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Abstract: Liquefaction is a significant challenge in the fields of earthquake risk assessment and
soil dynamics, as it has the potential to cause extensive damage to buildings and infrastructure
through ground failure. During the 2011 Great East Japan Earthquake, Urayasu City in the Chiba
Prefecture experienced severe soil liquefaction, leading to evacuation losses due to the effect of the
liquefaction on roads. Therefore, developing quantitative predictions of ground subsidence caused
by liquefaction and understanding its contributing factors are imperative in preparing for potential
future mega-earthquakes. This research is novel because previous research primarily focused on
developing predictive models for determining the presence or absence of liquefaction, and there are
few examples available of quantitative liquefaction magnitude after liquefaction has occurred. This
research study extracts features from existing datasets and builds a predictive model, supplemented
by factor analysis. Using the Cabinet Office of Japan’s Nankai Trough Megathrust Earthquake model,
liquefaction-induced ground subsidence was designated as the dependent variable. A gradient-
boosted decision-tree (GDBT) prediction model was then developed. Additionally, the Shapley
additive explanations (SHAP) method was employed to analyze the contribution of each feature
to the prediction results. The study found that the XGBoost model outperformed the LightGBM
model in terms of predictive accuracy, with the predicted values closely aligned with the actual
measurements, thereby proving its effectiveness in predicting ground subsidence due to liquefaction.
Furthermore, it was demonstrated that liquefaction assessments, which were previously challenging,
can now be interpreted using SHAP factors. This enables accountable wide-area prediction of
liquefaction-induced ground subsidence.

Keywords: machine learning; factor analysis; liquefaction; prediction model; SHAP method

1. Introduction

Liquefaction, a phenomenon in which the bearing capacity of soil is suddenly reduced,
causes catastrophic damage to buildings and infrastructure, and accounts for a large pro-
portion of earthquake damage [1]. Diverse research on liquefaction is underway in various
fields, including civil engineering, urban disaster prevention, and disaster risk manage-
ment. Seed and Idriss [2] identified the importance of soil compaction, soil particle size,
and groundwater level as conditions for liquefaction and proposed a simple liquefaction
assessment. Research on the seismic data has been conducted in Japan since 2000. For
example, the 2004 Niigata Chuetsu earthquake [3], the 2011 Tohoku earthquake [4], the 2016
Kumamoto earthquake [5], and the 2018 Hokkaido Eastern Iburi earthquake [6] all caused
extensive liquefaction damage. Many studies have been conducted based on these cases,
contributing to improving the accuracy of liquefaction prediction models and developing
effective countermeasures.

One type of damage caused by liquefaction is ground subsidence. The 2011 earth-
quake off the Pacific coast of Tohoku caused large-scale liquefaction in many areas in
Japan, resulting in road subsidence and road-surface uplift caused by sand boil and lateral
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spreading [7–9], which hindered the passage of emergency vehicles and reduced evacuation
speed and effectiveness. In Urayasu City, Chiba Prefecture, where the damage caused
by liquefaction was the most severe, unequal road subsidence and sand boils delayed
restoration work, forcing overall ground improvement and reinforcement [10]. In the
coastal areas of Tokyo Bay, extensive liquefaction damage occurred in many houses and
facilities, with serious social consequences [11,12]. Liquefaction was also observed during
the Canterbury earthquake in New Zealand in February 2011, when subsidence and lateral
flow caused damage to 60,000 homes and elements of urban infrastructure [13] causing
extensive damage to key parts of the infrastructure in particular [13]. New Zealand is
characterized by both seismic activity and loose, young ground deposits over a wide area,
which makes it prone to concentrated damage from liquefaction [14]. However, liquefaction
is a phenomenon caused by the breakdown of the physical soil particle structure based
on the principle of effective stress [15,16] and volumetric shrinkage caused by negative
dilatancy, which causes soil particles in the ground and pore water to leak out of the ground
surface, resulting in muddy-soil-like behaviors. Gabel et al. [17] proposed that liquefaction
of the evacuation route or lateral ground flow, resulting in horizontal displacement of the
soil, can render evacuation vehicles and even pedestrian evacuees unable to traverse the
affected areas. In anticipation of major Nankai Trough earthquakes and resultant tsunamis
expected to impact Kochi Prefecture in Japan before anywhere else [18], an experiment was
conducted to model the liquefaction conditions that occur immediately after the earthquake
to verify the effects of liquefaction of the ground surface and determine steps for evacuation
behavior in the aftermath. Experiments demonstrated that walking speed was reduced on
liquefied ground compared to asphalt under normal conditions. Additionally, wheelchair
evacuation was virtually impossible because the wheels became stuck in muddy water,
rendering them immobile. These results show that the damage caused by liquefaction is
not limited to building disasters; physical and mental fatigue can easily accumulate during
evacuations on liquified terrain.

The Ministry of Land, Infrastructure, Transport, and Tourism [19] published a portal
site that compiles liquefaction risk maps for each municipality in Japan in preparation for
such a situation. These maps categorize liquefaction susceptibility into distinct classes and
use color-coding to depict liquefaction risk across the target area. This enables intuitive
examination of the liquefaction risk from any vantage point, with excellent legibility and
visibility. However, using the liquefaction risk as a categorical variable has the disadvantage
that it cannot be treated as a quantitative indicator. From a practical perspective, this is
considered inadequate for quantitative liquefaction analysis. In particular, when designing
appropriate evacuation routes in the event of a major earthquake, specific values are
required to estimate the points where evacuation routes are likely to be disrupted, as well
as the delay in evacuation time. Usually, the amount of subsidence is determined by the
standard penetration test N-values (SPT-N values), which indicate the ground strength, or
soil physical parameters based on the factor of safety against liquefaction (FL) method [20].
Although this method can achieve high accuracy over a limited area, it relies on point
data and is thus not suitable for wide-area estimation. This is because of the enormous
amount of experimental data that is required to determine liquefaction over an extensive
area, such as a city, town, or village. Studies have been conducted to determine liquefaction
over extensive areas using geographic information systems (GIS); the method proposed by
Matsuoka et al. [21] for estimating liquefaction risk can predict liquefaction over extensive
areas based on geomorphological classifications. Additionally, Zhu et al. [22] developed an
assessment model to predict the probability of liquefaction on a global scale using a global
geospatial liquefaction model (GGLM).

It is important to predict the areas in which liquefaction will occur in preparation
for future large earthquakes, and it is desirable to be able to calculate liquefaction in a
simple and highly accurate manner over an extensive area. Therefore, there is an increasing
need for liquefaction risk assessment and countermeasures. The dominant factors that
govern liquefaction include earthquake seismic intensity, duration of shaking, ground
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type, and groundwater level [23,24]. However, it is difficult to express these as regression
equations and adequately capture the interactions. In this context, advances in machine-
learning technology have created new possibilities. Machine learning is a technique used
to learn complex patterns from large amounts of data and to construct predictive models.
Liquefaction has been assessed using machine learning, with studies evaluating liquefac-
tion based on the physical parameters of the ground [25]. Recently, a novel semi-active
control algorithm that combines a fuzzy control strategy and long short-term memory
(LSTM) was proposed with the aim of mitigating structural responses under earthquake
excitations [26]. Galupino and Dungca [27] applied the machine learning algorithms to
estimate liquefaction susceptibility in the Metro Manila, Philippines. Kuwabara and Mat-
suoka [28] used random forest (RF), a machine learning algorithm, as an estimation model,
and input earthquake scenario ground motion data to develop a Japanese liquefaction
risk map. Jas and Dodagoudar [29] successfully applied explainable AI (XAI) to perform
factor analysis based on seismic parameters, ground parameters, and site conditions. This
suggests that factor analysis of liquefaction scenarios can elucidate the interactions and
nonlinear relationships between multiple factors that have not been captured by previous
statistical methods. However, these previous studies only developed predictive models
for the presence or absence of liquefaction, and there are few examples of studies that
have revealed the quantitative magnitude of liquefaction and the factors that influence
the amount of ground subsidence. Quantitative predictive data are more important than
qualitative data for estimating the degree of damage after liquefaction has occurred.

In this study, a model for quantitatively predicting ground subsidence due to liq-
uefaction was developed by integrating existing seismic data, topographical data, and
geotechnical information, with the aim of improving resilience against liquefaction damage.
Similarly, factor analysis of the explanatory variables was performed to identify the factors
that cause ground subsidence. In this paper, we first provide an overview of the algorithms
utilized for machine learning models and factor analysis. Subsequently, we outline the
steps involved in constructing the predictive model, including the description of the dataset
used, and finally present the results of model accuracy evaluation and factor analysis,
followed by a discussion.

2. Machine-Learning Algorithm and Factor Analysis
2.1. Overview of Gradient-Boosting Decision Tree

The gradient-boosting decision-tree algorithm [30] combines weak learners sequen-
tially to build a single predictive model. During the training process, weak learners are
connected to minimize the overall loss of the model. This is achieved by repeatedly adjust-
ing the weights at each stage to reduce the error between the predicted and actual values,
thereby explicitly fitting the relationship between the explanatory and target variables.
Through this process, the model performs feature extraction of explanatory variables and
learns data-trend patterns, enabling it to make predictions and provide explanations when
applied to new datasets. Notably, it actively generates interaction features from the product
of explanatory variables, allowing for consideration of causality with multiple variables.
This enables effective feature extraction, because the combination of multiple features
enables the representation of interactions in higher dimensions.

Gradient-boosting decision-tree algorithms are often used to solve regression problems
due to their dual advantages of low computational cost during training and high prediction
accuracy. These make them extremely effective when handling large amounts of data, and
thus suitable for building robust regression-prediction models.

2.2. Factor Analysis of Exploratory Data Analysis
2.2.1. Overview of Exploratory Data Analysis

Exploratory data analysis (EDA) [31] is a method used to understand relationships in
data. This statistical method is widely used in various fields including medicine, finance,
social media, and fighting crime, to reduce the complexity of data and reveal underlying
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patterns [32–35]. EDA is an essential tool for understanding the structure of underlying data
and enhancing model interpretability. Recently, the emergence of XAI in machine-learning
models enabled the automatic identification of correlations between target variables and
features in existing datasets [36,37]. This is particularly anticipated in addressing the “black-
box problem” often faced by machine-learning models in clarifying the causal relationships
between explanatory and target variables. The “black-box problem” refers to a situation
in which the internal structure of a machine learning model is too complex to explain the
model’s predicted results. Therefore, it is difficult for users to understand the specific
basis of the prediction results, and visualization techniques are required to increase the
interpretability of machine learning models.

The black box problem refers to a situation in which it is unclear how a machine-
learning model makes predictions or classifications. This is challenging in advanced models,
particularly those based on deep learning, owing to their numerous internal parameters
and complex structures. However, factor analysis makes it possible to extract the main
factors from a group of variables with many correlations and interpret how these factors
contribute to the overall output. This helps to clarify the internal workings of the model,
revealing how individual explanatory variables affect the target variable. Consequently,
this aids in understanding the causal mechanisms behind the model rather than merely
capturing correlations.

2.2.2. Description of SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) [38] is a visualization method used for inter-
preting and understanding the outputs of predictive models. It is based on the cooperative
game theory [39] concept of Shapley values. Originally formulated to distribute fairly
payouts among players in a coalition, Shapley values are used in machine learning to
determine the contribution of each feature to the predictions made by a model. The SHAP
method is versatile as it is independent of the type of machine learning model, and it also
guarantees consistency when using SHAP values to verify feature importance. This method
enables interpretability in practical applications of machine-learning models, making ex-
plicit the hidden the reasoning behind why a model produces certain predictions. To date,
the visualization of variables using the SHAP method has been applied to address the
black box problem in machine-learning models, and most of these efforts have achieved
excellent results [40–44]. The SHAP method fundamentally decomposes the predictions
to indicate the influence of each explanatory variable. In particular, it breaks down the
difference between the prediction of a certain instance and the average prediction of the
contributions of each feature. Whether a feature increases or decreases the model output,
and to what extent, becomes clear by converting the values of the explanatory variables
into SHAP values. The strength of the SHAP method is that the features do not change even
in different models [38], making it applicable to any machine-learning model. Therefore,
the SHAP method was selected for normalization in this study, to analyze the influence of
various variables.

2.2.3. Components of EDA

When conducting EDA, it is necessary to employ analytical algorithms to extract the
features included in the dataset and the tools to visualize these features. In this study, we
implemented EDA using the gradient-boosting decision-tree (GBDT) approach with SHAP.
This combination of techniques enabled deep insight into the data, particularly in under-
standing the contribution and importance of various features in the trained model. The
integration of GBDT and SHAP in EDA allows for the visualization of interactions between
explanatory variables and interprets how much influence they have on model predictions.
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3. Development of Prediction Model of Ground Subsidence
3.1. Description of Database
3.1.1. Data about Ground Subsidence Because of Liquefaction

In this study, a prediction model was constructed based on the amount of liquefied
ground subsidence assumed by the Nankai Trough Megathrust Earthquake Model Study
Group [45]. The dataset was compiled on a MESH5 mesh unit (in which the width/height
of each cell is approximately 250 m) released by the Ministry of Land, Infrastructure,
Transport, and Tourism in Japan. The training set comprised 1,326,588 meshes. The Nankai
Trough Megathrust Earthquake Model Study Group [45] assumed different scenarios with
different hypocenter locations, including the Tokai, Tonankai, and Nankai Earthquakes, and
calculated the amount of ground subsidence caused by liquefaction for each earthquake
scenario. Figure 1 shows maps of the calculated liquefaction ground subsidence in the
Nankai Trough Megathrust Earthquake. These results were used as the objective variables
in this study.
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Figure 1. Maps of calculated liquefaction ground subsidence for different scenarios related to
the Nankai Trough Megathrust Earthquake: (a) Fundamental case; (b) hypocenter located near
the land; (c) hypocenter located in the east; (d) hypocenter located in the west; (e) hypocenter
assumed empirically.

3.1.2. Explanatory Valuables

For the ground motion index, the Japan Meteorological Agency (JMA) seismic in-
tensity [46] at the engineering bedrock (Ia_min_dI) was selected; this can be calculated
from the JMA seismic intensity at the surface (Ia) and the amplification of the JMA seis-
mic intensity between the engineering bedrock and ground surface (dI). Furthermore, the
maximum elevation (Max_Elev), minimum elevation (Min_Elev), relative relief (Relief),
maximum slope angle (Max_Slop_Deg), and minimum slope angle (Min_Slop_Deg) were
calculated from the Digital National Land Information [47], and the minimum distances
from the center point of the MESH5 to the coastline (Coast_Dist) and the river (River_Dist)
were calculated to consider the degree of ground saturation. The average S-wave velocity
(AVS30) of the ground to a depth of 30 m and the geomorphologic classification (JCODE)
were derived from the dataset developed by Wakamatsu and Matsuoka [48]. The height
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above nearest drainage (HAND) was employed as a parameter to indicate the height from
the channel [49,50].

To prevent feature competition due to multicollinearity, a correlation analysis was
performed, and explanatory variables with high correlations were excluded from the
training set. The correlation between each pair of variables was estimated by analyzing
Pearson correlation coefficients (PCCs) [51]. If the absolute value of a feature has a PCC
> 0.95, it may negatively affect the accuracy of the ML model [51–53]. Figure 2 shows the
PCCs for each explanatory variable.
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Figure 2 shows that there were significant positive correlations between the highest
elevation (Max_Elev) and the lowest elevation (Min_Elev), as well as between the minimum
slope angle (Min_Slop_Deg) and the relative relief (Relief). Based on the findings, the lowest
elevation (Min_Elev) and relative relief (Relief) were removed from the training set after
trial and error.

In addition to the explanatory variables mentioned above, the SPT-N value, which is
an indicator of ground strength, was downloaded from the Kunijiban National Ground
Information Search site [54]. The obtained data is represented to the orange line in Figure 3.
Specifically, SPT-N values were added as explanatory variables for every 1 m depth from
the ground surface to a depth of 10 m, as shown by the blue arrow line in Figure 3. However,
as shown in Figure 3, the depth at which the SPT-N value was recorded was not always an
integer value. Therefore, data interpolation was performed according to the input layer.
For the SPT-N map with a depth of 10 m obtained by interpolation, the SPT-N values at the
nearest borehole point to the target mesh were assigned as N1–N10. The shortest distance
from the center point of MESH5 to the boring point was also added as an explanatory
variable (B_Dist). Data were aggregated into MESH5 units.
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3.2. Description of Prediction Model

In this study, we constructed a model for predicting the amount of ground subsidence
due to liquefaction using extreme gradient boosting (XGBoost) [55] and LightGBM [56]
algorithms on existing data. Specifically, we utilized XGBoost version 1.7.3 and LightGBM
version 4.1.0, operating on a 64-bit Windows 11 Pro system. Gradient boosting reduces loss
at each step based on the gradient vector function [30]. In this process, gradient-boosting
decision trees are integrated into XGBoost and LightGBM, functioning to create an ensemble
method that combines multiple weak learners to create a strong model [57].

XGBoost is an ensemble-learning algorithm based on decision trees and is known for its
high accuracy. It employs a level-wise approach to tree growth, simultaneously expanding
all tree levels. This method ensures balanced growth of trees at each step, leading to more
evenly developed structures. XGBoost offers numerous features, including handling of
missing values and regularization, to prevent overfitting. It supports distributed and
parallel computing, making it suitable for large datasets, although the computation time
tends to increase proportionally with the data size.

LightGBM, developed by Microsoft, is an efficient gradient-boosting technique. It
adopts a leaf-wise growth approach, prioritizing branches from the leaves that contribute
the most to losses. This method can create imbalanced trees, but often leads to faster
and more accurate model development owing to greater reductions in loss during splits.
LightGBM is specialized for the efficient processing of large datasets and enhances compu-
tational efficiency using techniques such as gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB).

3.3. Adjustment of Hyperparameters for Machine-Learning Models

In machine-learning models, tuning the hyperparameters is crucial for optimizing the
model performance [55,58]. Hyperparameters define the structure and learning process
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of the model, directly affecting its learning and generalization abilities [59] and if they are
not set correctly, the model’s performance can be significantly compromised. For example,
excessively deep trees or overly high learning rates can lead to overfitting, whereas setting
parameters that are too low may result in underfitting.

In this study, we used the hyperparameter optimization tool, Optuna [60], to optimize
the hyperparameters. Optuna is based on Bayesian optimization [61–63] and learns from
past trials to suggest better parameter combinations for subsequent trials. This approach
enables the identification of optimal parameters more rapidly than methods such as random
or grid searches. Moreover, Optuna is highly flexible and compatible with diverse machine-
learning algorithms and frameworks. Thus, Optuna is vital for complex models or large
datasets, and can improve model performance while accelerating and streamlining the
optimization process. Finding the optimal search range for a hyperparameter requires
manual tuning. Since the optimal hyperparameters vary depending on the dataset used,
the search range was manually adjusted. The hyperparameters of the model were tuned
with 5-fold cross-validation to prevent overfitting. Table 1 lists the results of parameter
tuning for the machine-learning model using XGBoost conducted with Optuna. Similarly,
Table 2 presents the results of parameter tuning for the machine-learning model using
LightGBM, which was also performed using Optuna.

Table 1. Hyperparameter tuning results using Optuna for prediction model using XGBoost.

Parameter Range Value

colsample_bytree [0.8, 1.0] 8.41 × 10−1

gamma [0, 1] 3.61 × 10−5

learning_rate [0.01, 0.3] 9.16 × 10−2

max_depth [2, 128] 102
min_child_weight [0.1, 10] 3.17

reg_alpha [10−8, 10] 4.38 × 10−5

reg_lambda [10−8, 10] 8.60 × 10−7

subsample [0.8, 1.0] 9.82 × 10−1

Table 2. Hyperparameter tuning results using Optuna for prediction model using LightGBM.

Parameter Range Value

bagging_fraction [0.8, 1.0] 8.75 × 10−1

feature_fraction [0.8, 1.0] 9.78 × 10−1

lambda_l1 [10−8, 10] 4.67 × 10−8

lambda_l2 [10−8, 10] 6.69
learning_rate [0.01, 0.3] 2.74 × 10−1

max_depth [2, 128] 28
min_child_weight [0.1, 10] 5.98

num_leaves [2, 1024] 961

3.4. Dataset Splitting

Training, validation, and test sets are required to construct a predictive model. The
training set was used as the basic dataset to fit the predictive model, and the magnitude of
loss for each iteration (number of weight updates) was evaluated using the validation set.
The test set was used to measure the prediction accuracy of the final model. In this study,
we split the data in the ratio 70:20:10 for the training, validation, and test sets, respectively,
and conducted learning, evaluation and inference accordingly.

3.5. Evaluation Metrics

Evaluation metrics were established to evaluate the performance of the machine-
learning models. These metrics are important for understanding the accuracy of model
predictions and classifications. They are used to check the prediction accuracy of a model
in each iteration and reduce the loss value, thereby minimizing the error between the
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actual and predicted values. This helps in assessing the effectiveness of the model and
contributes to preventing overfitting. The mean absolute error (MAE) [64], a commonly
used evaluation metric in regression analysis, was adopted for evaluation. Metrics based
on absolute or squared errors are called scale-dependent metrics [65]. MAE is a metric used
to measure the average magnitude of the absolute errors between the predicted value and
the actual value [66]. The MAE is often called the mean absolute deviation (MAD) [67–69].

MAE is calculated as follows [70]:

MAE =
1
N ∑N

i=1|yi − ŷi|, (1)

where N is the number of validation sets, yi is the actual value of the validation set, and ŷi
is the predicted value of the model. This measurement allowed us to determine how far
the model’s predicted values were from the actual values without considering the direction
of error.

3.6. Additive Feature Attribution Methods
3.6.1. SHAP Values

Recently, a novel unified approach for interpreting predictions from machine-learning
models, SHAP, was introduced, applying explanation models as a method for understand-
ing these predictions [38]. This study employed SHAP values to uniformly quantify feature
importance, aligning features more appropriately with human intuition and effectively
distinguishing between different model outputs. This approach, based on game theory [39],
enabled the visualization of the influence of the features included in each explanatory
variable on the prediction results.

In additive feature attribution methods, the explanation model defines a linear function
of binary variables as follows [38,71]:

g
(
z′
)
= ϕ0 + ∑M

i=1 ϕiz′i, (2)

where M is the number of input features; the z′i variables typically represent a feature being
observed

(
z′i = 1

)
or unknown

(
z′i = 0

)
, and the ϕi are the feature attribution values, ϕi ∈ R,

and z′ ∈ {0, 1}M. Equation (2) suggests that the Shapley value has three properties: local
accuracy, missingness, and consistency. By contrast, SHAP values are derived by combining
these conditional expectations with the classic Shapley values from game theory [71].

The SHAP values used to fairly distribute the values and assess the contribution of
each explanatory variable were determined by the following equation [38,71]:

ϕi = ∑S⊆N∖{i}
|S|!(M − |S| − 1)!

M!
[ fx(S ∪ {i})− fx(S)], (3)

where N is the set of all input features, S is any subset of N excluding feature i, |S| is the
number of features in subset S, and fx(S) is the predicted value of the model using the set
of features S. This formula represents the average additional value provided by a feature.

3.6.2. SHAP Interaction Values

In machine-learning models, new features can be generated by multiplying the input
explanatory variables to enhance the predictive accuracy of the target variable. This type of
feature, expressed as the product of two input features, is referred to as a pairwise interac-
tion feature. When interpreting a model using Shapley values, impacts can be categorized
into main and interaction effects. These represent the contributions of individual features to
the model’s predictions and the influence of the interactions between features, respectively.
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This distinction is valuable for examining the relationships between explanatory variables.
Computation of the SHAP interaction values can be achieved using the following [71,72]:

Φi,j = ∑S⊆N∖{i,j}
|S|!(M − |S| − 2)!

2(M − 1)!
∇ij(S), (4)

where
∇ij(S) = fx(S ∪ i, j)− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S)

= fx(S ∪ {i, j})− fx(S ∪ {j})− [ fx(S ∪ {i}) + fx(S)].
(5)

The SHAP interaction value between feature i and feature j is split equally between
each feature so Φi,j = Φj,i and the total interaction effect is Φi,j + Φj,i [71]. The main
effects for a prediction can then be defined as the difference between the SHAP and SHAP
interaction values for a feature using the following [71,72]:

Φi,i = ϕi − ∑j ̸=i Φi,j. (6)

This approach allows for the differentiation and assessment of the individual impacts
of features and the impact of their interactions on a model’s predictions.

4. Results and Discussion
4.1. Model Training Results

The results of the machine-learning models are presented and considered in this
section. The learning curve illustrates the evolution of the loss values over the number of
iterations (the number of times the weights were updated) and provides an overall graph
visualizing the predictive performance of the model. The learning curve allowed us to
assess whether the predictive model experienced over- or underfitting. Figure 4 shows the
training results of the prediction models used in this study.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 22 
 

categorized into main and interaction effects. These represent the contributions of indi-
vidual features to the model’s predictions and the influence of the interactions between 
features, respectively. This distinction is valuable for examining the relationships between 
explanatory variables. Computation of the SHAP interaction values can be achieved using 
the following [71,72]: Φ, = ∑ |ௌ|!ሺெି|ௌ|ିଶሻ!ଶሺெିଵሻ! ∇ሺ𝑆ሻௌ⊆ே∖{,} , (4) 

where ∇ሺ𝑆ሻ = 𝑓௫ሺ𝑆 ∪ 𝑖, 𝑗ሻ − 𝑓௫ሺ𝑆 ∪ {𝑖}ሻ − 𝑓௫ሺ𝑆 ∪ {𝑗}ሻ + 𝑓௫ሺ𝑆ሻ = 𝑓௫ሺ𝑆 ∪ {𝑖, 𝑗}ሻ − 𝑓௫ሺ𝑆 ∪ {𝑗}ሻ − ሾ𝑓௫ሺ𝑆 ∪ {𝑖}ሻ + 𝑓௫ሺ𝑆ሻሿ. (5) 

The SHAP interaction value between feature 𝑖  and feature 𝑗  is split equally be-
tween each feature so Φ, = Φ,  and the total interaction effect is Φ, + Φ,  [71]. The 
main effects for a prediction can then be defined as the difference between the SHAP and 
SHAP interaction values for a feature using the following [71,72]: Φ, = 𝜙 − ∑ Φ,ஷ . (6) 

This approach allows for the differentiation and assessment of the individual impacts 
of features and the impact of their interactions on a model’s predictions. 

4. Results and Discussion 
4.1. Model Training Results 

The results of the machine-learning models are presented and considered in this sec-
tion. The learning curve illustrates the evolution of the loss values over the number of 
iterations (the number of times the weights were updated) and provides an overall graph 
visualizing the predictive performance of the model. The learning curve allowed us to 
assess whether the predictive model experienced over- or underfitting. Figure 4 shows the 
training results of the prediction models used in this study. 

 
(a) (b) 

Figure 4. Learning curve of the prediction models using machine learning: (a) XGBoost model; (b) 
LightGBM model. 

The blue line in the figure represents the MAE loss values of the training data during 
model learning, whereas the orange line indicates the MAE loss values of the validation 
set. As shown in Figure 4, the MAE loss values decrease as the model training progresses. 
This indicates that proper feature extraction is performed through weight updates in the 
gradient-boosting decision tree, and that the machine-learning model used in this study 
fits well with the training set. Additionally, the “early_stopping” configuration for 

Figure 4. Learning curve of the prediction models using machine learning: (a) XGBoost model;
(b) LightGBM model.

The blue line in the figure represents the MAE loss values of the training data during
model learning, whereas the orange line indicates the MAE loss values of the validation
set. As shown in Figure 4, the MAE loss values decrease as the model training progresses.
This indicates that proper feature extraction is performed through weight updates in the
gradient-boosting decision tree, and that the machine-learning model used in this study fits
well with the training set. Additionally, the “early_stopping” configuration for preventing
overfitting effectively concluded the training for both XGBoost and LightGBM models.
Comparing the two models, the XGBoost model exhibited a smaller evaluation loss than
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the LightGBM model. This suggests that the XGBoost model is well-suited to the dataset
used in this study.

4.2. Model Performance

To assess the performance of the trained model, we verified the predictive accuracy
of the machine-learning model on unknown data. In addition to validating the overall
predictive accuracy using a loss function, we assessed the predictive accuracy of the
individual data points. The test set was used for validation and the absolute errors between
the predicted and true values were calculated. A parietal chart of the absolute errors and
cumulative frequency curves is shown in Figure 5. A scatter plot illustrating the relationship
between the predicted and true values is shown in Figure 6. Through these processes,
we evaluated the generalization performance of each model. As shown in Figure 5, the
XGBoost and LightGBM models exhibit different prediction accuracies. Examining the
cumulative frequency for the XGBoost model, 50, 70, and 80% of the test set had absolute
errors of ±0.14, ±0.41, and ±0.71 cm, respectively. By contrast, for the LightGBM model,
the cumulative frequency indicated absolute errors of ±0.26, ±0.67, and ±1.07 cm for 50,
70, and 80% of the test set, respectively. In this case, the XGBoost model has better accuracy.
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The scatter plot in Figure 6 shows the relationship between the true and predicted
values. The XGBoost model appears to fit well with the ytrue = ypred line. To quantify
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how well the values predicted from the regression model aligned with the true values, the
coefficient of determination R2 was defined as below:

R2 = 1 − ∑N
i=1(yi − ŷi)

∑N
i=1(yi − y)

, (7)

where N is the number of test-data points, yi is the actual value of the test data, ŷi is the
predicted value of the model for the test data, and y is the mean of the actual value. The
R2 score ranged from 0 to 1, with values closer to 1 indicating a better fit of the regression
model to the actual data. The results show an R2 of 0.97 for the XGBoost model and 0.94 for
the LightGBM model. This suggests that the former model provides a better explanation
for the amount of ground subsidence. The study uses ground subsidence data based on
numerical analysis, which minimizes the effect of outliers. Additionally, missing values
were removed by data preprocessing, and an ample amount of data was used. Therefore,
this forecasting model has high reliability because it satisfies the data quality and quantity.

4.3. Global Explanations of Prediction Model Based on SHAP
4.3.1. Feature Importance

Feature importance is a measure of the extent to which the features of each explanatory
variable affect its predicted value. This analysis clarified the process and basis of the
prediction results, allowing for an easy technical explanation. The evaluation of explanatory
variables for the entire instance is distinguished as a global explanation.

In this study, we evaluated the impacts of explanatory variables on liquefaction
ground subsidence. In the data analysis, stratified sampling was performed for each
geomorphological classification. This is because data imbalances can occur during ran-
dom sampling. Geomorphological classifications were added to the explanatory variables
through dummy-variable transformation using one-hot encoding. An overrepresentation
of the same geomorphological classification from random sampling cab biases those re-
sults. Stratified sampling mitigates categorical data biases and facilitates precise feature
importance analysis by ensuring proportional representation across classes. For stratified
sampling, 30 data points for each relevant geomorphological classification were randomly
extracted from the training, evaluation, and test data. As 20 points were extracted for each
category, applying this to the 25 categories resulted in a sample size of 500.

The average absolute SHAP value is an indicator of the feature importance obtained
by taking the absolute SHAP value for each instance and averaging it over the number of
samples. Notably, the average absolute SHAP value does not directly indicate an increase
or decrease in the relationship with the predicted value but visualizes the absolute amount
of information contained in the explanatory variables. For example, ICE (individual
conditional expectation) and PD (partial dependence) allow us to visualize whether the
predictions change by varying the values of the features. However, the complexity of the
data makes it difficult to interpret and explain the model, and the impact on the predicted
value cannot be visualized, so different evaluation merits are used depending on what
is being evaluated. Figures 7–9 show the SHAP and average absolute SHAP values for
each instance of the 44 explanatory variables used in this study. They also show the GIS
data, borehole data, and explanatory variables related to geomorphological classification,
respectively, all in descending order. In addition, the distribution of the features and
the SHAP values for each explanatory variable in each instance are shown. Although
the average absolute SHAP value evaluates the impact of the explanatory variables as a
single value of feature importance, it does not provide a view of the liquefaction ground
subsidence trend for each instance. Therefore, by using summary plots to represent visually
each instance’s features and SHAP values on a plane, the liquefaction ground subsidence
factors were interpreted.
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Figure 7 shows the contribution of each explanatory variable to the predicted value
in the GIS data. The variable with the most significant impact on the amount of ground
subsidence due to liquefaction was the JMA seismic intensity at the engineering bedrock
(Ia_min_dI). Liquefaction phenomena depend on the intensity of seismic motion and occur
because of shear stress within the ground. Examining the factor plot for the JMA seismic
intensity on the engineering bedrock (Ia_min_dI), it can be seen that as the explanatory
variable for the base seismic intensity increased, the impact on the predicted value (SHAP
value) also increased, indicating a positive correlation. Geotechnically, when shear stress
acts strongly within the ground, the voids in the soil change spatially, causing a rapid
increase in pore-water pressure. This theory is derived from Terzaghi’s principle of effective
stress and is considered geotechnically sound. Consequently, the contact force between
the soil particles decreases, causing the ground to liquefy. Therefore, the high feature
importance of the JMA seismic intensity at the engineering bedrock (Ia_min_dI) can be a
major cause of liquefaction, owing to the rapid increase in pore-water pressure caused by
the seismic motion introduced into the ground.

For AVS30, the amplification of the ground is considered to affect the amount of
ground subsidence owing to liquefaction. AVS30 represents the average S-wave velocity
from the surface to 30 m underground, a parameter dependent on ground density and
elastic properties. Generally, firmer ground transmits waves faster, whereas looser ground
transmits them more slowly; therefore, areas with looser ground are more prone to notice-
able subsidence. It is commonly believed that liquefaction is more likely to occur on weak
ground, as indicated by AVS30. The factor plot shows that as the AVS30 value increases, the
impact on the predicted value (SHAP value) decreases. Thus, there is a negative correlation
between AVS30 and the predicted value, with a lower AVS30 indicating a higher likelihood
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of weaker ground, and therefore, a greater impact on the amount of ground subsidence
due to liquefaction.

Regarding topographic data, the highest elevation (Max_Elev), steepest slope angle
(Max_Slop_Deg), and minimum slope angle (Min_Slop_Deg) are included. The highest
elevation indicates the highest point within a mesh; however, most liquefaction phenomena
occur in flat or low-lying areas. This is believed to be influenced by the groundwater
level, which is an important factor in the occurrence of liquefaction. Elevation exhibits an
inverse relationship with depth below the surface relative to sea level; greater elevation
corresponds to reduced ground saturation due to increased depth. Thus, it seems likely that
the higher the maximum elevation, the lower the probability of liquefaction. The summary
plot shows no clear correlation, but a trend is observed in which the higher the elevation,
the smaller the impact on the predicted value.

The distance to the coast (Coast_Dist), river (River_Dist), and HAND, were considered.
These explanatory variables represent the linear distance from the mesh centroid to the
nearest coastline and river, and the relative height from the nearest river, respectively,
adding information related to the degree of ground saturation. The impact of each vari-
able on the predicted value was lower than that of the seismic motion and topographic
data, confirming a minor impact on the predicted value. The summary plot shows little
correlation between the explanatory variables and the predicted value, but it indicates
that the farther the distance from the centroid to the river, the more significant the ground
subsidence due to liquefaction. This result suggests that the degree of ground saturation
does not depend on distance, implying that other factors are at play. Coast and river
distances represent the distances from water bodies with high similarity as explanatory
variables. Generally, meshes closer to the coast have higher ground saturation because of
this explanatory variable. However, meshes close to the coast but far from a river may be
incorrectly determined by the learning model as having significant ground subsidence due
to liquefaction, despite the strong influence of coastal distance, because they are far from a
river. This is because both explanatory variables have similar features related to ground
saturation, making it unclear which is the primary factor, leading to the perception that
liquefaction is more likely to occur farther from a river. In other words, we believe that the
model learns terrain features rather than extracting the dominant factors of liquefaction.
However, as shown in Figures 5 and 6, the predictive accuracy of the model was high,
suggesting that overall feature extraction for liquefaction was being performed successfully.
When a model is trained to align with data trends, it can produce good accuracy; however,
if the model does not correctly grasp the overall trend of the data, this is referred to as
overfitting. Therefore, when conducting factor analysis using machine-learning models, it
is necessary to consider the impact of overfitting.

Figure 8 shows the contribution of each explanatory variable to the predicted value
of the borehole data. Borehole data served as indicators for determining the compactness
and strength of the ground, represented by the SPT-N value. This indicator was obtained
through standard penetration tests and was crucial for quantitatively determining the
amount of ground subsidence caused by liquefaction. Figure 8 shows the feature impor-
tance of the SPT-N value at different depths and the summary plot, with SPT-N values
greater than 5 m from the surface having a strong impact on the predicted value, and higher
SPT-N values (firmer ground) tending to have a smaller contribution (SHAP value). The
pore-water pressure generated deep in the ground dissipates towards the surface, but the
supply of pore-water pressure to the ground near the surface can cause liquefaction owing
to infiltration failure. Therefore, when liquefied ground is near the surface, the pore-water
pressure is rapidly dissipated, resulting in only minor ground subsidence; however, more
significant ground subsidence occurs as the drainage distance increases. Thus, it appears
that the SPT-N value in deeper ground has a relatively significant impact on the predicted
value of ground subsidence owing to liquefaction, generally providing a better explanation
for the degree of liquefaction. B_Dist was added as a variable indicating that the distance
from the borehole, and feature extraction related to the reliability of the ground information
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is thought to have been performed. Borehole data used in this study were obtained from
the nearest boreholes. However, if the corresponding mesh was far from the borehole point,
data lost credibility, and different SPT-N values were obtained from the actual point instead.
Because ground information is important for predicting ground subsidence, the feature
was considered highly important.

Finally, Figure 9 shows the contribution of each explanatory variable to the predicted
value in the geomorphological classification. Categorical variables were converted into
quantitative variables through one-hot encoding, with the corresponding category being
true and all other categories being false. As confirmed by the feature importance, geomor-
phological classification, reflecting a high tendency for liquefaction occurrence, occupied
the top ranks, suggesting a high impact on the predicted value. Conversely, a low impact
of factors on the predicted value suggests that these factors are not related to ground
subsidence, with other features having a significant influence. Therefore, the geomorpho-
logical classifications with low feature importance in Figure 9 are likely to be geologically
stable and less prone to liquefaction. However, the summary plot shows instances with
high SHAP values in geomorphological classifications, such as volcanoes and volcanic
foot-slopes. In terms of geomorphological classification, liquefaction is less likely to occur
in volcanic areas; however, extensive liquefaction is possible when the soil in these areas
contains a liquefaction layer or meets the conditions for liquefaction. Therefore, when
quantitatively calculating the amount of ground subsidence owing to liquefaction, it is
difficult to make a unique assessment based on the geomorphological classification because
of varying conditions such as soil, topography, and saturation. However, as indicated by
Kuwabara and Matsuoka [28], this is useful for predicting the probability of widespread
liquefaction.

4.3.2. Effect of Soft Ground on the Amount of Subsidence

Ground softness amplifies shear stress. In particular, areas with shallow groundwa-
ter levels and slow shear wave velocities tended to amplify the strength of the seismic
motion. In such situations, interactive effects may occur when multiple factors are com-
bined. Interaction refers to a synergistic effect that appears as a combination of multiple
factors. This occurs when there is a causal relationship between multiple characteristics
and one characteristic may change because of other explanatory variables. Visualization of
interactions using SHAP can illustrate nonlinear relationships and dependencies among
these features. Figure 10 shows the dependence plot of the JMA seismic intensity at the
engineering bedrock (Ia_min_dI) for AVS30 and HAND. Here, we focus on AVS30 as a
variable related to the degree of ground amplification and HAND as a variable related to
groundwater-level height, and consider the causal relationship with base seismic intensity.
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Figure 10. SHAP dependence plot of the JMA seismic intensity at the engineering bedrock (Ia_min_dI):
(a) Impact of causality for AVS30; (b) impact of causality for HAND.

The vertical axis represents the SHAP values of the JMA seismic intensity at the
engineering bedrock (Ia_min_dI), which contributes to ground subsidence. The horizontal
axis shows the values of the JMA seismic intensity at the engineering bedrock (Ia_min_dI).
As shown in Figure 10, even with identical base seismic intensity values, the SHAP values
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of the base seismic intensity vary depending on the AVS30 and HAND values. Considering
a base seismic intensity of 5.5 as a reference, the SHAP value when AVS30 exceeded 300 m/s
was approximately 0.02 m. In contrast, when AVS30 was below 150 m/s, the SHAP value
was approximately 0.04 m. This indicates that a lower AVS30 value results in a greater
impact of the base seismic intensity on ground subsidence. Similarly, for HAND, the SHAP
value is approximately 0.02 m when HAND exceeds 7.5 m, but it increases to about 0.03 m
when HAND is 7.5 m or less. This suggests that a lower relative height from the water
body (or a shallower groundwater level) increases the impact of the base seismic intensity.
Therefore, the varying contributions of the base seismic intensity influenced by the AVS30
and HAND values suggest a causal relationship between these features.

4.4. Local Explanations of Prediction Model Based on SHAP

The constructed prediction model was applied to a specific area, and the prediction
results were visualized. Whereas global explanations focus on the contribution to the
target variable, this approach enables explanations of targeted phenomena from a micro
perspective. Combining this with domain knowledge allows for a logical interpretation.

The model was applied to Urayasu City in Chiba Prefecture, which suffered extensive
liquefaction damage in the 2011 Great East Japan Earthquake. The selected validation mesh
for the area near the Urayasu City Hall was MESH5, with a MESH_CODE of 5339378124.
The location of the target regional mesh is shown in Figure 11.
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The attribute data of the target mesh were used as the input explanatory variables. For
the JMA seismic intensity at the engineering bedrock, I = 5.5 was used, corresponding to a
JMA seismic intensity class 6 lower [46]. Figure 12 shows the results of the local explanation
using the SHAP method.
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Local explanations can elucidate why liquefaction occurred in a particular area on a
factor-by-factor basis. In this case, the JMA seismic intensity at the engineering bedrock
(Ia_min_dI), AVS30, and B_Dist contributed to ground subsidence of 0.040, 0.009, and
0.008 m, respectively. Urayasu City in the Chiba Prefecture consists of reclaimed land and is
a coastal area, therefore, its distance to the coast is short. For the same reason, it has sandy
soil, and so the ground bearing capacity is low, and the SPT-N value is correspondingly
low. Whereas previous evaluations of liquefaction were conducted through numerical
simulations and ground surveys, the machine-learning model constructed in this study
allows for the simple calculation of how much liquefied ground subsidence takes place in
any regional mesh. Similarly, by changing the input seismic motion, liquefaction evaluation
assuming a major earthquake is possible, and the factors contributing to ground subsidence
can be interpreted from the explanatory variables used.



Appl. Sci. 2024, 14, 2713 19 of 22

5. Conclusions

In this study, a factor analysis of ground subsidence was conducted using seismic
motion, GIS, and ground data. Machine-learning models were constructed using two
ensemble learning algorithms, XGBoost and LightGBM, and feature extraction was per-
formed. The XGBoost model demonstrated higher predictive accuracy than the LightGBM
model, with absolute errors of ±0.14, ±0.41, and ±0.71 cm at cumulative frequencies of
50, 70, and 80% on the test set, respectively. The coefficient of determination R2 for the
XGBoost model was 0.97, and there was a good fit between the predicted and actual values,
proving its effectiveness in predicting the amount of ground subsidence due to liquefaction.
Subsequently, using the XGBoost model, the contribution of each explanatory variable to
the prediction results was determined using SHAP impact analysis.

In terms of global explanations, the JMA seismic intensity at the engineering bedrock
and AVS30 were the key variables affecting the amount of liquefied ground subsidence,
suggesting a significant impact on liquefaction phenomena. In addition, borehole data
represented by the SPT-N value, which indicates the hardness of the ground, were con-
firmed to contribute significantly to ground subsidence. The limitations of GIS data and
geomorphological classification in representing ground information suggest that including
borehole information in the machine-learning model could improve prediction accuracy.

In terms of local explanations, it was able to provide an engineering explanation for
the cause of ground subsidence in any given instance. In this study, factor analysis was con-
ducted for Urayasu City, Chiba Prefecture, and it was confirmed that the contribution to the
amount of ground subsidence could be evaluated using the SHAP method. Consequently,
this suggests that predictions with flexibility and interpretability are possible.
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