
Citation: Zhu, Y.; Liu, C.; Bai, Y.;

Wang, C.; Wei, C.; Li, Z.; Zhou, Y.

Diverse Feature-Level Guidance

Adjustments for Unsupervised

Domain Adaptative Object Detection.

Appl. Sci. 2024, 14, 2844. https://

doi.org/10.3390/app14072844

Academic Editor: Sungho Kim

Received: 28 December 2023

Revised: 12 March 2024

Accepted: 26 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Diverse Feature-Level Guidance Adjustments for Unsupervised
Domain Adaptative Object Detection
Yuhe Zhu 1 , Chang Liu 1, Yunfei Bai 1 , Caiju Wang 1, Chengwei Wei 1, Zhenglin Li 2,3 and Yang Zhou 1,*

1 Research Institute of USV Engineering, School of Mechatronic Engineering and Automation, Shanghai
University, Shanghai 200444, China; zyh15862623156@shu.edu.cn (Y.Z.); liuchang123@shu.edu.cn (C.L.);
baiyunfei9527@shu.edu.cn (Y.B.); caijuwang@shu.edu.cn (C.W.); 21722259@shu.edu.cn (C.W.)

2 Institute of Artifcial Intelligence, Shanghai University, Shanghai 200444, China; zhenglin_li@shu.edu.cn
3 School of Future Technology, Shanghai University, Shanghai 200444, China
* Correspondence: saber_mio@shu.edu.cn

Abstract: Unsupervised Domain Adaptative Object Detection (UDAOD) aims to alleviate the
gap between the source domain and the target domain. Previous methods sought to plainly align
global and local features across domains but adapted numerous pooled features and overlooked
contextual information, which caused incorrect perceptions of foreground information. To tackle
these problems, we propose Diverse Feature-level Guidance Adjustments (DFGAs) for two-stage
object detection frameworks, including Pixel-wise Multi-scale Alignment (PMA) and Adaptative
Threshold Confidence Adjustment (ATCA). Specifically, PMA adapts features within diverse hierar-
chical levels to capture sufficient contextual information. Through a customized PMA loss, features
from different stages of a network facilitate information interaction across domains. Training with
this loss function contributes to the generation of more domain-agnostic features. To better recognize
foreground and background samples, ATCA employs adaptative thresholds to divide the foreground
and background samples. This strategy flexibly instructs the classifier to perceive the significance of
box candidates. Comprehensive experiments are conducted on Cityscapes, Foggy Cityscapes, KITTI,
and Sim10k datasets to further demonstrate the superior performance of our method compared to
the baseline method.

Keywords: unsupervised domain adaptative object detection; feature distribution; feature alignment;
foreground–background sample division

1. Introduction

Object detection aims to recognize and locate foreground objects within complex
backgrounds. However, conventional detectors exhibit a noticeable performance decline
when they are tested on real-world data. The root of this issue lies in the domain gap
between training sets and real-world data. Conventional detectors are typically trained
on labeled data, with researchers assuming that the training and validation sets follow an
independent and identically distributed (i.i.d.) distribution. However, labeled samples are
frequently absent when the detector is used in practical settings. Moreover, the distribution
of training and validation sets may differ significantly in practical situations. This is because
there are substantial differences in aspects such as illumination, shooting perspectives,
and picture styles. Unsupervised Domain Adaptative Object Detection (UDAOD) has
emerged as a solution to tackle this problem, as it aims to minimize the data distribution
inconsistency across different domains. Researchers have introduced numerous UDAOD
methods to effectively transfer models from labeled data to unlabeled data. These methods
encompass abundant adaptation strategies, including data alignment and feature alignment
strategies (image-level and instance-level [1], as shown in Figure 1) combined with an
adversarial training [2] technique, among others.
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Figure 1. Both image-level and instance-level alignment approaches are commonly used in feature
alignment methods. We use “+”and “−” to represent foreground and background samples, respec-
tively. Additionally, the input requirements for these two alignment approaches differ. In image-level
alignment, the entire set of image features is utilized to capture comprehensive information. In
contrast, instance-level alignment concentrates on local information by leveraging proposal features
as input.

These methods are typically based on one-stage or two-stage detectors. One-stage
detectors [3–7] introduce image-level feature alignment with single stage detection frame-
works. However, due to the absence of instance-level feature alignment, these methods
suffer from incorrect awareness of foreground samples within complex backgrounds [5].
Conversely, two-stage object detection frameworks [1,8–16] utilize instance-level alignment
to promote foreground perception through the Region Proposal Network (RPN) [17]. While
an instance-level alignment strategy significantly improves object detection accuracy, it
introduces certain issues. On the one hand, it hampers the discriminator’s ability to distin-
guish features, since the pooled proposal features from the RPN commonly lose contextual
and texture details. On the other hand, while using the RPN and an instance-level align-
ment strategy enhances domain invariant [12] proposal features, it also results in quantities
of background candidate boxes.

To solve these problems, we introduce Diverse Feature-level Guidance Adjust-
ments (DFGAs) for two-stage detection frameworks. To aid with the lack of context
information [18] alignment, Pixel-wise Multi-scale Alignment (PMA) is proposed to adapt
features on diverse hierarchical levels among different domains. Specifically, since global
features contain comprehensive information, a novel similarity measurement loss function,
termed PMA loss, is introduced to facilitate information exchange between the source
and target domains. As for overly focusing on background candidates, the Adaptative
Threshold Confidence Adjustment (ATCA) strategy is proposed as a category classifier.
It encourages the model to focus on foreground information. Due to the necessity of
foreground sample awareness, ATCA introduces adaptative thresholds to enhance the
cross-domain alignment of foreground candidates. Specifically, it calculates the correspond-
ing foreground–background sample division threshold based on the classifier’s output.
These samples are adaptively partitioned into allocation intervals (foreground, background,
and ignored samples) depending on their corresponding thresholds. This approach enables
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the model to discern the characteristics of the objects and perceive the importance of the
bounding box adaptatively.

We emphasize the contributions of this work as follows:

• A novel feature alignment strategy named Pixel-wise Multi-scale Alignment (PMA)
is designed to minimize the contextual feature differences of the data distribution
between the source domain and the target domain. Additionally, PMA instructs the
backbone to generate more domain-agnostic feature representations.

• An effective sample division module named Adaptative Threshold Confidence Adjust-
ment (ATCA) is proposed to guide the detector in better perceiving the importance of
predictions for foreground and background samples. This approach effectively steers
the model’s perception towards the objects of interest as perceived.

• Extensive experiments were carried out on four benchmark datasets, Cityscapes, Foggy
Cityscapes, KITTI, and Sim10k, to validate the effectiveness of the newly proposed
modules. Our DFGAs improved by 1.3% mAP on weather adaptation and by 11.7%
and 15.7% mAP on cross-camera adaptation, based on the same baseline method.

2. Related Works
2.1. Object Detection

Object detection [19] aims to identify and localize foreground objects from complex
background information in a 2D image, without relying on depth approaches [20]. This
technology enhances the efficiency and robustness of autonomous decision making within
the realm of artificial intelligence. Grounded in deep learning, an object detection frame-
work is categorized into one-stage detectors [21–23] and two-stage detectors [17,24–26].
One-stage detectors regress the location and category confidence of objects [27] directly.
In contrast, two-stage detectors, equipped with the Region Proposal Network (RPN) [17],
employ region proposals and refine bounding boxes continuously. Consequently, Faster
R-CNN [17] is a well-known detection framework and serves as the foundation for numer-
ous follow-up researches. Due to its flexibility, it is chosen as the baseline framework for
many recent domain adaptative object detection methods.

2.2. Unsupervised Domain Adaptation for Object Detection

Compared to classic detectors, domain adaptation posits that there exists an inher-
ent domain shift between training data and validation data. To mitigate the performance
degradation caused by domain shift [1], researchers have proposed various methods based
on Unsupervised Domain Adaptation. These methods include data alignment, feature
alignment, and adversarial training [2], as well as other strategies like disentangled repre-
sentation learning [28] and style-transferred methods [29], and so on.

Regarding data distribution differences, Yang et al. [30] and Liu et al. [31] incorpo-
rated the exchange of features’ low-frequency spectral information in the frequency domain
between different domains. Furthermore, Hsu et al. [32] proposed the intermediate domain,
which generated synthetic data by Cycle GAN [33] to mimic target domain data. Never-
theless, the effectiveness of domain adaptation through data-level alignment is limited.
Researchers then shifted their attention to feature adaptation through feature alignment.
Methods like DA Faster R-CNN [1] pioneered the introduction of both image-level and
instance-level feature alignment strategies, incorporating consistency regularization based
on the prediction of the two classifiers. Xu et al. [8] measured the prediction of image-level
and instance-level classifiers. The matching results are produced and used as standards
to separate samples of the foreground objects. Zhou et al. [9] achieved feature alignment
through multi-granularity level alignment strategies, such as pixel-level, instance-level,
and category-level strategies.

Since applying local regions’ information [14–16,34–36] with instance-level alignment,
these recent works have achieved significant improvements in detection performance.
However, domain adaptation requires more than the alignment of features from backbone
or RPN. It is fundamental to take contextual connections between features into account.
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Our PMA loss compensates for the insufficient information interaction between the source
domain and the target domain in context. Furthermore, enhancing the perception and
alignment of foreground information is crucial and cannot be ignored. Although some
methods [1,8,9] adopt category consistency regularization to enhance the alignment of
category information, they also overfit substantial background information. To selectively
focus on foreground information, ATCA is proposed for adaptively partitioning samples
as foreground samples, background samples, and ignored samples. Consequently, based
on the Faster R-CNN [17] framework, a pixel-wise contextual alignment strategy and an
adaptative sample division strategy are presented, as detailed in the next section.

3. Methods

This section illustrates the overall algorithm framework, as well as two proposed
strategies aiming to enhance the accuracy of Unsupervised Domain Adaptative for Object
Detection (UDAOD). Section 3.1 introduces the framework overview of the DFGAs method.
In Section 3.2 and Section 3.3, Pixel-wise Multi-scale Alignment and Adaptative Threshold
Confidence Adjustment are detailed, respectively.

3.1. Framework Overview

Our DFGAs follow the two-stage detector Faster R-CNN [17], regarding its founda-
tional architecture. The general framework overview is presented in Figure 2. We employ
an unsupervised domain adaptation baseline for cross-domain object detection. During
the training phase, labeled source domain data and unlabeled target domain data are
jointly used for feature extraction and distribution discrimination through adversarial
training. This encourages the feature generator to generate more high-quality domain-
invariant features. It also contributes to mitigating the impact of specific domain data styles
when detecting objects. To guide this process, two plug-and-play modules are proposed:
the pixel-wise multi-scale alignment module and the adaptative threshold confidence
adjustment module.
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Figure 2. An overview of our Diverse Feature-level Guidance Adjustment. Training batch includes
labeled data IS and unlabeled data IT . The two proposed plug-and-play components are PMA
module and ATCA module, as illustrated. PMA module is performed on image-level features at
different hierarchical layers. The predictions obtained from the instance-level classifiers are fed
into ATCA module for sample division. Feature flows FS and FT facilitate gradient propagation
via adversarial training and GRL (Gradient Reversal Layer) between the feature generator BF and
domain discriminator DF. The instance-level representations rS

ins and rT
ins generated by RPN and ROI

Align are fed into the detection head (instance-level classifier and classifier).
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3.2. Pixel-Wise Multi-Scale Alignment

In order to enhance feature adaptation, Pixel-wise Multi-scale Alignment (PMA) is
proposed to capture sufficient contextual information. Following the regular training
methods of domain adaptation, we resort to adversarial training [2] techniques. To narrow
the data distribution gap across different domains, the PMA module is applied to features
from different backbone stages. The implementation process of PMA is as shown in
Figure 3.

contextual
similarity

PMAModule

𝓛𝑷𝑴𝑨

𝒇𝒍
𝑺

𝒇𝒍
𝑻

𝒇𝒍
𝑺 − 𝒇𝒍

𝑻

𝟐

GRL

𝑫𝑭

Figure 3. Proposed pixel-level multi-scale alignment. Given the output features of each stage of
the network across two domains, PMA calculates the similarity between source features and target
features for each batch. PMA loss is then performed on the batched features to align the two domain
data distributions.

During the training phase, multi-scale features from the source domain and the target
domain are calculated, using the PMA module pixel-wisely. To measure the similarity be-
tween the two domains within the same batch, Simpixel is introduced, which quantifies the
degree of similarity between them, as can be seen in Figure 3. The similarity computation
of cross-domain features is as follows:

Simpixel

(
f S
l , f T

l

)
=

∥∥∥ f S
l − f T

l

∥∥∥
2

, (1)

where f S
l and f T

l denote the features from the source domain and the target domain,
respectively.

Inspired by TIA [16], the VGG16 [37] network is divided into three stages. Subse-
quently, PMA loss, represented by LPMA, is constructed to bring the feature distributions
of various domains closer together, as shown in Equation (2). i denotes the ith stage of the
network, and is set to 1, 2, and 3. X and Y are the sample feature sets from the three stages
of the backbone network. a and b are current features from X and Y, respectively, used for
calculating the PMA loss. The contextual similarity is taken as an exponential factor [38] in
calculating the similarity learning loss. The loss function formulated by the PMA module
is as follows:

LPMA

(
f S
l , f T

l

)
= − log

∑a∈Xi
e

Simpixel

(
f S
li

, f T
li

)

∑a∈Xi
e

Simpixel

(
f S
li

, f T
li

)
+ ∑b∈Yi

e
Simpixel

(
f S
li

, f T
li

) , i = 1, 2, 3 (2)

Since there are inconsistencies in the feature representations at different stages, we
choose to employ different weights to assess the importance of features. Three parameters
are commonly set, with α = 0.2, β = 0.3, and γ = 0.5. The total PMA loss is formulated
as follows:

LPMA = αL1
PMA + βL2

PMA + γL3
PMA (3)
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The features generated by the feature generator BF are B × C × W × H tensors. B
denotes the batch size of the input in the training phase. C, W, and H are the channel,
width, and height of the input images, respectively. When calculating the similarity of
features based on the PMA loss, the computation is performed along the channel dimension.
However, due to the excessive computational burden imposed by channel-wise calculations,
cross-channel calculations become necessary. At this point, it is validated that a stride of
16 achieves optimal performance, and this will be detailed in Section 4.4.

Our PMA loss enhances the feature contextual alignment across domains and provides
guidance for the domain discriminator. The overall loss of the method is formulated
as follows:

L = Ldet + Lda + LPMA , (4)

where Ldet represents the training loss of the baseline Faster R-CNN, and Lda denotes the
adversarial training loss provided by the domain discriminator.

3.3. Adaptative Threshold Confidence Adjustment

The ultimate goal of UDAOD remains to achieve object detection in unlabeled data.
The performance of the detector relies heavily on the classifier. Therefore, it is necessary to
achieve foreground alignment between domains. For sample classification, cross-entropy
loss is employed. The classification loss is calculated as follows:

Lins
class

(
Xj, X̂j

)
= − 1

N

N

∑
j=1

Xj × log
(

X̂j

)
, (5)

where Xj denotes the label value of the jth sample X and X̂j means the values predicted by
the classifier correspondingly. N is the current total number of samples.

In order to enhance the cross-domain alignment of foreground sample information, an
adaptative threshold adjustment strategy, ATCA, is proposed to diminish the confusion
caused by background samples. Based on the confidence of the current batch samples,
the mean value and variance are calculated in Equation (6). Tob and Tbg are employed
to partition positive and negative samples when assigning category labels, as detailed in
Equation (7), as follows:

µi =
1
K

i=1

∑
K

pi, vi =
1
K

i=1

∑
K

√
(pi − µ)2 , (6)

Tob = µi + vi, Tbg = µi − vi , (7)

where µi and υi represent the mean value and variance of the confidence for the ith sample,
respectively. pi represents the prediction results and K is the total numbers of the samples.

This approach allows for a more reasonable division of highly confident positive
samples and low-confidence negative samples, with the sample division defined as follows:

Xj


foreground sample , P̂out > Tob
background sample , P̂out < Tbg
ignored sample , Tbg < P̂out < Tob

, (8)

where Xj is the jth sample and P̂out denotes the sample confidence predicted by the
classifier for each category within every bounding box.

Classifier inputs comprise both image-level and instance-level features, enabling
predictions at corresponding granularities. Global feature predictions provide a general
foreground assessment, whereas instance-level classifiers using features refined by RPN [17]
and ROI Align enhance the accuracy of foreground bounding boxes. We introduced object
consistency regularization to harmonize the prediction following image-level alignment
and instance-level alignment. Therefore, this deviation from coarse to fine perception with
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image-level to instance-level is measured by Equation (9). At this point, the importance of
foreground objects is reflected in the Weightins, as follows:

m(·) = eP̂ins−P̂img , (9)

Weight ins = P̂ins × m(·) , (10)

where P̂ins and P̂img denote the predictions output by the instance-level and image-level
classifiers, respectively. m(·) is the difference between the outputs of the two classifiers.
Weightins is designed to describe the reliability of the predicted foreground class results
within the bounding boxes, by weighting the entropy using the prediction of distinct
classes to focus on the proper category. Typically, a standard entropy loss is used to classify
foreground objects, denoted as LG−L

class , and the ultimate global–local consistency loss is
formulated as:

LG−L
class = Weight ins ×Lins

class (11)

4. Experiments

In this section, the evaluation of the proposed DFGAs framework is detailed.
Section 4.1 introduces the implementation details of our experiments. Section 4.2 briefly
illustrates the benchmark datasets used for experimental verification. In Section 4.3, the
proposed method is evaluated by comparing it with seven UDAOD methods, and the
results are shown with mAP(%). A detailed ablation study is designed to analyze the
effectiveness of the proposed modules in Section 4.4. Finally, Section 4.5 presents the
analysis, together with visualizations of the detection results.

4.1. Implementation Details

Following the recent methods in UDAOD, our experimental base detection model
adopted the Faster R-CNN [17] framework, with VGG-16 [37] as the backbone. In all
experiments, the input images were resized to make the shorter side equal to 600 pixels
and longer side less or equal to 1200 pixels. For experiments on weather adaptation and
synthetic-to-real adaptation, the training iterations were set to 100k, while for the experiments
on cross-camera adaptation, 70k iterations were trained in total. The initial learning rate was
set to 0.001 and decayed by a factor of 10 every 50k iterations. We set the batch size as two
and saved the model weights every 10k iterations during the training phase. As for the loss
function, the parameters α, β, and γ were set to 0.2, 0.3, and 0.5, respectively.

4.2. Datasets

Our experiments set up three main adaptative scenarios, including weather adaptation,
cross-camera adaptation, and synthetic-to-real adaptation, corresponding to four benchmark
datasets: Cityscapes [39], Foggy Cityscapes [38], KITTI [40], and Sim10k [41].

Weather Adaptation. The Cityscapes [39] and Foggy Cityscapes [38] datasets were
employed to study domain shift caused by weather conditions. The Cityscapes dataset is
a dataset of urban scenes captured under dry weather conditions. The Foggy Cityscapes
dataset was created by adding artificial fog to Cityscapes. For our detection tasks, we
focused on eight specific categories: car, train, motorcycle, bus, bicycle, cycle, person, and
truck, to evaluate the accuracy of the proposed algorithm. A total of 2965 images from
the Cityscapes and Foggy Cityscapes datasets were used as the source and target domain
input data, respectively. An additional 492 images were selected from the Foggy Cityscapes
dataset to create the validation set.

Cross-camera Adaptation. The Cityscapes [39] and KITTI [40] datasets were utilized to
evaluate the model’s cross-camera adaptation capability. These two datasets have different
camera configurations. The KITTI dataset, which includes urban, rural, and highway
images in real scenarios, comprises 7481 images. The car category was primarily analyzed
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to assess our method’s superiority. The training set input comprised 2965 Cityscapes
images and all KITTI images. A total of 500 images were selected from different training
domain datasets as the validation set.

Synthetic-to-real Adaptation. To assess the adaptation ability from real to synthetic
images, the transition from Cityscapes [39] to Sim10k [41] was utilized for evaluation.
Similarly, car category bounding boxes were introduced as the primary objects in our
experiments. A total of 2965 images from the Cityscapes dataset and all images from the
Sim10k dataset were used as the target and source domain input, respectively. To create
the validation set, 500 images were selected from different training sets of the Cityscapes
dataset.

4.3. Comparative Experiments

We have conducted comparative experiments with several UDAOD methods in
recent years, including Faster R-CNN [17], DA Faster R-CNN [1], ATF [12], SAP [35],
MeGA [15], SWDA [14], TIA [16], and MAF [42]. These methods are grounded in the Faster
R-CNN [17] framework and the VGG16 [37] network. Our research focuses on addressing
the deficiencies associated with different feature alignment methods, including global and
local feature alignment. We chose the above methods to conduct our experiment.

4.3.1. Weather Adaptation

According to Table 1, our DFGAs achieved the highest mAP of 43.6%, marking an
approximate 1.3% mAP improvement over TIA. This result indicates that our approach out-
performed the previous methods in UDAOD regarding detection accuracy. It demonstrates
the significance of aligning the feature context information and enhancing foreground
information cognition on weather adaptation.

Table 1. Experimental results (%) of DFGAs method on the Cityscapes → Foggy Cityscapes compared
with other methods.

Method Bus Bicycle Car Mcycle Person Rider Train Truck mAP

Faster R-CNN 25.5 30.3 34.2 19.0 25.1 33.4 9.1 12.1 23.7
DA Faster R-CNN 35.3 27.1 40.5 20.0 25.0 31.0 20.2 22.1 27.6
SDWA 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3
ATF 43.3 38.8 50.0 33.4 34.6 47.0 38.7 23.7 38.7
SAP 46.8 40.7 59.8 30.4 40.8 46.7 37.5 24.3 40.9
MeGA 49.2 39.0 52.4 34.5 37.7 49.0 46.9 25.4 42.8
TIA 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3

Ours 53.6 41.6 53.0 40.1 36.8 47.9 41.3 34.3 43.6

4.3.2. Cross-Camera Adaptation

To validate the effectiveness of our method, experiments were conducted, not only
for weather differences in paired datasets, but also for adapting to camera distinctions,
using the Cityscapes [39] and KITTI [40] datasets, as presented in Table 2. We utilized these
datasets as the inputs for the source and target domains, respectively. According to Table 2,
DFGAs achieved 59.5% mAP and 87.6% mAP in detecting cars. In comparison with TIA,
DFGAs achieved improvements of approximately 15.5% mAP in KITTI → City and 11.7%
mAP in City → KITTI. It is evident that our method exhibited remarkable performances
when mitigating the domain shift arising from camera differences.
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Table 2. Experimental results (%) of DFGAs on KITTI → Cityscapes and Cityscapes → KITTI datasets
compared with other methods.

Method KITTI → City (mAP) City → KITTI (mAP)

Faster R-CNN 30.2 53.5
DA Faster R-CNN 38.5 64.1
SWDA 37.9 71.0
SAP 43.4 75.2
ATF 42.1 73.5
MeGA 43.0 75.5
TIA 44.0 75.9

DFGAs 59.5 87.6

4.3.3. Synthetic-to-Real Adaptation

Regarding the domain adaptation between synthetic data and real-world data, we
conducted experiments on Sim10K [41] and Cityscapes [39] datasets. Table 3 shows that
our DFGAs surpassed all other methods, with 41.6% mAP. This illustrates that our method
bridges the differences between synthetic data and real data, to some extent.

Table 3. Experimental results (%) of DFGAs on Sim10K → Cityscapes datasets compared with other
methods.

Method Sim10K → City (mAP)

DA Faster R-CNN 34.3
TIA 39.6
SWDA 40.1
MAF 41.1

DFGAs 41.6

4.4. Ablation Study

The ablation experiment was designed to investigate the unique facilitative effects of
the DFGAs method in UDAOD. This study focused on evaluating module effectiveness on
the Cityscapes and Foggy Cityscapes datasets. Each module was independently integrated
into the codebase and its effectiveness was empirically validated.

We employed the UDAOD model TIA [16], based on the Faster R-CNN framework,
for our first ablation experiment. The experimental results are presented in Table 4. Model
A was the baseline model (TIA), which had 42.3% mAP. When we incorporated a PMA
module, mAP was improved by 0.9%. Model C, with the ATCA module, contributed an
additional 0.7% mAP value. Finally, Model D was equipped with the PMA and ATCA
modules and achieved 43.6% mAP. These improvements confirm the role of PMA loss
in aligning feature distributions across domains, while our ATCA module effectively
enhanced the classifier’s focus on foreground information.

Table 4. Results (%) of ablation experiment on the baseline TIA.

Model PMA ATCA mAP

A − − 42.3
B ✓ − 43.2
C − ✓ 43.0
D ✓ ✓ 43.6

To demonstrate the generality of our modules, we integrated them into another model,
CRDA [8], as viewed in Table 5. Model E was the baseline model of CRDA, which achieved
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29.9% mAP. Obviously, our PMA improved the mAP by 2.2% in Model F and ATCA
improved it by 1.9% mAP in Model G, respectively. In Model H, the modules together
yielded 2.5% mAP improvements. These substantial mAP improvements reinforced the
effectiveness of our method, which offered plug-and-play convenience and was effective in
cross-domain object detection.

Table 5. Results (%) of ablation experiment on the baseline CRDA.

Model PMA ATCA mAP

E − − 29.9
F ✓ − 32.1
G − ✓ 31.8
H ✓ ✓ 32.4

To investigate the influence of the stride of cross-channel calculation in the PMA mod-
ule on domain adaptative object detection accuracy, we conducted a series of experimental
training and validations on the baseline TIA [16]. Experiments with strides of 1, 2, 8, 16,
and 32 were conducted. The findings, depicted in Figure 4, revealed that the PMA module
reached peak performance with a stride of 16.

Figure 4. mAP(%) varies with the stride of channels within the PMA module.

For our ATCA strategy, we assessed the effects of fixed and adaptative thresholds on
sample division through comparative experiments. We trained the model with thresholds
fixed at 0.5, 0.7, and 1 based on the baseline CRDA [8], and the results are presented in
Figure 5. Ultimately, our adaptative threshold sample division strategy, ATCA, outper-
formed the fixed threshold approach clearly.

Figure 5. mAP(%) varies with threshold within the ATCA module.
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4.5. Analysis

We compared the visualization results for the weather adaptation and cross-camera
adaptation experiments. Despite the existence of an unavoidable gap between the source
and target domains, PMA loss was used to narrow the divergence between their features
using contextual information. Moreover, the ATCA strategy prevents many background
candidate boxes to some extent.

Figure 6 displays the prediction results of both the baseline method and our DFGAs
method in the target domain for the weather adaptation and cross-camera adaptation experi-
ments. The weather adaptation experiment results, shown in Figure 6a,b, illustrate that our
DFGAs method reduced some false detection on the background compared to the baseline.
As for the cross-camera adaptation results presented in Figure 6c,d, there were also noticeable
corrections of detection failure and detection fault. Under identical threshold conditions,
our method reduced false detection, notably by preventing the generation of background
candidate boxes. It is evident that DFGAs yielded superior bounding boxes compared
to the baseline method. Specifically, DFGAs demonstrated a more accurate perception of
both foreground samples and background samples in these two experiment sets. DFGAs
not only enhanced foreground alignment across varied domains but also minimized the
emergence of negative samples.

(a) Baseline (b) DFGAs(Ours) (c) Baseline (d) DFGAs (Ours)

car person bicycle motorcycle bus truck

Figure 6. Comparative experiments results’ visualization on weather adaptation (Foggy Cityscapes)
and cross-camera adaptation (KITTI) between the baseline and DFGAs method. (a,b) represent the
results of the baseline and DFGAs method for weather adaptation, respectively; (c,d) are the results
of the baseline and DFGAs method for cross-camera adaptation, respectively.

5. Discussion

In this paper, we propose a method called DFGAs for achieving cross-domain object
detection in unsupervised domain adaptation scenarios. Previous approaches based on
the Faster R-CNN framework often utilize feature alignment strategies to mitigate cross-
domain data distribution discrepancies. Our research primarily focuses on addressing
the deficiencies in some feature alignment methods. With image-level feature alignment,
maximizing cross-domain information interaction while aligning global features become
necessary. PMA loss is proposed to measure feature similarity across multiple scales.
Another key focus of this paper is to mitigate the influence of background information
on feature alignment in instance-level features. The ATCA module adaptively adjusts
classification thresholds to flexibly categorize sample information. Our proposed feature
alignment method simplifies and enhances the alignment of source and target domain
feature distributions, with a more direct and explicit approach.

However, there is some potential future work worth exploring. Firstly, we plan to
investigate additional feature-level alignment techniques for further reducing cross-domain
data distribution disparities to improve unsupervised domain adaptative object detection
accuracy. Secondly, while our experiments were conducted on four sets of datasets, we
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are preparing to further broaden the applicability of our method on diverse datasets.
Thirdly, we aim to assess our method’s integration in real-world scenarios, targeting on-site
deployment for effective environmental object monitoring.

6. Conclusions

This paper introduces DFGAs, a novel approach to enhance object detection in unla-
beled target domain datasets. One of our contributions lies in proposing the PMA loss to
enhance the interaction of global features across domains, thereby reducing the distribution
gap between different domains. Additionally, we propose the use of adaptative thresholds
to classify foreground and background samples more flexibly for RPN features. Our ATCA
module improves the classifier’s accuracy in perceiving foreground information, aiding
the model in focusing on foreground details. We conducted extensive experiments and
ablation studies to validate the effectiveness of each proposed component. In future re-
search, we will continue to explore domain shift solutions in object detection, focusing on
cross-domain feature alignment among other approaches.
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