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Abstract: Mobile laser scanning (MLS) systems have become an important technology for collecting
and measuring road information for highway maintenance and reconstruction services. However, the
efficient and accurate extraction of unstructured road surfaces from MLS point cloud data collected
on highways is challenging. Specifically, the complex and unstructured characteristics of road sur-
veying point cloud data lead to traditional 3D point cloud segmentation. When traditional 3D point
cloud algorithms extract unstructured road surfaces, over-segmentation and under-segmentation
often occur, which affects efficiency and accuracy. To solve these problems, this study introduces
an enhanced road extraction method that integrates supervoxel and trajectory information into a
traditional region growing algorithm. The method involves two main steps: first, a supervoxel
data structure is applied to reconstruct the original MLS point cloud data, which diminishes the
calculation time of the point cloud feature vector and accelerates the merging speed of a similar
region; second, the trajectory information of the vehicle is used to optimize the seed selection strategy
of the regio growing algorithm, which improves the accuracy of road surface extraction. Finally, two
typical highway section tests (flat road and slope road) were conducted to validate the positioning
performance of the proposed algorithm in an MLS point cloud. The results show that, compared with
three kinds of traditional road surface segmentation algorithms, our method achieves an average
extraction recall and precision of 99.1% and 96.0%, and by calculating the recall and precision, an F1
score of 97.5% can be obtained to evaluate the performance of the proposed method, for both datasets.
Additionally, our method exhibits an average road surface extraction time that is 45.0%, 50.3%, and
55.8% faster than those of the other three automated segmentation algorithms.

Keywords: mobile laser scanning; point cloud; supervoxel; region growing; road surface

1. Introduction

Highways are used to realize rapid and timely interactions between multiple cities;
alleviating the traffic congestion and other problems within a city brings great convenience to
social production and residents’ living and gradually becomes the foundation and lifeline of
national economic development [1]. High-quality highway road surfaces can greatly reduce
the probability of traffic accidents, support economic development, and are considered the
core elements in the construction of intelligent city applications, such as high-precision maps,
high-precision navigation and positioning, intelligent transportation systems, etc. [2]. Road
surveying is the basis work of road designing, construction, and maintenance, particularly for
highways. The information and model of the road surface are the most important parts of
this type of regular work. The effective acquisition of road surface 3D information, geometric
parameters, and various technical indicators is quite important, especially for assessing the
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quality of highways, conducting road surface maintenance and repair, designing expansion
projects, etc. [3]. Traditional road surveying methods, such as total station, GNSS-RTK,
etc., usually involve a large amount of data calculation and processing before the collected
information can be converted into digital records; therefore, they heavily rely on various
professional testing equipment and on-site manual investigations. Moreover, these methods
are inefficient, costly, disruptive, pose safety hazards for personnel, and even cause potential
damage to road structures [4]. In addition, there is excessive manual intervention in the
detection process, which makes it difficult to ensure the objectivity and accuracy of the
evaluation results, and it is difficult to provide fast, efficient, and accurate data support for
large-scale highway maintenance tasks. Therefore, there is an urgent need for fast and accurate
measurement methods to replace traditional technologies and realize efficient and accurate
3D road information acquisition. With the emergence of laser scanning technology, three-
dimensional (3D) terrain data of road networks can be captured accurately and quickly [5].
This new measurement method can significantly improve the efficiency and accuracy of road
surface information collection, reduce traffic and personnel interference, and provide reliable
data support for road maintenance and management tasks.

Mobile laser scanning (MLS) integrates multiple sensors, including a 3D laser, the
Global Navigation Satellite System (GNSS), the inertial navigation system (INS), and
panoramic cameras, into a mobile or airborne platform. This integration allows for the
accurate and rapid acquisition of target information with features such as real-time capa-
bility, high precision, high density, non-contact operation, and automation [6]. Compared
with traditional surveying methods, MLS offers significant efficiency and cost advantages.
It has been widely applied in engineering surveying [7], intelligent driving [8,9], urban
planning [10], mobile robots [11], digital city construction [12], and various other fields.
The emergence of MLS has facilitated their extensive and effective use in road-related
applications, such as the 3D geometric reconstruction of roads [13], road surface damage
identification [14,15], road marking [16], and traffic sign extraction [17]. However, due to
the complexity and richness of most road scenes, MLS data collection can result in datasets
of up to 2 million points per second or approximately 62 GB/km [18]. Moreover, point
cloud data often exhibit characteristics such as an uneven density distribution and strong
non-structured patterns. Consequently, the accurate and efficient automated extraction of
road surfaces from MLS data remains a significant challenge.

2. Related Work

Currently, methods for detecting road surfaces from MLS point clouds can be roughly
divided into two categories: (1) extracting road surface point clouds based on the detected
curbs as boundaries and (2) directly extracting road surface point clouds based on road
surface geometric features.

In the first type, the extraction of road surface information is mainly based on the
geometric constraints of the MLS point cloud, which first detects the edge of the road,
and all points located within the edge of the road are extracted as road surface data. Yao
et al. [19] proposed a boundary recognition algorithm based on scan lines to extract the road
surface and detect the curb (or road boundary) by identifying sudden changes in slope or
elevation. However, this method has some difficulties when the number of MLS scan lines
changes or the quality of point cloud data is not high. Guan et al. [20] developed a method
based on the slope and elevation to extract road curbs and surfaces. This method forms
multiple cross-sectional profiles by connecting pairs of curb points to extract road edges.
However, it cannot accurately extract the road edges with significant curvature changes.
Wang et al. [21] proposed a method for curb extraction based on the local normal saliency.
They partitioned the road into overlapping segments and extracted dense curb points from
each segment. However, their experimental data were limited to flat urban roads, and
owing to the influence of curved trajectory data, their method could not fully extract the
road edges at T intersections. Cabo et al. [22] applied the concept of linear clouds to extract
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highway road surfaces automatically. However, to generate linear clouds from 3D data
points, their method requires strictly ordered point cloud data based on timestamps.

The second method for extracting road surface information is mostly based on the
statistical rules and semantic information of MLS point clouds. Balado et al. [23] proposed
a method for extracting road surfaces from MLS point cloud data by combining topological
and geometric information. However, their method is limited by the uneven and irregular
terrain of the road surfaces. Miyazaki et al. [24] used a line-based region growing method to
create road surfaces, assuming that most road surfaces are planar. Wu et al. [25] proposed a
step-wise method for off-ground point removal. First, the raw point clouds were vertically
partitioned along the trajectory of the vehicle. Subsequently the Random Sample Consensus
(RANSAC) method was employed for ground point extraction by determining the average
height of the ground points. Tran et al. [26] presented a voxel-based region growing
method for automatic road surface extraction from mobile laser scanning point clouds in
an expressway environment. However, these methods were designed for relatively flat
and simple road scenes. When dealing with complex highways with large-scale data and
significant elevation variations, these methods often suffer from low efficiency and poor
robustness when extracting road surfaces from MLS data.

Furthermore, it is worth mentioning that in recent years, with the rapid development of
deep learning and neural networks, many researchers have used them to study the semantic
classification of point clouds [27]. Some image-based deep learning methods are used for
point cloud classification, which mainly convert 3D point cloud data into 2D image data
through projection or direct conversion, extract image features, and finally use the correlation
between image data and point cloud data to complete the classification task. Such as Saovana
et al. [28] proposed Point cloud Classification based on image-based Instance Segmentation
(PCIS), to classify point clouds automatically; this method is based on two-dimensional digital
images from a daily work basis. Su et al. [29] proposed a Multi-view Convolutional Neural
Network (MVCNN) architecture to maximize the multi-view features of point clouds into
global descriptors that can be used to identify 3D shapes to complete point cloud classification.
Yang et al. [30] first used a network of relationships to leverage the interrelationships of a set
of views (region–region relationship or view–view relationship) and then aggregated these
views to classify point clouds. Moreover, there are other deep learning methods that use point-
based strategies to directly perform semantic segmentation on a point cloud and process and
manipulate the point cloud through the relationship between the kernel points and local points,
defined in the point cloud, to realize the feature extraction and learning of point cloud data.
Examples include Point Cloud Neural Networks (PointNet [31], PointNet++ [32]), Kernel Point
Convolution (KPConv) [33], RandLA-Net [34], and Dynamic Graph Convolutional Neural
Networks (DGCNNs) [35]. Most of these methods are point-based strategies that directly
use point clouds for feature extraction and have achieved promising results in relatively
straightforward and structured road extraction scenarios. However, while the accuracy has
been improved, a deep learning-based method requires a large sample set and time for training,
which reduces the efficiency of the road surface point cloud extraction [36]. Additionally, there
is a lack of relevant datasets and experiments established for proving the effectiveness and
robustness of these algorithms for the extraction of unstructured road surfaces in complex
scenarios. Among these approaches, Gao et al. [37] proposed a deep learning framework
for the extraction of off-highway drivable areas for the application of 3D point clouds in
autonomous driving. To reduce the need for the manual labeling of data when the neural
network processes data, they used weakly supervised or semi-supervised training methods
and successfully improved the efficiency of the algorithm. However, the road boundary was
not accurately segmented, and the robustness of the algorithm must be improved.

In summary, the above methods usually require the collection and processing of addi-
tional point cloud data information, such as the surface condition of the road, geometry
of the road, point cloud density, reflection intensity of the laser, and GPS time. Owing
to the large topographic fluctuations in China, the longitudinal elevation of an express-
way changes significantly. Therefore, the previously used method was not applicable.
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To overcome these limitations, a new method is proposed that combines a supervoxel
model, vehicle trajectory data, and region growing segmentation technology to improve
the robustness and efficiency of highway road surface extraction.

This study proposes a road surface extraction method based on a supervoxel-assisted
region growing algorithm to solve the aforementioned challenges, reduce data processing
complexity, and efficiently and accurately extract road surfaces from highway MLS point cloud
data. This method combines the supervoxel data model with region growing segmentation to
accelerate road surface extraction and optimize the quality and precision of road extraction
results. Subsequently, the proposed method was experimentally validated using measured
data from two typical highway scenarios: flat and sloped. The results are compared with the
extraction results of three other traditional segmentation algorithms: Euclidean clustering,
Random Sample Consensus (RANSAC), and traditional region growing algorithms.

The remainder of this study is structured as follows. Section 2 provides an overview of
the work related on road surface extraction with MLS point clouds. Section 3 describes the
proposed method for extracting road surfaces in detail. Section 4 describes the parameterization
and analysis of the proposed method. The results of the experiment and related discussions are
presented in Section 5. Section 6 concludes the study with a summary of the findings.

3. Materials and Methods

This method begins by utilizing the octree data structure to perform supervoxel
over-segmentation, and then reorganizes the original vehicle-mounted laser point cloud,
and transforms the processing from point-based to supervoxel-based. Next, within the
supervoxel segmented regions, the MLS trajectory data are used to extract the required
seed supervoxel for the region growing algorithm. The region growing algorithm then
utilizes constraints based on residuals, slopes, and curvatures to extract road surface point
clouds. Finally, the Alpha Shape algorithm was employed for the boundary extraction and
optimization of the extracted road point cloud.

This method can be summarized in the following three main steps: (1) building
a supervoxel model for point cloud data, (2) the extraction of road surfaces using an
improved region growing segmentation algorithm, and (3) optimizing road boundaries
using an Alpha Shape algorithm [38]. The overall technical process is illustrated in Figure 1.
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3.1. Data Denoising Based on Statistical Analysis

Due to the sensor and the complexity of the acquisition environment, MLS point
clouds inevitably have some noise. This can have a very large impact on the calculation of
the characteristics of local points, such as the calculation of surface normals or curvature
changes and can produce many unforeseen errors. Therefore, it is necessary to preprocess
the original point cloud before road surfaces extraction to remove obvious outliers and noise
values to then improve the efficiency and accuracy of the data processing. In this study,
a statistical filtering method [39] was used to achieve this purpose. A statistical analysis
was carried out on the neighborhood of each point in the collected original point cloud

data, and the distances between each point and their mean µ(µ = 1
n

i
∑

i=1
Di) and standard

deviation σ(σ =

√
1
n

i
∑

i=1
(Di − µ)2) were calculated; the standard deviation multiple is

std. Only two thresholds, m and std, need to be input in the algorithm implementation
process. When the average distance of a point near the m point is within the standard range
(µ− σ·std, µ+ σ·std), the point is retained, and the point is defined as an outlier point if it is
not within the range. Figure 2 shows the results of removing large-scale noise and outliers,
and it can be seen that statistical filtering has a good effect on removing large-scale noise
points. After removing noise and outliers, there are still some unrelated points in the point
cloud (such as moving objects), which significantly affect the voxel-based region growing
algorithm. Therefore, these were further removed in this study using CloudCompare [40]
software (Version 2.13).
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3.2. Supervoxel Model Construction

Supervoxelization: Original MLS point clouds collected using onboard LiDAR systems
are often noisy and unorganized. The amount of data and the density of the point cloud
data are reduced by reorganizing the original MLS point cloud into supervoxels, thereby
reducing computational time and storage costs while improving processing efficiency.
Supervoxels represent a collection of points designed to segment a point cloud into 3D
models with a certain level of connectivity and semantic consistency [41]. In this study,
we used the boundary-enhanced supervoxel segmentation algorithm proposed by Lin
et al. [42] to process the original MLS point cloud. This algorithm considers local infor-
mation and accurately reflects the boundary characteristics of objective objects during the
transformation of a point cloud dataset into supervoxel sets. The supervoxelization results
for the MLS point data are shown in Figure 3. Supervoxelization converts 3D discrete
point information into clustered information with defined geometric and spatial features,
providing the foundation for accurate and comprehensive road surface and road boundary
extraction in subsequent steps.
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3.3. Improved Region Growing Algorithm Based on Vehicle Trajectory Information
3.3.1. Trajectory Data Calculation

The point cloud data collected using the mobile laser scanning system, with coordi-
nates in the laser scanner coordinate system, are referred to as the laser scanning data. The
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data obtained from the GNSS/IMU (Global Navigation Satellite System/Inertial Measure-
ment Unit) integrated navigation system is referred to as POS (Position and Orientation
System) data. This study aimed to fuse laser scanning and POS data through a data process-
ing process to obtain coordinates in the Earth coordinate system. The specific process was
as follows. First, the differential positioning GNSS data were processed using a Kalman
filter to obtain the position and velocity information of the vehicle platform. Subsequently,
by combining the pose information from the IMU data, the navigation positioning error
was solved, and the error was input into the inertial navigation system to obtain the final
position and attitude information. Finally, after completing the POS data computation, the
obtained position and attitude information, along with the calibration information of the
laser scanner placement, were used to transform the point cloud coordinates into the Earth
coordinate system, and then the high-precision MLS trajectory data could be obtained. The
specific process is illustrated in Figure 4.
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3.3.2. Seed Supervoxel Selection

The improved seed selection method was used to extract seed supervoxels (Sseed) from
the supervoxel dataset, which are complete supervoxels on the road surface. The selection
of seed points is a crucial step in region growing algorithms. The region growing algorithm
segments the point cloud by continuously expanding outward from the selected initial seed
points based on the given criteria. The positions of the seed points directly affect the quality
of the segmentation results. In this study, the trajectory of the vehicle during data collection
using a mobile laser scanning system was utilized to extract seed supervoxels from the
road point cloud data after supervoxel segmentation. However, it should be noted that the
trajectory data collected using the mobile laser scanning system are not necessarily exactly
at the center of the road. Therefore, it was necessary to calculate the curvature residual for
the extracted candidate seed supervoxels and perform filtering to select the most suitable
seed supervoxels for region growing segmentation. If a seed supervoxel S0 is surrounded
by neighboring supervoxels (Si and Sj) belonging to the same segmentation region and the
curvature of S0 is smaller than that of Si and Sj, then S0 is more likely to be chosen as the
center of the cluster for the region growing algorithm.

The specific process of extracting seed supervoxels is as follows:

1. The vehicle’s trajectory data and the 3D coordinates of the point cloud are projected
onto a 2D plane (XOY) to determine the candidate seed supervoxel dataset {S∆}, as
shown in Figure 5.

2. The supervoxel with the largest number of points and located in the vehicle trajectory
data is selected as the seed supervoxel.
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3.3.3. Region Growing

The region growing segmentation method was employed using supervoxels as the
basic elements to extract the road surface point cloud. First, the geometric features and
surface characteristics were computed for each complete supervoxel, including normal
vectors and residuals. Because the complete road surface is the target of the segmentation
algorithm in this study, each supervoxel was assumed to represent a small patch of the road
surface, and all points within each complete supervoxel should approximately lie on a flat
plane. The normal vectors of each supervoxel were computed using Principal Component
Analysis (PCA) [43]. The normal vector is determined using the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix, M, as shown in Equation (1):

M =
1
k

n

∑
i=1

(pi − p)(pi − p)T (1)

where k is the number of points within the supervoxel, and p =

n
∑

i=1
pi

m is the center point
pi = (xi, yi, zi) of the supervoxel, also considered the centroid of the supervoxel.

The residual is defined as the root mean square of the perpendicular distance from
each point to the fitted surface, as shown in Equation (2):

r =

√√√√√ m
∑

i=1
d2

i

n
(2)

di =
|Axi + Byi + Czi + D|√

A2 + B2 + C2
(3)

where di is the orthogonal distance from each point pi to the fitted plane, which is defined

by the normal vector
→
Ni = (A, B, C) and centroid. D is a constant that represents the

intercept of the fitting plane.
Finally, the supervoxel dataset was iteratively clustered using the input threshold

values as constraints to complete the extraction of the road surface. During the extraction
process, as the road surface is typically smooth and continuous, starting from the first
extracted seed supervoxel, its adjacent supervoxels can be included in the current region if
they satisfy three conditions: 1⃝ deviation of the normal vectors, 2⃝ residual, and 3⃝ slope,
as shown in Equation (4):

ρ =

∣∣∣zSi − zSj

∣∣∣√(
xSi − xSj

)2
+
(

ySi − ySj

) × 100% (4)

where zSi and zSj is the elevation of adjacent supervoxels Si and Sj.

3.4. Road Boundary Optimization Based on Alpha Shape Algorithm

The road surface point cloud is generally extracted after the previous steps. However,
owing to the unstructured nature of point cloud data, some of the extracted road boundary
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points may be sparse and discontinuous. Additionally, occlusions caused by obstacles, such
as vehicles, during data acquisition can lead to interruptions in the road boundary, making
it necessary to determine continuous road edges. To achieve a complete extraction of the
road surface point cloud, this study employed an edge extraction algorithm based on the
characteristics of the road boundary points in highway scenarios. The goal was to extract
the road contours and then generate smooth boundaries through curve fitting.

1. After applying the region growing segmentation algorithm to the MLS point cloud,
there may still be some scattered points or fragments other than road points. These
points were traversed and removed based on the point threshold after clustering.

2. The Alpha Shape algorithm was used for boundary extraction because it has good
shape retention and a faster calculation speed when extracting point cloud road bound-
aries, and can realize a flexible description and a fast extraction and analysis of point
set geometry [37]. The point cloud was projected onto the XOY plane, and delay trian-
gulation was performed on the projected points. For any edge of the triangulation with
endpoints P and Q, two circles were drawn with O1 and O2 as the centers and radius
of α. The coordinates of O1 and O2 are shown in Equations (5) and (6), respectively:

XO1,O2 =
xp + xq

2
±

√√√√α2 −
(
∥a∥2

2

)2(
yp − yp

2

)
(5)

YO1,O2 =
yp + yq

2
±

√√√√α2 −
(
∥a∥2

2

)2(
xp − xp

2

)
(6)

where a is the vector composed of endpoints P and Q; α is the radius of circle; xp and
yp are the horizontal and vertical coordinates of the P point; and xq and yq are the
transverse and vertical coordinates of point Q. As shown in Figure 6, if at least one of
the circles does not contain any points from the point set, then the endpoints of that
edge are determined to be boundary points.

3. After extracting the road contours, it was necessary to perform a smoothing process
on the road boundaries. B-spline curves are a type of curve based on polynomial
equations that possess strong adaptability, where local point variations do not sig-
nificantly affect the overall shape of the boundary. They can effectively preserve the
local features of the road boundaries. Therefore, B-spline curves were adopted for
smoothing [44].
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3.5. Experimental Dataset

The MLS point cloud data used in this experiment were sourced from the research
project “Intelligent Extraction of Structured Features of Highway Surfaces Based on Mobile
Measurement Systems (2022KY09)” conducted by the Sixth Geological Brigade of the
Jiangsu Geological and Mineral Bureau. The data pertain to the G25 expressway section
from Lianyungang to Huai’an, with a mainline length of approximately 39.58 km. The data
included information about roads, fences, trees, power lines, low vegetation, vehicles, and
traffic signs, among other features. To validate the robustness and processing efficiency
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of the proposed method, we selected two typical scenarios from these data: a flat road
section and a sloped road section, both of which were approximately 300 m (Figure 7).
These datasets were used for the comparative analysis in this study.
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The data collection equipment used was a mobile laser scanning system that we assem-
bled ourselves based on the Huace AS-1300H measurement platform that we purchased
(Huace, Hangzhou, China). The system is shown in Figure 8. The parameters of the laser
scanning system and inertial navigation system are listed in Tables 1 and 2, respectively.
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Table 1. Parameter information of CTI AS-1300HL LIDAR.

Indicator Parameters Performance Specifications

Precision Horizontal: <0.05 mRMS
Vertical: <0.05 mRMS

Minimum ranging 5 m

Laser field of view The range of 0◦–330◦ is adjustable
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Table 1. Cont.

Indicator Parameters Performance Specifications

Inertial navigation update rate 200 Hz

Gyroscope bias stability <0.05◦/h

Gyroscope range ±490◦/s

Accelerometer range ±10 g

Post-processing attitude Roll/Pitch:0.005

accuracy Heading: 0.017

Post-processing position Horizontal: 0.01 m

accuracy Elevation: 0.02 m

Table 2. Parameter information of IMU-KVH1750IMU inertial navigation technology.

Indicator Parameters Performance Specifications

Gyro input range (max) ±490◦/s

Gyro bias stability (25 ◦C) ≤0.1◦/h(max)
≤0.05◦/h(typical)

Gyro scale factor (maximum input range, 25 ◦C) ≤50 ppm

Gyro angle random walk (25 ◦C) 0.012◦/
√

h
(≤0.7◦/h/

√
h)

Accelerometer range (max) ±10 g

Accelerometer bias stability
(constant temperature) <0.05 mg

Accelerometer velocity walks randomly ≤0.12 mg/
√

h(0.23 ft/s/
√

h)

The algorithm adopted in this study was independently developed and implemented
based on C++, and the experimental environment is shown in Table 3.

Table 3. Experimental operating environment.

Name Configuration

Processor AMD Ryzen 5 5600H (AMD, Santa Clara, CA, USA)

Graphics card NVIDIA GeForce GTX 1650 (NVIDIA, Santa Clara, CA, USA)

Run memory 8 GB

4. Parameter Setting and Analysis

To evaluate the accuracy of the proposed method, the obtained extraction results were
compared with manually extracted road surface results, and the following three metrics
(Equations (7)–(9)) were introduced to assess the quality of the extraction results:

Recall =
TP

TP + FN
× 100% (7)

Precision =
TP

TP + FP
× 100% (8)

F1= 2 × Recall × Precision
Recall + Precision

× 100% (9)

where TP is the number of correctly detected road surface points; FN is the number of road
surface points that were not detected; and FP represents the number of incorrectly detected
road surface points.
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4.1. Supervoxel Resolution

Supervoxel resolution refers to the spatial resolution used in the process of supervoxel
segmentation to divide a point cloud into supervoxels. Generally, a higher supervoxel
resolution can provide more accurate detailed information, but it also increases the compu-
tational burden and storage requirements. In the context of processing highway point cloud
data acquired using a mobile laser scanning system, the common range for supervoxel
resolution is typically between 0.1 and 0.5 m. In this chapter, we describe and discuss the
series of experiments conducted to select the appropriate supervoxel resolution size.

Based on the results shown in Figure 9, we observed that on flat roads, there was no
significant difference in the segmentation accuracy when the supervoxel resolution size
increased from 0.1 m to 0.2 m. However, when the supervoxel size exceeded 0.2 m, the
segmentation accuracy significantly decreased. For instance, with a voxel size of 0.3 m,
the recall rate and F1 score decreased significantly to 94.3% and 94.9%, respectively (as
shown in Figure 9a). This decrease in accuracy was attributed to the inclusion of a large
number of non-road point clouds because of the choice of a larger supervoxel resolution
size. Additionally, for sloped road surfaces, a larger supervoxel resolution size resulted in
lower accuracy.
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Furthermore, Figure 10 illustrates the computational time for different supervoxel
resolution sizes in the two experimental scenarios. As shown in figure, compared to using
a 0.1 m supervoxel resolution model, the processing time was significantly reduced when
using a 0.2 m or 0.3 m supervoxel resolution model. For both scenes, the computational time
with a 0.2 m supervoxel resolution was 3–4 times faster than that with a 0.1 m supervoxel
resolution, while the accuracy did not significantly change.
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Taking both accuracy and processing efficiency into consideration, we selected 0.2 m
as the supervoxel resolution size for our research.
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4.2. Slope Threshold

The slope threshold was determined based on the maximum values of the road’s cross
and longitudinal slopes. Typically, highway cross slopes range from 2.5% to 4%; therefore,
this study focused on four different slope threshold values. From Figure 11a, it can be
observed that the slope threshold has a minimal impact on the accuracy of flat road surfaces.
Similar results were obtained for sloped road surfaces when the slope threshold exceeded
2.5% (Figure 11b). However, the accuracy is poor when the slope threshold is 2% because
of the excessively large longitudinal slopes, causing some road points to not be accurately
identified. Therefore, to satisfy the threshold requirements for both experimental scenarios,
in this study, 5% was chosen.
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Figure 11. Accuracy analysis of four different slope threshold values: (a) Site 1; (b) Site 2.

4.3. Angle Threshold

Selecting an appropriate angle threshold is a crucial step in the region growing seg-
mentation of highway road surface point clouds. In this study, the angle threshold was
determined based on two adjacent supervoxels, denoted as Si and Sj, respectively. First, the
normal vectors Ni and Nj between supervoxels Si and Sj were computed using Principal
Component Analysis (PCA). Then, the angle (arccos(Ni·Nj)× 180

π ) between these two nor-
mal vectors was calculated to check whether it satisfied the angle threshold requirement. If
the angle was less than or equal to the angle threshold, the two supervoxels were merged
into the same region. Otherwise, if the angle was greater than the angle threshold, this
indicates that they did not belong to the same region, and the calculation continued with
other neighboring supervoxels.

There are two main cases of adjacent supervoxels on highway road surfaces. In one
case, both supervoxels are on the same side of the road, resulting in a small angle or even
an angle close to zero between their normal vectors. The other case occurs when the two
supervoxels are on opposite sides of the road center. In this study, we conducted multiple
experiments and adjustments to the angle threshold to select an appropriate value that met
the segmentation requirements.

From Figure 12a, it can be observed that when the angle threshold varies from 2◦

to 5◦, there is a slight variation in the accuracy for Site 1. This is because, with a smaller
angle threshold, the segmentation precision improves in terms of details, but it may also
lead to over-segmentation and noise generation. Similar results were obtained at Site 2
(Figure 12b).
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4.4. Residual Threshold

Experimentation and adjustments are commonly used to determine the residual
thresholds. The residual threshold was calculated based on the noise level of the road
surface sample data. To estimate this threshold, we randomly selected 50 representative
supervoxels that represented the road surface. The noise level in each supervoxel was
the square root of the variance in the orthogonal distances from all points within the
supervoxels to the fitting plane.

In this study, we used different residual thresholds for the region growing segmen-
tation and observed the segmentation results. From Figure 13a, it can be observed that
for Site 1, the change in accuracy was not significant when the residual varies from 0.01 to
0.05 m. This is because Site 1 data points have a relatively low noise level. For the slope
road surface (Figure 13b), there is no difference in accuracy when the residual threshold
increases from 0.03 to 0.05 m. However, when the residual threshold decreases from 0.03 m
to 0.01 m, the accuracy significantly decreases. This lower accuracy is due to the higher
noise level in Site 2 data. After experimenting and discussing different residual thresholds,
we finally selected 0.05 m as the residual threshold for this study.
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Finally, the thresholds and input parameters of the road surfaces of the flat and sloped
road datasets were extracted experimentally, as shown in Table 4.

Table 4. Experimental parameters.

Parameters Supervoxel
Resolution/m

Slope
Threshold/%

Angle
Threshold/◦

Residual
Threshold/m

Flat road dataset 0.2 5 5 0.2
Sloped road dataset 0.2 5 5 0.2
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5. Results and Discussion
5.1. Results

The traditional 3D point cloud segmentation algorithm is primarily based on strict
artificial design characteristics formulated from the geometric constraints and statistical
rules of the point cloud. For example, the Euclidean clustering algorithm calculates the
Euclidean distance between point clouds, and then the point with the smallest distance is
divided into a category until the Euclidean distance between any two clusters is greater than
a pre-set threshold [45]. The RANSAC algorithm is a model-based method of point cloud
segmentation; however, the algorithm must manually define or select a model, usually a
plane, sphere, or other geometry that can be represented by algebraic formulas [46]. The
region growth algorithm is a classic point cloud segmentation method that measures the
similarity between point clouds by combining features between N points or N area units
and merging them [47].

In this study, four different point cloud segmentation algorithms, namely Euclidean
clustering-based segmentation, RANSAC-based segmentation, traditional region growing-
based segmentation, and the improved region growing algorithm, were compared in
two typical highway scenarios. The aim was to effectively validate the efficiency, accu-
racy, and robustness of the proposed algorithm in automatically extracting road surfaces
from MLS data.

By comparing the road surface extraction results obtained from these four segmenta-
tion algorithms, this study aimed to assess the performance of the proposed method and
its ability to handle unstructured road surfaces in MLS point cloud data.

5.1.1. Flat Road Dataset

First, we applied the supervoxel segmentation method to perform coarse segmentation
on the MLS point cloud data of a flat road. Then, using supervoxels as segmentation
primitives, we employed a region growing algorithm for iterative clustering to extract the
road surface point cloud. Finally, we compared the extracted road surface point cloud with
the results obtained from the other three segmentation algorithms, as shown in Figure 14.
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In comparing the results in Figure 14, it can be visually observed that all four methods
achieved good segmentation results for the flat road scenario and successfully extracted
the road surface. However, as shown in Figure 14d, the extracted road surface exhibits a
clearer and more complete structure. In Figure 14a, the edges of the extracted road result
are relatively rough, whereas in Figure 14b, the extracted road surface is incomplete. In
Figure 14c, the result is relatively continuous, but there are instances of over-segmentation
at the edges of the road, leading to insufficient details.
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5.1.2. Sloped Road Dataset

First, the supervoxel segmentation method was used to over-segment an MLS point
cloud data with slopes. Then, based on the super-voxels, the region growing algorithm was
applied for iterative clustering to extract the road surface point cloud. Finally, the extracted
road surface results were compared with those obtained using the other three segmentation
algorithms, as shown in Figure 15. It should be noted that the blank holes in the road parts
of figures are errors caused by occlusion during the data acquisition conducted by the
vehicle-mounted laser scanning system.
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From the comparison of the extraction results in Figure 15, it is evident that for a
road scene with slopes, the extracted road surface region in Figure 15d is more complete
and clearer compared with the other three segmentation algorithms. Figure 15a shows
under-segmentation and discontinuity issues in the boundary parts of the extracted road
surface, whereas Figure 15b shows under-segmentation and rough edges. The extrac-
tion result in Figure 15c shows a large number of over-segmentation phenomena on the
road surface. Furthermore, to verify the time efficiency differences between the proposed
method and comparative methods, the authors conducted experiments under the same
conditions and recorded the time required for target information segmentation and clus-
tering using different algorithms. The results are presented in Tables 5 and 6, respectively.
Compared to the other three algorithms, the proposed method also demonstrates improved
computational efficiency.

Table 5. Comparison of four segmentation algorithms for MLS point cloud data in flat road scenario.

Algorithms Number of Point
Clouds Supervoxelization/s Partition/s Total Time/s

Euclidean clustering-based segmentation 3,975,648 / 253 253
RANSAC-based segmentation 3,975,648 / 284 284

Traditional region growing-based
segmentation 3,975,648 / 307 307

Improved region growing algorithm 3,975,648 18 130 148
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Table 6. Comparison of four segmentation algorithms for MLS point cloud data in sloped road scene.

Algorithms Number of Point
Clouds Supervoxelization/s Partition/s Total Time/s

Euclidean clustering-based segmentation 4,815,042 / 315 315
RANSAC-based segmentation 4,815,042 / 344 344

Traditional region growing-based
segmentation 4,815,042 / 399 399

Improved region growing algorithm 4,815,042 23 141 164

5.2. Discussion

Combined with the above experimental results, it can be concluded that the effect
of the Euclidean clustering algorithm is highly dependent on the design of the distance
threshold, the distribution of the MLS point cloud data is uneven and unstructured, and the
problem of under-segmentation often exists in the application of road surfaces extraction.
The MLS point cloud data are numerous, and the spatial distribution is extremely irregular,
which makes it impossible to segment the road surface extraction using RANSAC. The
accuracy of the traditional regional growth algorithm depends on the growth standard
and location of the seeds, which is computationally expensive and easily causes over-
segmentation. The method proposed in this paper enables the road surface to be extracted
completely, which greatly shortens the processing time and improves the efficiency. It can
be observed from Table 7 that the proposed method achieved over 95% in all three quality
evaluation metrics for the road surface extraction in both scenarios. This indicates that the
vast majority of the roads were correctly extracted, and the results closely resemble the
manually collected road surface data.

Table 7. Accuracy of classification results on two experimental datasets.

Experimental
Scenarios

Road
Surface Points

Detected Road
Surface Points TP FN FP Recall/% Precision/% F1/%

Flat road 3,483,979 3,576,981 3,470,824 13,155 106,157 99.6 97.0 98.3
Sloped road 4,304,106 4,468,155 4,242,854 61,252 225,301 98.5 94.9 96.7

Average 99.1 96.0 97.5

In conclusion, the experimental analysis of MLS point cloud data in two highway
scenarios demonstrated that the combination of supervoxel segmentation and improved
regional growth segmentation algorithm performs well in highway road surface extraction.
Not only does it exhibit high accuracy, but it also outperforms other automated extraction
algorithms in terms of efficiency. In addition, the proposed method successfully extracted
precise road surface point cloud data in both flat and undulating road scenarios, proving its
robustness across different structural data applications. Therefore, the proposed approach
has advantages in terms of road surface extraction accuracy and algorithm efficiency.

5.3. Road Boundary Optimization Results

During the boundary extraction process, the key aspect of the Alpha Shape algorithm
is determining the value of the radius. In this study, the value of α was set to 6, based
on the characteristics of the highway road point cloud. An allowable error of 0.004 was
considered. The extracted boundary results are shown in Figure 16.
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It can be observed from Figure 16 that the extracted road boundary has a complete and
clear structure, providing a reliable foundation for the subsequent output of standardized
road surface results.

6. Conclusions

To solve the problems of the low accuracy and efficiency of the automatic extraction of
road surfaces from MLS point cloud data when the road scene is complex, in this study, we
proposed an improved region growing method based on supervoxel and vehicle trajectory
data to automatically extract the road surface using MLS point cloud data with structured or
unstructured patterns. From the above discussion, we can draw the following conclusions:

1. In order to solve the problems of redundant and unstructured MLS point cloud
data, in this study, we reorganized the original scattered point cloud data through
supervoxelization without changing their characteristics. The optimization of this
data structure allows for a better differentiation of boundaries between different
objects, significantly improving the quality of the target extraction and producing a
more complete road surface.

2. To address the issue of low accuracy caused by the difficulty in selecting seed points
on a road surface extracted using the region growing segmentation algorithm, the
proposed algorithm combines the trajectory data of a mobile laser scanning system to
enhance the selection strategy of seed voxels in the regional growth algorithm. This
integration ensures a high-precision extraction of the road surface.

3. The neighborhood definition based on adjacent supervoxels was used in this study to
facilitate the calculations of the Euclidean distance and normal vectors and to reduce
the need for a time-consuming K-D tree nearest neighbor search for initial point data.
This method can quickly and efficiently identify adjacent supervoxels, which can
significantly improve the computational efficiency.

The experimental results demonstrate that the proposed method achieves a high
performance in extracting road surfaces from MLS point cloud data, with an average
extraction completeness, accuracy, and quality of 99.1%, 96.0%, and 97.5%, respectively, for
both flat and sloped road datasets. In addition, the method utilizes only the xyz coordinates
of the point cloud, making it applicable to other datasets.

In conclusion, this study provides a good method for infrastructure management
departments to monitor and evaluate road surface quality and provides key support for
the further exploration of road 3D information processing applications and related engi-
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neering construction. Moreover, with the development of autonomous driving, intelligent
driving, and other technologies, high-resolution 3D maps will become the main source of
information support, and excellent MLS point cloud processing technology can provide the
necessary navigation data for dynamic autonomous vehicles.

The results presented herein are promising. However, the final conclusions regarding
the absolute accuracy of the proposed algorithm and its suitability for road applications
can be drawn only from extensive tests on ground realities. The authors plan to publish
the results of these tests in subsequent studies. At the same time, we are also verifying
some methods to solve highway classification on the market, for example, the Pointly.AI
point cloud classifier was specially designed for highway classification and has a high
degree of automation. However, this kind of solution needs to ensure the accuracy of the
extraction through certain classification training, and on the other hand, it also lacks a
detailed evaluation of the performance of the solution, such as in terms of the accuracy,
recall rate, and other indicators, making it difficult for users to evaluate its applicability
and effect in specific practical scenarios.

The next research goal of this research is to further explore the application of MLS
point cloud data in high-precision maps and optimize the calculation speed of the algorithm
to meet the positioning and safety requirements of vehicles while driving.
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