, M. Utilization of Engineered Biochar as a Binder in Carbon Negative Cement-Based Composites: A Review. Constr. Build. Mater. 2024, 417, 135246. [Google Scholar] [CrossRef]
- Ahmad, S.; Tulliani, J.M.; Ferro, G.A.; Khushnood, R.A.; Restuccia, L.; Jagdale, P. Crack Path and Fracture Surface Modifications in Cement Composites. Frat. Integrità Strutt. 2015, 9, 524–533. [Google Scholar] [CrossRef]
- Restuccia, L.; Ferro, G. Nanoparticles from food waste: A “green” future for traditional building materials. In Proceedings of the 9th International Conference on Fractur e Mechanics of Concrete and Concrete Structures, Berkeley, CA, USA, 29 May–1 June 2016. [Google Scholar]
- Suarez-Riera, D.; Restuccia, L.; Ferro, G.A. The Use of Biochar to Reduce the Carbon Footprint of Cement-Based. Procedia Struct. Integr. 2020, 26, 199–210. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Falliano, D.; Carvajal, J.F.; Celi, A.C.B.; Ferro, G.A.; Tulliani, J.M.; Lavagna, L.; Restuccia, L. The Effect of Different Biochar on the Mechanical Properties of Cement-Pastes and Mortars. Buildings 2023, 13, 2900. [Google Scholar] [CrossRef]
- Choi, W.C.; Yun, H.D.; Lee, J.Y. Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis. J. Korea Inst. Struct. Maint. Insp. 2012, 16, 67–74. [Google Scholar]
- Gupta, S.; Kua, H.W. Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Effect of Water Entrainment by Pre-Soaked Biochar Particles on Strength and Permeability of Cement Mortar. Constr. Build. Mater. 2018, 159, 107–125. [Google Scholar] [CrossRef]
- Buzzi Unicem, S.r.l. Type I 52,5 R. Available online: https://www.buzziunicem.it/web/italia/-/tipo-i-52-5-1 (accessed on 4 March 2024).
- Suarez-Riera, D.; Lavagna, L.; Bartoli, M.; Giorcelli, M.; Pavese, M.; Tagliaferro, A. The Influence of Biochar Shape on Cement-Based Materials. Mag. Concr. Res. 2022, 74, 1097–1102. [Google Scholar] [CrossRef]
- JCI-S-001-2003; Method of Test for Fracture Energy of Concrete by Use of Notched Beam. Japanese Concrete Institute: Tokyo, Japan, 2003.
- Ling, Y.; Wu, X.; Tan, K.; Zou, Z. Effect of Biochar Dosage and Fineness on the Mechanical Properties and Durability of Concrete. Materials 2023, 16, 2809. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water Uptake in Biochars: The Roles of Porosity and Hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology, 1st ed.; Routledge: London, UK, 2009. [Google Scholar]
- Shafie, S.T.; Mohd, M.A.; Hang, L.L.; Azlina, W.; Abdul, W.; Ghani, K. Effect of Pyrolysis Temperature on the Biochar Nutrient and Water Retention Capacity. Purity Util. React. Environ. 2012, 1, 293–307. [Google Scholar]
- Long, W.J.; Tao, J.L.; Lin, C.; Gu, Y.C.; Mei, L.; Duan, H.B.; Xing, F. Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D-Printing. J. Clean. Prod. 2019, 239, 118054. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, M.; Zhao, Y.; Baig, S.A.; Huang, N.; Ma, M. Sodium Citrate and Biochar Synergistic Improvement of Nanoscale Zero-Valent Iron Composite for the Removal of Chromium (VI) in Aqueous Solutions. J. Environ. Sci. 2022, 115, 227–239. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; de Schutter, G. Why Is Fresh Self-Compacting Concrete Shear Thickening? Cem. Concr. Res. 2009, 39, 510–523. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook, 2nd ed.; Vincentz Network GmbH & Co.: Hannover, Germany, 2006. [Google Scholar]
- Li, H.; Li, Y.; Jin, C. The Energy Dissipation Property of MWCNTs/Cement Paste Composites. Constr. Build. Mater. 2022, 327, 126953. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Liu, G.; Cui, X.; Sun, J. Application of Biochar Cement-Based Materials for Carbon Sequestration. Constr. Build. Mater. 2023, 405, 133373. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Biochar-Mortar Composite: Manufacturing, Evaluation of Physical Properties and Economic Viability. Constr. Build. Mater. 2018, 167, 874–889. [Google Scholar] [CrossRef]
- Gupta, S.; Tulliani, J.M.; Kua, H.W. Carbonaceous Admixtures in Cementitious Building Materials: Effect of Particle Size Blending on Rheology, Packing, Early Age Properties and Processing Energy Demand. Sci. Total Environ. 2022, 807, 150884. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Jennings, H.M. Influences of Mixing Methods on the Microstructure and Rheological Behavior of Cement Paste. Adv. Cem. Based Mater. 1995, 2, 70–78. [Google Scholar] [CrossRef]
- Han, D.; Ferron, R.D. Effect of Mixing Method on Microstructure and Rheology of Cement Paste. Constr. Build. Mater. 2015, 93, 278–288. [Google Scholar] [CrossRef]
- Wei, D.; Dave, R.; Pfeffer, R. Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques. J. Nanopart. Res. 2002, 4, 21–41. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, J.; Li, Z.; Teng, F.; Zhang, J.; Gao, S.; Ma, M.; Zhou, X.; Tao, X. Dispersion of Carbon Nanotubes in Aqueous Cementitious Materials: A Review. Nanotechnol. Rev. 2023, 12, 20220560. [Google Scholar] [CrossRef]
- ASTM C1749-17a; Standard Guide for Measurement of the Rheological Properties of Hydraulic Cementious Paste Using a Rotational Rheometer 1. ASTM: West Conshohocken, PA, USA, 2017. [CrossRef]
- Brewer, C.E.; Brown, R.C. Biochar. Compr. Renew. Energy 2012, 5, 357–384. [Google Scholar] [CrossRef]
- Ferraris, C.F. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report. J. Res. Natl. Inst. Stand. Technol. 1999, 104, 461. [Google Scholar] [CrossRef]
- Rahul, A.V.; Santhanam, M.; Meena, H.; Ghani, Z. 3D Printable Concrete: Mixture Design and Test Methods. Cem. Concr. Compos. 2019, 97, 13–23. [Google Scholar] [CrossRef]
- Li, Z. Advanced Concrete Technology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bonen, D.; Shah, S.P. Fresh and Hardened Properties of Self-Consolidating Concrete. Prog. Struct. Eng. Mater. 2005, 7, 14–26. [Google Scholar] [CrossRef]
Oxide | Loss on Ignition | ||||||||
---|---|---|---|---|---|---|---|---|---|
Amount (%) | 20.02 | 4.12 | 1.87 | 63.23 | 4.2 | 3.43 | 0.003 | 0.0015 | 0.8 |
Phase | |||||||||
Composition | 49.10% | 19.70% | 7.91% | 5.20% |
Mechanical Test Activity | Rheological Test Activity | ||
---|---|---|---|
ID | N° Specimens 7 Days | N° Specimens 28 Days | N° Specimens |
Ref. OPC | 4 | 4 | 5 |
B 1% | 4 | 4 | 5 |
B 2% | 4 | 4 | 5 |
B 3% | 4 | 4 | 5 |
B 5% | 4 | 4 | 5 |
B 7% | - | - | 5 |
Mechanical Test Activity | Rheological Test Activity | |||||||
---|---|---|---|---|---|---|---|---|
I.D. | Cement (g) | Water (g) | B (g) | SP (g) | Cement (g) | Water (g) | B (g) | SP (g) |
Reference OPC | 460 | 161 | - | 4.6 | 50 | 17.5 | - | 0.5 |
B 1% | 460 | 161 | 4.6 | 4.6 | 50 | 17.5 | 0.5 | 0.5 |
B 2% | 460 | 161 | 9.2 | 4.6 | 50 | 17.5 | 1.0 | 0.5 |
B 3% | 460 | 161 | 13.8 | 4.6 | 50 | 17.5 | 1.5 | 0.5 |
B 5% | 460 | 161 | 23.0 | 4.6 | 50 | 17.5 | 2.5 | 0.5 |
B 7% | - | - | - | - | 50 | 17.5 | 3.5 | 0.5 |
Storage Modulus (Pa) | Loss Modulus (Pa) | |
---|---|---|
Reference OPC | 30,340 | 5034 |
B 1% | 45,790 | 10,760 |
B 2% | 54,050 | 12,250 |
B 3% | 63,380 | 14,440 |
B 5% | 181,300 | 29,360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez-Riera, D.; Lavagna, L.; Carvajal, J.F.; Tulliani, J.-M.; Falliano, D.; Restuccia, L. Enhancing Cement Paste Properties with Biochar: Mechanical and Rheological Insights. Appl. Sci. 2024, 14, 2616. https://doi.org/10.3390/app14062616
Suarez-Riera D, Lavagna L, Carvajal JF, Tulliani J-M, Falliano D, Restuccia L. Enhancing Cement Paste Properties with Biochar: Mechanical and Rheological Insights. Applied Sciences. 2024; 14(6):2616. https://doi.org/10.3390/app14062616
Chicago/Turabian StyleSuarez-Riera, Daniel, Luca Lavagna, Juan Felipe Carvajal, Jean-Marc Tulliani, Devid Falliano, and Luciana Restuccia. 2024. "Enhancing Cement Paste Properties with Biochar: Mechanical and Rheological Insights" Applied Sciences 14, no. 6: 2616. https://doi.org/10.3390/app14062616
APA StyleSuarez-Riera, D., Lavagna, L., Carvajal, J. F., Tulliani, J. -M., Falliano, D., & Restuccia, L. (2024). Enhancing Cement Paste Properties with Biochar: Mechanical and Rheological Insights. Applied Sciences, 14(6), 2616. https://doi.org/10.3390/app14062616