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Abstract: In recent years, deep convolutional neural networks with multi-scale features have been
widely used in image super-resolution reconstruction (ISR), and the quality of the generated images
has been significantly improved compared with traditional methods. However, in current image
super-resolution network algorithms, these methods need to be further explored in terms of the
effective fusion of multi-scale features and cross-domain application of attention mechanisms. To
address these issues, we propose a novel multi-scale cross-attention fusion network (MCFN), which
optimizes the feature extraction and fusion process in structural design and modular innovation. In
order to make better use of the attention mechanism, we propose a Pyramid Multi-scale Module
(PMM) to extract multi-scale information by cascading. This PMM is introduced in MCFN and is
mainly constructed by multiple multi-scale cross-attention modules (MTMs). To fuse the feature in-
formation of PMMs efficiently in both channel and spatial dimensions, we propose the cross-attention
fusion module (CFM). In addition, an improved integrated attention enhancement module (IAEM) is
inserted at the network’s end to enhance the correlation of high-frequency feature information be-
tween layers. Experimental results show that the algorithm significantly improves the reconstructed
images’ edge information and texture details, and the benchmark dataset’s performance evaluation
shows comparable performance to current state-of-the-art techniques.

Keywords: image super-resolution; pyramid multi-scale features; inter-attention mechanism

1. Introduction

Image super-resolution (SR) is a fundamental task in computer vision, the primary
goal of which is to reconstruct a low-resolution image (LR) into a high-resolution photo
(HR). Image super-resolution (ISR) reconstruction is an ill-posed problem because multiple
HR images may degrade into the same LR image, and details may be lost in the degra-
dation process. Image super-resolution has been widely studied and applied to medical
images, remote sensing images, video surveillance, and other fields needing high-frequency
information. In recent years, as deep learning technology has made significant progress
in computer vision, this technology has been applied to more tasks. Compared with the
image super-resolution methods based on interpolation [1], reconstruction [2], and learn-
ing [3,4], the use of deep learning methods can reconstruct high-frequency information
more effectively.

SRCNN [5] first applied a Convolutional Neural Network (CNN) to the field of image
super-resolution and solved the problem through the mapping function from LR input to
HR output. Since then, deep CNN-based methods have been widely used in ISR. Following
SRCNN, methods such as FSRCNN [6], ESPCN [7], VDSR [8], EDSR [9], LapSRN [10],
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and DRRN [11] provide a wider sensory field by deepening the network structure and
introducing a residual learning mechanism to alleviate the gradient vanishing problem that
increases with network deepening.

Recently, CNN-based methods, such as MSRN [12], MSFRNE [13], and MSAR [14],
have demonstrated the ability to further enhance network performance by making full use
of multi-scale extracted feature information to increase image texture details. However,
despite advances in these methods, more work still needs to be done on the effective fusion
of multi-scale features and deep utilization of attention mechanisms. In particular, how to
fully use different multi-scale information and enhance the ability of feature information
expression while maintaining network efficiency. Therefore, to solve these problems,
this paper proposes a multi-scale cross-attention fusion network (MCFN) for the image
super-resolution task. The main contributions of this paper are as follows:

(1) A multi-scale cross-attention fusion network (MCFN) is proposed to achieve total
extraction and compelling fusion of feature information at different scales and promote
high-quality image reconstruction.

(2) A multi-scale Trans-attention module (MTM) is proposed to efficiently extract and
fuse multi-scale feature information. MTM utilizes a pyramid multi-scale module
(PMM) to extract feature information of various scales, which is then input into a
Cross Attention Fusion module (CFM) in a cross-module manner. This approach
incorporates a cross-connect strategy that combines channel and spatial attention
mechanisms to fuse the multi-scale feature information effectively and capture the
correlation dependence between them.

(3) An improved integrated Attention Enhancement module (IAEM) is proposed to
extract more feature information from the middle layer through a dense connection
strategy. The module learns the correlation between the middle layers and integrates
the feature information of each module effectively.

(4) The objective metrics and subjective vision of public datasets show that our method
is competitive compared with existing methods. At the same time, we prove the
proposed method’s effectiveness through many ablation and experimental studies.

This paper is organized as follows: Section 2 will introduce the relevant studies.
Section 3 will elaborate on our proposed method and structure. Section 4 will show the
experimental results of the method on a public benchmark dataset. The last section will
summarize the main conclusions of the paper.

2. Related Works
2.1. Deep CNN-Based Image Super-Resolution

Methods based on deep learning have recently been widely used in image super-
resolution [15] and have achieved significant advantages over traditional methods. Dong
et al. proposed SRCNN [5], the first article to apply a convolutional neural network to the
field of image super-resolution. They used a three-layer convolutional neural network to
establish an end-to-end mapping SR method between LR images and their corresponding
HR images. Kim et al. proposed the VDSR [8] algorithm, which used a deep convolutional
neural network and added residual learning to improve the SRCNN network. At the
same time, the DRCN [16] algorithm was proposed, which is the first method to introduce
recursive learning to realize parameter sharing in SR. Although the initial application of
the CNN method can improve the performance of traditional methods, it will increase
the computational cost and produce artifacts. Therefore, Dong et al. proposed the FS-
RCNN [6] approach to improve computational efficiency by introducing deconvolution
in up-sampling. The ESPCN [7] algorithm was suggested by Shi et al., which presents a
sub-pixel convolutional layer to upsample the final LR features as HR output to improve
the computational performance to achieve a complete end-to-end mapping. Due to the
effectiveness of the sub-pixel convolutional layer, the EDSR [9] algorithm also directly uses
it for upsampling and removes the BN layer at the same time to increase the amount of
network calculation, reduce the model parameters, and improve image performance. Lai
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et al. proposed the LapSRN [10] algorithm to reduce the amount of network calculation by
using a cascade structure to gradually enlarge image reconstruction. Tai et al. proposed the
MemNet [17] algorithm, which uses dense blocks for deep networks. Jiang et al. proposed
the HDRN [18] algorithm, which uses hierarchical thick blocks to reconstruct the image to
reduce the amount of calculation brought by the dense residual method. These methods
show that deep, residual, and dense connections can improve the network’s performance.
There are other ways to improve network performance.

2.2. Multi-Scale Feature Extraction Based on Image Super-Resolution

Multi-scale feature extraction is widely used in object detection [19] and semantic
segmentation tasks [20]. Multi-scale feature extraction can fully use information features at
different depths to improve accuracy. The classical scheme for multi-scale feature extraction
is the Inception [21] module proposed by Szegedy et al., which uses multiple convolution
kernels of different sizes at the same level to extract features, obtain various receptive
fields, and improve image quality. Recently, multi-scale feature extraction has also been
introduced into image super-resolution. Li et al. proposed an MSRN algorithm [12] that
uses multi-scale feature extraction to extract image features of different scales adaptively.
He et al. proposed the MRFN [22] algorithm, which uses a multi-receptive field module
to remove parts of various receptive fields and proposed a new training loss to reduce
reconstruction error. Feng et al. proposed the MSRFN [13] algorithm, which uses a multi-
scale extraction module and adds multiple paths for fusion to improve image reconstruction
quality. Although these methods are optimized at the network and training levels to
enhance the performance of image reconstruction, there is still room for improvement in
the extraction and fusion of feature information at different scales.

2.3. Attention Mechanism Based on Image Super-Resolution

Attention usually means that the human visual system adaptively focuses on salient
areas in visual information. Therefore, the attention mechanism can help the network focus
on essential details. A non-local neural network for image classification tasks [23] was first
proposed by Wang et al. After that, Hu et al. designed a Squeeze and Excitation Network
(SENet) [24] to improve image classification performance by introducing a channel attention
mechanism. Attention-based networks have also been increasingly applied in image super-
resolution (ISR) tasks. Inspired by the SENet network [25], Zhang et al. referred to the
channel attention mechanism in SR [26] to improve image quality. The SAN [27] algorithm
recently used a second-order channel attention mechanism to refine features adaptively.
In the AIDN [28] algorithm, information recognition ability is enhanced using a refined
attention mechanism to improve network performance. In the MSAR [14] algorithm, the
multi-scale attention residual module of feature refinement is used to refine the edge
of parts at each scale to improve performance. Therefore, using a multi-scale attention
mechanism for feature correlation learning can achieve a more comprehensive and in-depth
improvement in performance. We propose a multi-scale cross-attention fusion network
(MCFN) to extract and effectively fuse image feature information fully.

3. Methods

The ISR aims to reconstruct a high-resolution image IHR ∈ RC×rH×rW on top of a
low-resolution image ILR ∈ RC×H×W . The height and width of the image are denoted as W
and H, C is the number of channels in the color space, and r is the scale factor. LR images
are usually obtained by down-sampling the HR image.

Firstly, this section shows the overall framework of the multi-scale cross-attention
fusion network (MCFN). We will then detail each core component, including the pyramid
multi-scale module (PMM) in the multi-scale trans-attention module (MTM), the cross-
attention fusion module (CFM), and the optimized, integrated attention enhancement
module (IAEM). In addition, we will provide an in-depth analysis and justification of the
overall architecture strategy of the network.
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3.1. Network Framework

We proposed a multi-scale cross-attention fusion network architecture, as shown in
Figure 1, which consists of a shallow feature extraction module (SFM), a deep feature
extraction module (DFM), and a feature reconstruction module (FRM).
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Figure 1. Framework of the multi-scale cross-attention fusion network.

First, the SFM extracts shallow feature information F0 ∈ RC×H×W , including edges
and corners, through a single 3 × 3 convolution function fs f (·), given an input LR image
ILR ∈ RC×H×W .

F0 = fSFM(ILR), (1)

At the same time, F0 is also the input to the Deep Feature Extraction Module (DFM).
Inside the DFM, the F0 is used as the input of the M multi-scale trans-attention modules
and an optimized, Integrated Attention Enhancement Module (IEAM) in order to extract
and fuse image feature information. The function of this process is called fDFM. In addition,
global skip and dense connections are introduced to make the central part of the network
focus on high-frequency information, which can be formally expressed as follows:

FR = fDFM(F0) = F0 + f IAEM(Concat[F1, F2, . . . , Fi, . . . , FM]),
Fi = f i

MTM(Fi−1),
(2)

f i
MTM denotes the mapping of the i-th multi-scale trans-attentive module, and [·]

denotes concatenation. Fi denotes the output of the i-th MTM, and its input is a concatena-
tion of the outputs of the previous i − 1 MTM modules. Concat denotes the connectivity
operator, and f IAEM denotes the mapping in which the module learns feature information
from the outputs of the M MTMs, enhancing the feature information for high-frequency
information. The IAEM module is designed to enhance the feature layers that are highly
informative in their contribution and suppress the feature layers that contain redundant
information. Finally, the feature reconstruction module generates a high-resolution im-
age ISR ∈ RC×rH×rW according to the feature information FR, which is upsampled to the
required size by sub-pixel convolution:

ISR = fPixelShu f f le(FR), (3)

where fPixelShu f f le denotes sub-pixel convolution, which aggregates low-resolution feature
information to reconstruct the image.

Currently, loss functions such as L1, L2, perceptual loss, and adversarial loss are
commonly used to train SR models. In this paper, we choose loss L1 to reduce computational
complexity. In a given training set,

{
Ii
LR, Ii

SR
}N

i=1, N images, and corresponding images, L1
loss is defined as:

L(Θ) =
1
N

n

∑
i=1

( fMCFN(Ii
LR)− Ii

HR)1 =
1
n

n

∑
i=1

(Ii
SR − Ii

HR)1, (4)
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where fMCFN and Θ denote the proposed functional mapping and its learning parameters,
respectively. The configuration of each module will be shown in detail next.

3.2. Multi-Scale Trans-Attention Module

The multi-scale trans-attention module (MTM) is the core of this method, where
the extraction and fusion of multi-scale deep feature information are mainly carried out.
Figure 2 shows the pyramid multi-scale module (PMM) and the cross-attention fusion
module (CFM).
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Figure 2. Architecture of the multi-scale trans-attentive module. The core consists of the PMM as a
multi-scale pyramid module, which extracts feature information at different scales by incorporating
depth-separable convolution to improve efficiency. In addition, CFM is the cross-attention fusion
module, which fully fuses feature information by cross-learning the correlation of shallow and deep
PMM output feature information.

We constructed a pyramid multi-scale module (PMM) to fully extract feature informa-
tion and a cross-attention fusion module (CFM) for feature information fusion. We adopt
the global residual to minimize loss in the feature information extraction process. The
pyramid multi-scale module (PMM) we designed extracts features, such as detail texture
and contour area, to extract feature information comprehensively. Then, the heads and
tails of multiple modules are fed into the cross-attention fusion module as cross-module
outputs for related learning. The specific process is as follows:

Fj
MTM = Fj−1

MTM + fCFM(F1
PMM, FN

PMM), (5)

where F1
PMM and FN

PMM denote the outputs of the 1st and Nth pyramid multi-scale modules,
and f IFM denotes the mapping of the cross-attention fusion module.

3.2.1. Pyramid Multi-Scale Module

The multi-scale CNN can provide more informative features and help generate high-
quality super-resolution images. In order to extract the informative part of all scales more
comprehensively, we designed a pyramid multi-scale module for feature lifting, as shown
in Figure 2.
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In feature extraction, the shallower convolutional layers contain more global informa-
tion, so extracting more than one detailed texture information feature is crucial. Inspired by
DEEP Lab V3 [29] and Mobile Net V2 [30], the ASPP module is improved to extract detailed
texture feature information. ASPP uses multiple cavity convolutions with different expan-
sion rates to extract sensory fields of different sizes and then uses standard convolutions
to achieve multi-scale feature information fusion. In order to improve the efficiency and
performance of ASPP as well as reduce its computational overhead, this paper improves
ASPP. It proposes the pyramid multi-scale module to extract the feature information at
different scales more effectively. A comparison is shown in Figure 3.
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We replaced the dilated convolution module with depthwise separable and point
convolutions to improve computational efficiency. Experiments [30] show that the number
of channels has an essential impact on the overall performance. The comparison shows that
the performance of the dilated dimension is better than that of the compressed dimension.
This paper uses point convolution to expand and restore the dimension and control the
number of channels. Point convolution can effectively promote the information exchange
between different channels, and depthwise separable convolution can also focus on ex-
tracting multi-scale feature information on each channel independently. The leaky Relu
function, which has smaller parameters and better feature extraction ability than Relu6, is
selected in this paper. The representation process is as follows:

FPMM
pwconv = flrelu( f exp and

1×1conv(Fj−1
MTM)), (6)

FPMM
dwconv = flrelu( fdwconv,rate=n(FPMM

pwconv)), (7)

FPMM
pwconv,rate=n = flrelu( f regain

1×1conv(FPMM
dwconv)), (8)

where Fi−1
MTM denotes the output of the j-1st MTM, f exp and

1×1conv denotes the convolution function
of the expanded dimension, FPMM

pwconv denotes the output after the expanded dimension,
fdwconv,rate=n denotes the Depthwise Convolution function with expansion rate n, Fdwconv

denotes the output after the expanded rate, f regain
1×1conv denotes the convolution function of the

recovered dimension, flrelu denotes the Leaky Relu function, and Fpwconv,rate=n denotes the
output after the recovered dimension. Thus, the process concludes with the introduction of
global residual connectivity in this paper in order to increase the stability of the module.
Formally, the process is described as follows:
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Fj
PMM = Fj−1

PMM + f j
PMM

(
Fj−1

PMM

)
,

f j
PMM

(
Fj−1

PMM

)
= Concat(Fconv + Fglobal + FPMM

pwconv,rate=1 + FPMM
pwconv,rate=2 + FPMM

pwconv,rate=4)
(9)

where f j
PMM denotes the mapping of the PMM, Fconv denotes the feature mapping ob-

tained after convolutional layer processing, and Fglobal denotes the feature information
after pooling. Compared with the previous improvement, the module’s parameters and
computational overhead are reduced, and more detailed texture information features can
be extracted.

3.2.2. Cross-Attention Fusion Module

The CNN convolution module is usually used to extract features and perform simple
feature fusion. In order to comprehensively fuse information features, this paper proposes
a cross-attention fusion module (CFM) to learn the correlation of feature information and
fuse them. As shown in Figure 2, the PAM and CAM [31] modules are imported.

In the feature extraction process, the deeper layers can extract more advanced feature
information, such as shape feature information, and reduce the deformation during image
reconstruction. However, there will be a loss of feature information. Considering such a
problem, we designed the cross-module input method, which focuses on shallow and deep
feature information to complement the feature information. We designed a cross-attention
fusion module (CFM), containing a channel attention module (CAM) [31] and a position
attention module (PAM) [31]. Shallow feature information contains more comprehensive
and rich spatial location information. After extracting feature information through the
location attention module, spatial location features are weighted and selectively aggregated
for each location. Deeply extracted feature information often contains rich semantic context,
so the information is cross-processed after the output of the location attention module
is combined with the deeply extracted feature information. Then, through the channel
attention module, the correlation feature information between all channel mappings is
learned to achieve the purpose of selectively emphasizing the interdependence. This
information is then multiplied with the input features to refine the feature boundaries
and finally cross-fertilized with spatial location feature information and semantic feature
information. Formally, the process is described as:

FCFM = Concat( fCAM(FN
PMM ⊗ fPAM(F1

PMM))⊗ FN
PMM, fPAM(F1

PMM)), (10)

where fCAM and fPAM denote spatial attention and position attention function mapping,
FCFM denotes cross-attention fusion function mapping, and ⊗ denotes element-wise mul-
tiplication. The module we designed adopts the strategy of cross-module learning and
cross-learning to fuse the correlation of spatial location and semantic context of feature
information, making the learning process more comprehensive and detailed.

3.3. Integrating the Attention Enhancement Module

Currently, most SR networks usually use standard convolutional connections and
ultimately perform deep feature extraction. Adding an extra module enhances the feature
learning capability and thus improves the network’s overall performance. Therefore,
we designed the Integrated Attention Enhancement Module (IAEM) according to this
assumption. We continue with the attention mechanism, inspired by DANet [31], and
optimize it. We treat the mapping of each deep feature extraction module as a specific
response; different module responses correlate. The interdependence between module
mappings is used to enhance the interdependent feature information mapping and the
feature representation ability of modules, as shown in Figure 4.
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Different from the above CAM module, the input is the deep feature group
FIFG ∈ RN×H×W×C output from N multi-scale cross-attention modules, and the dimension
is N × H × W × C. Through the change of dimension, the weight of feature information is
re-learned to strengthen the attention of high-frequency information. Firstly, in this paper,
the feature group is convolved by 3D convolution to strengthen the representation of local
context features. Then, the sigmoid function is used to extract the feature information of
the deep feature group and generate the corresponding attention map.

According to the dimensions of the feature groups, we chose a 3D convolution with
kernel size three and step size 1 to generate the attention maps of the three feature groups.
Then, in this paper, we multiply it element-by-element with the original input depth-
extracted feature layer and multiply it by the scale parameter C to generate the attention
map B. Formally, the process is described as:

FCHW
IAEM = µ(σ( f3dconv(FIFG)) · FIFG), (11)

where f3dconv represents the 3D convolution function, σ represents the softmax function,
· represents element-wise multiplication, and µ learns weights starting from initialization 0.

Secondly, this paper reshapes these deep extracted feature groups IFGs into a two-
dimensional matrix of N × HWC. After that, the reshaped feature group is matrix multiplied
with its transpose, and then, softmax is applied to obtain the attention map S ∈ RN×N that
strengthens the correlation between modules. Formally, the process is described as follows:

sji =
exp(IFGsi, IFGsj)

N
∑

i=1
exp(IFGsi, IFGsj)

, i, j = 1, 2, . . . , N, (12)

where sji represents the influence between the i-th module and the j-th module, the attention
map of the depth extraction feature layer is obtained by multiplying the reshaped depth
extraction feature set with the original feature set matrix and then multiplying the result
with the scale parameter λ. Finally, the two attention maps are summed element-wise to
obtain the output FIAEM ∈ H × W × NC. Formally, the process is described as follows:

FIAEMj = λ
N

∑
i=1

(sji IFGsi) + FIAEM
CHWj

, (13)
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where λ learns the weights from the initialization of 0, and the final feature of each module
represents a weighted sum of all the parts of the module that are related to the original
quality and models the long-range semantic dependencies of the entire feature graph. Thus,
integrating the attention enhancement modules by learning the interdependencies between
the modules is a way to enhance and optimize the overall network’s performance effectively.

4. Results
4.1. Datasets and Metrics

In this paper, DIV2K [32] is used as the training set of the model, and the DIV2K
dataset contains 800 training images, 100 validation images, and 100 test images. Five
standard test sets: Set5 [33], Set14 [34], B100 [35], Urban100 [36], and Manga109 [37] are
used. According to the current work, all training and testing are performed based on
the luminance channel of the YCbCr color space, and only the Y-channel is processed.
This paper uses bicubic down-sampling (BI) to obtain the low-resolution image (LR).
The commonly used evaluation metrics PSNR and SSIM are selected for quantitative
comparison with other SR methods. Visualization results are also provided for a more
intuitive comparison with other methods.

4.2. Implementation Details

In this paper, the LR image is randomly cropped into blocks of size 48 × 48 as training
input, and the corresponding patch size of the HR image is 48r × 48r, where r is the scale
factor. The minibatch is set to 16, and data enhancement such as horizontal flipping and
random rotation of 90◦ are performed on the training set. This paper sets the number of
MTMs M = 5 and the number of PMMs N = 7 for hyper-parameter settings. The model
in this paper is trained using the ADAM optimizer [3–6] with β1 = 0.9, β2 = 0.999, and
ε = 10−8, L1 loss function, the number of channels (number of filters) C = 64, and sets
the learning rate to 10−4 every 200 backpropagation iterations to reduce the learning rate
to 0.5 per 100 iterations. Backpropagation iterations were reduced by half. In increasing
the image resolution to 3× and 4× for model training, we adopt the trained 2× image
upsampling model as a pre-trained model to further train the ×3 and ×4 models. This
approach captures the underlying upsampling mechanism and features by learning with
a small (×2) upsampling time. When this pre-trained model is trained on the task of
upsampling to higher magnifications (×3 and ×4), it can learn the complex details required
for the task more efficiently, accelerating training time and improving model performance
at higher resolutions. This paper uses the PyTorch framework and NVIDIA GeForce RTX
3090 GPU for training and testing.

4.3. Comparison with State-of-the-Art Methods

In this section, we compare the performance of the MCFN network in detail with
several state-of-the-art network models. The comparison covers the following network
models: double cubic interpolation, A+ [38], SRCNN [5], VDSR [8], EDSR-baseline [9],
Lap-SRN [10], CARN [39], IDN [40], MSRN [12], MSFRN [13], MIPN [41], MSCIF [42], and
MSAR [14]. Through quantitative analysis and subjective visual evaluation methods, we
aim to objectively assess the performance metrics of each model in order to comprehen-
sively demonstrate the performance of the MCFN network in various aspects. This study
performed detailed comparisons on different scaling factors, i.e., c2, ×3, ×4. The specific
comparison results are shown in Table 1.
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Table 1. Comparison of PSNR and SSIM values on standard datasets. In this table, the bolded
numbers indicate the optimal values in each dataset, while the slanted numbers represent the
suboptimal values.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BICUBIC ×2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339

A+ ×2 36.60 0.9542 32.42 0.9059 31.24 0.8870 29.25 0.8955 35.37 0.9663

SRCNN [5] ×2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663

VDSR [8] ×2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750

Lap-SRN [10] ×2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740

EDSR-baseline [9] ×2 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 38.54 0.9769

CARN [39] ×2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765

IDN [40] ×2 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 38.01 0.9749

MSRN [12] ×2 38.08 0.9605 33.74 0.9170 32.23 0.9002 32.22 0.9326 38.82 0.9772

MSCIF [42] ×2 37.89 0.9605 33.41 0.9153 32.15 0.8892 31.47 0.9220 -------- ---------

MSFRN [13] ×2 38.02 0.9606 33.68 0.9184 32.19 0.8998 32.17 0.9287 38.59 0.9770

MIPN [41] ×2 38.12 0.9610 33.73 0.9180 32.25 0.9006 32.42 0.9310 38.88 0.9773

MSAR [14] ×2 38.22 0.9616 33.79 0.9189 32.27 0.9108 32.46 0.9322 -------- ---------

MCFN ×2 38.17 0.9610 33.95 0.9211 32.29 0.9011 32.80 0.9345 38.93 0.9775

BICUBIC ×3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556

A+ ×3 32.63 0.9085 29.25 0.8194 28.31 0.7828 26.05 0.8019 29.93 0.9089

SRCNN [5] ×3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117

VDSR [8] ×3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290 32.01 0.9340

Lap-SRN [10] ×3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350

EDSR-baseline [9] ×3 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527 33.45 0.9439

CARN [39] ×3 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440

IDN [40] ×3 34.11 0.9253 29.99 0.8354 28.95 0.8013 27.42 0.8359 32.71 0.9381

MSRN [12] ×3 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554 33.44 0.9427

MSCIF [42] ×3 34.24 0.9266 30.09 0.8371 29.01 0.8024 27.69 0.8411 ------- -------

MSFRN [13] ×3 34.40 0.9272 30.34 0.8423 29.10 0.8052 28.19 0.8530 33.59 0.9447

MIPN [41] ×3 34.53 0.9280 30.43 0.8440 29.15 0.8060 28.38 0.8570 33.86 0.9460

MSAR [14] ×3 34.59 0.9285 30.53 0.8446 29.35 0.8044 28.44 0.8586 33.98 0.9470

MCFN ×3 34.63 0.9289 30.53 0.8458 29.29 0.8087 28.73 0.8635 33.98 0.9469

BICUBIC ×4 28.43 0.8020 26.10 0.6940 25.96 0.6600 23.150 0.6590 21.460 0.6138

A+ ×4 30.33 0.8560 27.44 0.7450 26.83 0.7000 24.340 0.7210 22.390 0.6454

SRCNN [5] ×4 30.48 0.8630 27.49 0.7500 26.90 0.7100 24.520 0.7260 27.580 0.8555

VDSR [8] ×4 31.35 0.8840 28.01 0.7670 27.29 0.7250 25.18/ 0.7520 28.830 0.8870

Lap-SRN [10] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7280 25.210 0.7560 29.090 0.8900

EDSR-baseline [9] ×4 32.09 0.8938 28.58 0.7813 27.50 0.7357 26.040 0.7849 30.350 0.9067

CARN [39] ×4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.070 0.7837 30.470 0.9084

IDN [40] ×4 31.82 0.8900 28.25 0.7730 27.41 0.7300 25.410 0.7630 29.410 0.8942

MSRN [12] ×4 32.26 0.8960 28.63 0.7836 27.61 0.7380 26.220 0.7911 30.570 0.9103

MSCIF [42] ×4 31.91 0.8923 28.35 0.7751 27.46 0.7308 25.640 0.7692 ------- -------

MSFRN [13] ×4 32.16 0.8947 28.62 0.7823 27.57 0.7362 26.090 0.7868 30.470 0.9082

MIPN [41] ×4 32.31 0.8970 28.65 0.7830 27.61 0.7370 26.230 0.7900 30.670 0.9107

MSAR [14] ×4 32.29 0.8989 28.67 0.7841 27.95 0.7410 26.250 0.7907 30.660 0.9100

MCFN ×4 32.43 0.8976 28.78 0.7858 27.71 0.7405 26.637 0.8012 31.008 0.9133
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It can be observed in these results that the MCFN network shows a significant advan-
tage in most of the performance metrics compared to the recently proposed methods. In
particular, compared to the more extensive network MSRN proposed by ECCV, the MCFN
network shows higher PSNR and SSIM values by 0.21dB and 0.0041, respectively, on the
Set14 test set with a scaling factor of 2. On Set5, with a scaling factor of 3, compared to
the MIPN, the MCFN also improves its PSNR and SSIM values by 0.1 dB and 0.0009. As
the scaling factor increases, the low-resolution image loses more high-frequency informa-
tion, limiting the high-quality reconstruction of super-resolution images. In the Urban100
dataset, which is rich in detailed information, MCFN outperforms the following highest
method, MSAR, by 0.387 dB and 0.0105 in PSNR and SSIM metrics, respectively, when the
scaling factor is four. In summary, our network exhibits recognizable performance, which
initially proves the validity of the network that we designed.

In order to present a more comprehensive picture of the performance of our model,
we selected several representative detail parts from different super-resolution images. We
reconstructed the images with ×2, ×3, and ×4 for these detail parts to show and compare
these key details more obviously. As shown in Figures 5–8, the selected details were marked
with rectangular boxes and enlarged three times to show and contrast these key details
more obviously.
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In Figure 5, a significant difference in the clarity of the letters reconstructed by the
different algorithms can be observed when the magnification factor is two times. For
example, the letters reconstructed by SRCNN and CARN could be more precise and quieter.
Although IDN, MSRN, and MIPN methods have improved the clarity, some details of the
letter shape still need to be recovered. In contrast, the letters reconstructed by MCFN are
more transparent and less noisy.

In Figure 6, a building at sunset at 3× magnification shows that MCFN performs better
in preserving the edge texture and reducing the artifacts. Figure 7 shows a car roof image
at 4× magnification. MCFN demonstrates less distortion and effectively reduces ringing
effects, with richer information on the edge contours.

In addition, in Figure 8, the selected sign text in the scene is displayed under a
magnification factor of 4, and our method improves the edge clarity while also improving
the brightness to obtain a better visual effect. In general, our network performs well in
objective indicators and shows significant advantages in subjective visual effects.

4.4. Ablation Study
4.4.1. Study of Ablation of Network Structures

In this part of the study, we demonstrate the effectiveness of each module in the
proposed MCFN and their contribution to the network performance. We design a series
of ablation experiments, as shown in Table 2. We evaluate their contribution to network
performance by adding or replacing critical modules in the network. Firstly, we construct a
base network consisting of a series of PMMs, called the PMMs network. The base network
adopts a multi-scale mechanism of depth-separable convolution and pointwise convolu-
tion, improving computational efficiency while ensuring adequate feature information
extraction at different scales. Then, IAEM was added to our study to evaluate the network
performance of PMMs, denoted as MTMs_PMMs + IAEM. Subsequently, CFMs were added
to the PMMs to assess the effect of the addition on the network’s performance, denoted as
MTMs (PMMs + CFM). It is worth noting that we did not perform ablation experiments
on the combination of PMMs and CFM alone. Instead, we chose to perform ablation
experiments on MTMs (a combination of PMMs and CFMs) together with IAEM, aiming
to assess the impact of CFM on performance in the presence of IAEM. Therefore, we used
the strategy of replacing CFMs with PAMs and CAMs, denoted as MTMs _PAM + IAEM
and MTMs_CAM + IAEM, and similarly, in order to assess the performance of IAEMs, we
replaced IAEMs with CAMs in the MCFN structure, denoted as MTMs + CAM. Although
this design scheme for ablation experiments may be different from traditional ablation
methods, it provides us with an effective way to assess the interactions of the individual
modules. In addition, this design approach aligns more with our experimental resource
realities, allowing us to perform the most effective performance evaluation under limited
conditions. We select most of the modeling methods, PSNR, and SSIM values on Set5, Set14,
and B100 test sets for 200 cycles of comparison to ensure the necessity and validity of the
experiments. In order to show the experimental results more intuitively, we plotted the
experimental data of the last 50 cycles as a line graph-Figure 9.
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Table 2. Ablation study of MCFN properties.

Method Scale
Set5 Set14 B100

PSNR SSIM PSNR SSIM PSNR SSIM

PMMs

×4

31.797 0.889 28.362 0.776 27.424 0.731
MTMs_PMMs + IAEM 31.828 0.889 28.413 0.776 27.444 0.731
MTMs_PAM + IAEM 31.861 0.890 28.391 0.776 27.459 0.732
MTMs_CAM + IAEM 31.943 0.891 28.447 0.777 27.487 0.732
MTMs (PMMs + CFM) 31.995 0.891 28.517 0.780 27.529 0.734

MTMs + CAM 31.997 0.890 28.372 0.776 27.430 0.731
MCFN (MTMs + IAEM) 32.047 0.893 28.520 0.780 27.543 0.735
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Table 2 and Figure 9a demonstrate a clear trend: adding the fusion and enhancement
networks to the base network significantly improves the network’s performance metrics,
proving the effectiveness of the individual modules and indicating that better results can
be obtained. The performance improvement is pronounced in the MTMs_CAM + IAEM
network. This network effectively focuses on critical feature information by learning the
relevance between different channels, which demonstrates the importance of correlation
learning after deep extraction of high-frequency information. In particular, in the MCFN
network, we design an innovative cross-attention fusion module. This network not only
effectively learns the spatial locations of shallow feature information through the cross-
module learning approach but also combines this spatial location feature information
with deep feature information through the cross-connection strategy to deeply learn the
relevance of the information in the channel. This hierarchical approach improves the
comprehensiveness of information utilization. In CFM, by integrating spatial and channel
features, we achieve a more comprehensive fusion of information, enabling the network to
achieve the best results in several performance metrics.

When analyzing the performance of IAEM, we used CAM as a control group to learn
the difference in performance between the two. As shown in Table 2 and Figure 9b, our
network performs better in PSNR and SSIM than the control group in the above test set
experimental results. The results of the above analyses demonstrate the effectiveness of
our module in performing relevant learning. In contrast to accessing channel attention
only at the tail, our integrated attention-enhanced network employs a dimensionality
transformation technique to fuse feature information at different stages. This strategy
enhances the learning of feature information weights and effectively helps the network’s
performance during the fusion reconstruction process.

4.4.2. Study of Multi-Scale Trans-Module Synthesis

In this part of this study, we analyze the influence of MTM and the number of PMMs
in MTM on the network performance and conduct a series of ablation experiments. As



Appl. Sci. 2024, 14, 2634 14 of 17

shown in Table 3, we set the number of MTMS M to 4, 5, and 6 and evaluate its impact on
the number of parameters and network performance in the test set Set 5. The results show
that with the increase in M, the PSNR value of the network improves, and the network
performance improves, but the growth rate becomes gradually smaller. In addition, we
analyze the number N of PMMs, setting them to 6, 7, and 8, respectively, and record the
comparative experimental results, as shown in Table 4. The experimental results show
that when N increases from 6 to 7, the PSNR value increases by 0.034. However, when
N grows to 8, the increase in PSNR value is only 0.01. Therefore, to effectively balance
the reconstruction quality and the number of parameters, we set the number of MTM and
PMM to 5 and 7.

Table 3. Analysis of the number of MTMs.

Number Scale Parameters
Set5

PSNR SSIM

M = 4 ×2 1.43 37.108 0.960
M = 5 ×2 1.70 38.166 0.961
M = 6 ×2 1.98 38.233 0.962

Table 4. Analysis of the number of PMMs in MTM.

Number Scale Parameters
Set5

PSNR SSIM

N = 6 ×2 1.62 38.132 0.960
N = 7 ×2 1.70 38.166 0.961
N = 8 ×2 1.79 38.167 0.961

4.4.3. Study of Parameters and FLOPs

As shown in Figure 10, this study compares the number of parameters, the number
of floating-point operations (FLOPs), and the average peak Signal-to-Noise Ratio (PSNR)
(Avg. PSNR) between MCFN and other advanced methods when 4× magnification (output
image resolution is 1280 × 720) is performed on the Set 5 dataset. In order to provide a
more intuitive comparison perspective, the relevant data are summarized in Table 5. Com-
pared with other methods, MCFN achieves superior performance with low computational
overhead. Although not optimal regarding the number of parameters, MCFN has half the
number of parameters compared to MSRN. In summary, MCFN performs well in model
efficiency and objective evaluation indicators.
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Table 5. Comparison of performance, parameters, and FLOPs with some state-of-the-art ISR methods
under a scaling factor of 4 in the Set 5 dataset. Comparison results of the number of parameters,
FLOPS, and average PSNR values of the SR method on the Set 5 test set. FLOPs are calculated based
on 320 × 180 input features.

VDSR Lap-SRN EDSR-Baseline MSFRN MSRN MCFN

Para (M) 0.665 0.812 1.5 4.1 6.3 1.85
FLOPs (G) 612.6 149.9 114.2 94.99 349.8 110.12

PSNR 31.35 31.54 32.09 32.16 32.26 32.426

5. Conclusions

This paper proposes a multi-scale cross-attention fusion network (MCFN) to improve
the image quality of image super-resolution tasks. The network combines the advantages of
the multi-scale and attention mechanisms, aiming to extract and fuse the feature information
of the image more thoroughly. The multi-scale trans-attention module (MTM) we designed
includes the pyramid multi-scale module (PMM) and the cross-attention fusion module
(CFM). In the pyramid multi-scale module (PMM), to extract feature information of each
scale while maintaining the operation efficiency, depth separable convolution and point
convolution are introduced using a residual strategy. In the cross-attention fusion module
(CFM), the image feature information extracted by cross-fusion is designed to reconstruct
the high-frequency information of the image. At the same time, to effectively fuse the
cascaded multiple pyramid multi-scale modules (PMMs), a cross-module learning method
is designed to learn the multi-scale information extracted by different deep features. In
addition, an improved integrated attention enhancement module (IAEM) is inserted in
the tail, which fuses the deep parts of different stages through dense connection, enhances
the learning feature weight by changing the dimension, and introduces 3D convolution to
learn context features to realize the effective fusion of image feature information to improve
the quality of image reconstruction more accurately. Finally, experimental results show
that MCFN has a certain competitiveness in key performance indicators compared with
existing leading methods on public benchmark datasets. In particular, when quadrupled
upsampling was performed on the Set 5 dataset, MCFN reached a PNSR of 32.43 dB, 0.14 dB
higher than MSAR. In addition, through visual contrast, MCFN has rich texture details and
a high level of high-frequency information in the reconstructed images, further proving
the method’s effectiveness. Although MCFN has shown some competitive performance
in the experiment, we also recognize its limitations. Future work plans include training
with more realistic datasets to enhance the generalization and practicality of the model.
In addition, it includes the introduction of subjective evaluation and other methods to
evaluate image quality more comprehensively.
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