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Abstract: The possibility of the differentiation of glioblastoma from traumatic brain injury through
blood serum analysis by terahertz time-domain spectroscopy and machine learning was studied using
a small animal model. Samples of a culture medium and a U87 human glioblastoma cell suspension
in the culture medium were injected into the subcortical brain structures of groups of mice referred to
as the culture medium injection groups and glioblastoma groups, accordingly. Blood serum samples
were collected in the first, second, and third weeks after the injection, and their terahertz transmission
spectra were measured. The injection caused acute inflammation in the brain during the first week, so
the culture medium injection group in the first week of the experiment corresponded to a traumatic
brain injury state. In the third week of the experiment, acute inflammation practically disappeared in
the culture medium injection groups. At the same time, the glioblastoma group subjected to a U87
human glioblastoma cell injection had the largest tumor size. The THz spectra were analyzed using
two dimensionality reduction algorithms (principal component analysis and t-distributed Stochastic
Neighbor Embedding) and three classification algorithms (Support Vector Machine, Random Forest,
and Extreme Gradient Boosting Machine). Constructed prediction data models were verified using
10-fold cross-validation, the receiver operational characteristic curve, and a corresponding area under
the curve analysis. The proposed machine learning pipeline allowed for distinguishing the traumatic
brain injury group from the glioblastoma group with 95% sensitivity, 100% specificity, and 97%
accuracy with the Extreme Gradient Boosting Machine. The most informative features for these
groups’ differentiation were 0.37, 0.40, 0.55, 0.60, 0.70, and 0.90 THz. Thus, an analysis of mouse
blood serum using terahertz time-domain spectroscopy and machine learning makes it possible to
differentiate glioblastoma from traumatic brain injury.

Keywords: glioblastoma; traumatic brain injury; liquid optical biopsy; blood serum; terahertz
time-domain spectroscopy; machine learning; informative features extraction

1. Introduction

Brain tumors are fast-progressing and hard to detect at early stages [1]. Glioblastoma
multiform (GBM) is a brain tumor with a poor prognosis owing to the absence of specific
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risk factors [2,3]. GBM is an aggressive and undifferentiated type of malignant tissue,
known as grade IV astrocytoma by the World Health Organization [4]. To diagnose
GBM, medical imaging methods are usually used, such as Magnetic Resonance Imaging
(MRI) [5,6], computer tomography (CT) [7], and positron emission tomography (PET) [8].
However, these methods are expensive and time-consuming. This does not allow for using
them for screening tests to provide early GBM detection. Sometimes, a procedure called
a tissue biopsy is conducted before treatment begins [9,10]. Tissue is cut through a small
hole made in the skull using a thin needle. This procedure can cause traumatic brain injury
(TBI), lead to inflammation, and accelerate tumor growth. Also, there is a suggestion that
TBI may promote the development of GBM [11]. Therefore, differential and non-invasive
diagnoses of glioblastoma and traumatic brain injury are of huge practical importance.

Liquid biopsy based on analyses of body fluids is more preferable compared to tis-
sue biopsy for early cancer diagnosis, including that of GBM [12]. Modern studies are
aimed at tumor-associated molecular pathway investigations in body fluids [13,14]. Liquid
chromatography with mass spectrometry (LC-MS) [15–17] and nuclear magnetic reso-
nance (NMR) [18,19] methods are used to discover GBM molecular markers in liquid
samples. GC-MS was used to measure the level of 2-hydroxyglutaric acid enantiomers in
the blood serum, which are mutated isocitrate dehydrogenase proteins [16]. LC-MS com-
bined with machine learning was used to study perturbations of the metabolic pathways
of cell proliferation, regulation, survival, differentiation, and angiogenesis during glioma
development [20]. NMR complements the methods mentioned above by studying the
blood plasma and brain tissues [18,19]. But these techniques have significant drawbacks,
such as timely intraoperative analysis due to complex preparation procedures, along with
a long test time.

Optical spectroscopy methods are easier to use for biological fluid content analy-
sis. Terahertz time-domain (THz-TDS) [21,22], infrared (IR) [23–28], and Raman spectro-
scopies [29–32] were used for GBM early diagnostics through the discovery of specific
spectral patterns in body fluids. THz-TDS is based on measurements of the electric field
of femtosecond THz pulses transmitted through a sample. THz-TDS provides the pos-
sibility of measuring the medium refractive index n and absorption coefficient α, hence,
determining the complex dielectric permittivity of the biological sample in a single spectral
scan in a broad frequency range [33–36]. THz spectra of body fluids and tissues do not
contain resonance peaks, because many molecule absorption spectral peaks overlap in this
spectral range [35,37,38]. Therefore, THz-TDS cannot provide detailed information about a
sample’s chemical content, but the total metabolic profiles of samples from healthy and
ill people can be differentiated using a combination of THz-TDS and machine learning
(ML) methods [22,38]. One of the exceptions to this is the water component, because it
has a rich THz absorption spectrum [39,40] that opens up possibilities for the operative
determination of malignant tumor boundaries due to the high water content there [41–43].
THz-TDS allows for distinguishing free and bound water, as the absorption of free water
dominates by an order of magnitude over the absorption of bound water in the range of
0.1–1.0 THz [44–46].

Usually, in biomedical studies, spectral data dimensionality is essentially larger than
the dataset volume [47]. In this case, data are highly correlated, which makes using
standard methods of spectra decomposition like multivariate curve resolution inefficient.
A solution is to use parametric or nonparametric dimensionality reduction methods (DRMs).
Parametric DRMs use an explicit association between the initial feature space and the
new space of less dimensionality, but they do not work well when the data form non-
hyperspherical clusters. Nonparametric DRMs effectively reduce the dimensionality of
data of any nature, but they cannot be applied to new data, that is, they can only be used
retrospectively. DRMs also provide informative feature selection. Table 1 describes the most
popular DRMs. The computational complexity of these algorithms depends on N—the
number of input data points. Here, O(N) means that the number of required computational
operations (like addition or multiplication, etc.) is of the N order.
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Table 1. Comparison of DRMs.

Algorithm Advantages Disadvantages Computational
Complexity

Principal Component
Analysis (PCA) [48]

Maximum dispersion
with low noise sensitivity,

parametric method

Only good for linearly
separable data O(N3)

Linear Discriminant
Analysis (LDA) [49]

Maximum class
separation,

parametric method

Suffers from class
singularity problems O(N3)

Kernel-PCA [50]

It can be used for groups’
nonlinear separation in

the feature space,
parametric method

There is no rule for
choosing the optimal

kernel and its parameters
O(N3)

t-distributed Stochastic
Neighbor Embedding

(t-SNE) [51]

t-SNE preserves
local structure

Works well for only
2–3 output variables,

nonparametric method
O(N2)

Isomap [52]
This method maintains

pair-wise distances
between points

Nonparametric method O(2N3)

According to the literature, the most useful DRMs are PCA and t-SNE [48,51]. The PCA
algorithm reduces the number of variables in the dataset, but keeps as much information
as possible. It is achieved by finding a set of new orthogonal variables and ranking them
by the amount of variance they explain. Then, the number of reduced variables is chosen,
according to a user-defined value of the explained variance. Below, the analysis is limited
by 10 principal components to have an ability for data spatial distribution visualization.
The t-SNE explores similarities between data points in a feature space using the joint
probabilities of two data points and selecting others as their neighbors, and then tries
to find the best mapping of these points, preserving the original feature similarities in
a low-dimensional space. Essentially, t-SNE constructs new metrics depending on the
input data.

Usually, the best results of PCA application are achieved with preliminary data stan-
dardization by subtracting the mean and dividing by the standard deviation. This pre-
processing step is useful when data have a high variability that affects new axes calculations
in PCA. The t-SNE algorithm considers the distances between points in the original space, so
any transformations may cause incorrect interpretations. But t-SNE is sensitive to the choice
of metrics. Usually, cosine metrics provide a better performance for a high-dimensional
feature space.

At the stage of data modeling, supervised or unsupervised ML methods can be used. The
primary criterion for choosing an ML method in the current research was explainability—an
explicit relationship between input features and an output data model [53]. Unsupervised
ML algorithms based on using distance metrics between data points in hyperspace usually
provide unsatisfactory results, while the results of applying hierarchical, density-based
techniques are hard to explain [54]. A general rule for ML methods is that the higher
complexity of the model, the more difficult interpretation is.

From the point of view explainability, supervised ML (SML) algorithms can be roughly
classified into “white box” (has intrinsic tool for interpretation) and “black box” (requires
an external tool for interpretation) [55] ones. “White box” methods with embedded feature
selection functions are preferable because of their good computation performance and
the stability of their results [56]. They include methods such as linear kernel Support
Vector Machines (SVM), decision trees (DT), Random Forest (RF), and variants of the
Extreme Gradient Boosting Machine (XGBoost) constructed from DTs [57]. SVMs are based
on finding a hyperplane, which optimally separates the data points of two classes [58].
Both RF- and DT-based XGBoost were proven to be reliable techniques for constructing
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explainable data models for glioma diagnostics [31]. “Black box” methods, like deep
neural networks, have a limited choice for interpretability analyses. The SHapley Additive
exPlanations (SHAP) technique is one of the most renowned. SHAP is based on a solid
theoretical base, but requires intensive computations as the cardinality of the data grows
(except for tree-based models). The usage of RF, XGBoost, and linear kernel SVMs solves
the problem of computational cost and a provides robust interpretability analysis.

Various combinations of DRMs, ML, and feature selection methods form an ML
pipeline [20]. The estimation of the efficiency of a created prediction data model is usually
conducted using cross-validation methods. For two-class classification tasks, the results
of the cross-validation step implementation are often presented in terms of the sensitivity,
specificity, and accuracy metrics acceptable for a balanced dataset. They provide a visual
comparison of various data models (mathematical formulas are provided in Supplementary
Table S1). For a deeper data model efficiency analysis, a receiver operational characteristic
(ROC) curve and corresponding area under the curve (AUC) method are preferable [59].
A ROC curve is a graph plotting the proportion of observations correctly predicted to be
positive in all predicted to be positive ones versus the proportion of observations incorrectly
predicted to be positive in all predicted to be negative ones. The definition of the ROC
curve is as follows: a plot of the False Positive Rate (FPR, x-axis) versus the True Positive
Rate (TPR, y-axis). The TPR is a probability of obtaining a positive result in the test when
it is an actual positive. The FPR is the probability of obtaining a positive result in the test
when it is actually negative. If a classifier gives the probabilistic score of prediction, a
curve can be constructed. AUC is a quantitative measure of classifier performance. AUC
values, which are close to 1 or 0, correspond to accuracy, where 0.5 is equivalent to guessing.
In general, an AUC of 0.5 suggests no discrimination, 0.7 to 0.8 is acceptable, 0.8 to 0.9
is excellent, and more than 0.9 is outstanding. ROC-AUC provides easily interpretable
visual metrics of binary classifier performance, however, it the drawback of underrating
specificity. As many authors report, ROC-AUC is convenient for the comparison of several
classifiers. For more precise estimates, sensitivity, specificity, and accuracy should be
calculated along with ROC-AUC. A full description of the binary classifier performance
contains the confusion matrix, but it has four different parameters, and it is hard to compare
all of them simultaneously.

A common animal model for studying brain tumors is the orthotopic transplantation
of glioblastoma cells into the mouse brain [60,61]. After the injection of tumor cells into
the subcortical brain structures, rapid glioma growth occurs, resulting in the destruction
of neurons, compression of individual brain structures, and deep irreversible lesions [62].
It has recently been shown that the injection itself can be considered as a traumatic brain
injury (TBI) [63]. It is necessary to differentiate metabolic disorders in the mouse brain
caused by TBI and GBM. The dynamics of nine neuro-metabolites in the mouse brain
after a culture medium injection with 1H magnetic resonance spectroscopy (MRS) were
studied in vivo. The levels of these neuro-metabolites in the first week after intracranial
injection were analogous to brain trauma ones and returned to normal values by 21 days
after injection [64].

The orthotopic xenotransplantation of U87 human glioblastoma cells (GBM groups)
into immunodeficient mice was analyzed [58,61,65]. The dynamics of U87 glioblastoma
development were assessed by the growth of the tumor, the size of which increased 34 times
from the 7th day to the 21st day of the experiment and amounted to 89.6 mm3 [58]. The
experiment design included an analysis of serum samples collected on the 7th day (the first
group), on the 14th day (the second group), and on the 21st day (the third group) after the
U87 cells’ injection, and three respective control groups with a culture medium injection
(CMI groups) were used. The CMI and GBM groups were compared for each week of the
experiment. It was shown that GBM development in the mouse brain can be effectively
studied via a blood serum spectral analysis by THz-TDS. Still, differences discovered
between the informative frequencies for the separation of the first, second, and third groups
(GBM versus CMI) were not properly explained.
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Our hypothesis is that the main reason for this was the inflammatory processes in brain
tissues arising as TBI at the injection site after the culture medium or U87 cells’ injection
in the first week of the experiment. To verify this hypothesis, the following analysis of
the experimental data was suggested in this paper. First, the homogeneity of the groups
on the 7th, the 14th, and the 21st days after CMI was checked. Second, if there was a
difference between these groups, then the third CMI group would be considered as mice
with a healthy brain, while the first and the second CMI groups corresponded to TBI. Their
comparison with the third CMI group allowed for extracting the informative features of TBI.
Then, the difference between traumatic brain injury and glioblastoma could be found by
comparing the first CMI group (associated with TBI) and the third GBM group (the 21st day
after U87 human glioblastoma cells’ injection). So, the main objective of this paper was
differentiation between traumatic brain injury and glioblastoma through a blood serum
analysis by THz-TDS and machine learning methods.

An illustration of the idea of our study is shown in Figure 1a. A list of corresponding
ML models is given in Figure 1b. Models 1–3 were used to verify the homogeneity of the
CMI groups, and Model 4 was used to test the separation between the TBI and GBM groups.
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area, the healthy state. Arrow means comparison of groups for TBI and GBM differentiation. List of
ML binary models under study (b).

Contrary to our previous work, the homogeneity of the CMI groups was tested by the
unsupervised ML methods to prove that effect of CMI is detectable by THz spectroscopy.
Both pre-processing and ML hyperparameters were optimized to achieve robust models.
The effects of PCA and t-SNE parameters on an exploratory analysis of the THz data were
revealed. Finally, the informative THz sub-bands allowing for distinguishing the CMI and
GBM groups were selected.
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This paper is structured as follows: Section 1 describes the known methods for GBM
diagnostics, indicates the role of traumatic brain injury in GBM development, describes
preliminary studies, sets the research problem, and provides an experimental design.
Section 2 contains a description of the experiment, the characteristics of the animals, a
description of the THz spectrometer, and the measurement techniques. These were the ML
methods used below. Some additional information for this section is in the Supplementary
Materials (Section S1. Experiment, Tables S1 and S2). Section 3 describes the results of the
study. Some of the results are presented in the Supplementary Materials (Figures S1–S4).
The discussion and concluding remarks are in Sections 4 and 5, accordingly.

2. Materials and Methods
2.1. Samples

The study was carried out using specific-pathogen-free male SCID mice aged 6–7 weeks.
The Inter-institutional Commission on Biological Ethics of the Institute of Cytology and
Genetics, Siberian Branch of the Russian Academy of Sciences granted permission for the
study (Permission #78, 16 April 2021) in accordance with EU Directive 2010/63/EU and
the ARRIVE 2.0 recommendations. The mice were maintained under controlled conditions,
namely, temperature, 22–26 ◦C; relative humidity, 30–50%; and 12/12 light/dark periods
with dawn at 02:00 [61,64]. A model of experimental glioblastoma was implemented, in
which a cell suspension (500,000 U87 MG cells per animal) in the culture medium (DMEM\F-
12, Thermo Fisher Scientific, Waltham, MA, USA) with a 5 µL volume was introduced
into the subcortical brain structure through a hole in the animal’s cranium [61,64]. These
mice are referred to as the GBM groups. The mice corresponding to the CMI groups
were injected in a similar manner with 5 µL of the culture medium. Intravital MRS was
performed on the anesthetized animals before surgery and on days 7, 14, and 21 after
the injection [64]. The tumor size measurements and neuro-metabolites analysis were
performed using a horizontal 11.7 Tesla MRI tomograph (Biospec 117/16; Bruker, Billerica,
MA, USA) [58,61,64]. Additional details about the experimental design are presented in
the Supplementary Materials.

On the 7th, 14th, and 21st days after the injection, the mice were decapitated, blood
samples were collected, and then centrifuged for 15 min at 1000× g. Next, the serum
was placed in individual tubes and frozen at −80 ◦C. Before spectral measurements, the
serum samples were defrosted. The numbers of collected serum samples in each group are
presented in Table 2.

Table 2. Numbers of blood serum samples in each group *.

Day after Injection The 7-th Day
Group 1

The 14-th Day
Group 2

The 21-st Day
Group 3

Number of GBM samples 5 10 7
Number of CMI samples 5 10 10

* Group 1 includes serum samples collected on the 7th day, group 2, on the 14th day, and group 3, on the 21st day
after injection, respectively.

2.2. THz Spectroscopy

Spectral measurements were performed in the 0.3–1.7 THz range using a THz TDS
spectrometer T-SPEC (EKSPLA, Vilnius, Lithuania). This has a spectral resolution of 10 GHz,
two delay lines, fast and slow, to provide real-time data acquisition with a 10 spectra/s
speed, and a dynamic range of >90 dB at 0.4 THz [22,58]. All measurements were carried
out at a temperature of 21 ± 1 ◦C. Specially designed disposable cuvettes were produced
from Watson material (Bestfilament, Tomsk, Russia) using a Designer X PRO 3D printer
(PICASO 3D, Moscow, Russia) [58,66]. This material has an acceptable transparency in the
THz spectral range [67]. The thickness of the cuvette internal cavity was 0.5 mm. In the
THz-TDS spectrometer, the THz wave was focused onto the cuvette center using parabolic
mirrors (see Figure 2). A reference signal was recorded with an empty cuvette. Then,
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without changing the position, the cuvette was filled with a serum sample (50 µL volume)
using an automatic dispenser. An individual cuvette and dispenser tip were used for each
sample analysis. The THz spectra measurement of a sample was conducted in six spatial
points evenly distributed on the cuvette surface within a mesh grid were selected, with
0.1 mm steps in the horizontal and vertical directions. Averaging over 256 spectra was
performed for each point of the 2D scans to reduce noise. The conversion of the signal
from the time domain to the frequency domain was carried out using the Terravil TRS-16
software version 1.1.2.6 (TeraVil Ltd., Vilnius, Lithuania).
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In a transmission scheme, the THz spectrometer measures the complex transmission
coefficient of a sample: T(ν) = Es (ν)/Er (ν), where Es (ν) is the complex electric field
strength of the THz wave transmitted through the cuvette with a liquid sample, Er (ν) is
the complex electric field strength of the THz wave transmitted through the empty cell, and
ν is the frequency of the THz wave (see Figure 2). There is a quantitative relationship be-
tween the measured complex transmission coefficient T(ν) of a substance and its dielectric
characteristics [34–36]. When the reference signal of different samples has a low dispersion,
it makes sense to consider only the intensity of the signal on the output of the THz wave
detector. This approach has been proven to work well in conjunction with machine learning
methods [22,58].

As aforementioned, each serum sample was measured at six different spatial points
256 times, so 1536 THz spectra per sample were measured. After averaging at a spatial
point, only 6 spectra remained. In total, according to the number of serum samples in each
group (see Table 2), the data for GBM group 1 and CMI group 1 consisted of 30 spectra
for every group; the data for GBM group 2 and CMI group 2 consisted of 60 spectra for
every group; the data for GBM group 3 included 42 spectra; and the data for CMI group 3
included 60 spectra. The frequency domain mean intensity signal values and time domain
spectra of the samples from the GBM and CMI groups are presented in Figure 3. The mean
spectrum for the samples from the CMI group 1 has lower intensities compared to similar
spectra from CMI groups 2 and 3.
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2.3. Machine Learning Methods

Two dimensionality reduction algorithms (PCA and t-SNE) and three classification
algorithms (SVM, RF, and Catboost implementation of XGBoost) were applied to the
THz spectral data. PCA (sklearn.decomposition.PCA) was applied along with t-SNE
(sklearn.manifold.TSNE), without standard scaling. The proposed ML pipeline (Figure 4)
includes the following steps: pre-processing; ML model construction and validation; and
informative feature selection. The ML model construction and validation used the same
algorithms, but different optimized parameters. The optimal values for each pair of groups
are calculated based on accuracy metrics and given in Table S2, Supplementary Materials.
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Figure 4. Proposed ML pipeline steps.

During the pre-processing, each THz spectrum was smoothed by the Savitsky–Golay
filter [68]. The impact of the filter parameters (filtering window width—window_size, and
degree of polynomial smoothing—polyoder) on the classifier performance was estimated
by the cross-validation procedure. The parameter names are given according to the library
scipy.signal.savgol_filter in Python. Next, the THz data were normalized by the maximum
intensity value (vector normalization) for an appropriate spectra comparison. The effect of
data centralization (statistical procedure of subtracting mean and dividing by variance) on
the dimensionality reduction methods was tested.

The unsupervised ML methods (PCA and t-SNE) were used to verify the homogeneity
of the CMI groups (Figure 5).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 22 
 

 
Figure 4. Proposed ML pipeline steps. 

During the pre-processing, each THz spectrum was smoothed by the Savitsky–
Golay filter [68]. The impact of the filter parameters (filtering window 
width—window_size, and degree of polynomial smoothing—polyoder) on the classifier 
performance was estimated by the cross-validation procedure. The parameter names are 
given according to the library scipy.signal.savgol_filter in Python. Next, the THz data 
were normalized by the maximum intensity value (vector normalization) for an appro-
priate spectra comparison. The effect of data centralization (statistical procedure of sub-
tracting mean and dividing by variance) on the dimensionality reduction methods was 
tested. 

The unsupervised ML methods (PCA and t-SNE) were used to verify the homoge-
neity of the CMI groups (Figure 5). 

 
Figure 5. Illustration of application of unsupervised ML methods (t-SNE and PCA) for the separability
analysis of the CMI groups.



Appl. Sci. 2024, 14, 2872 10 of 21

The number of principal components (PC) for PCA was limited to ten, with the highest
explained variance for the visual comparison. The optimized t-SNE parameters were
perplexity (15) and number of iterations (300). The latter did not have any impact on the
separability of the data. The perplexity significantly changes the distribution of points after
projection, so the choice of an appropriate value was crucial.

Catboost was chosen because of its excellent computational performance. The optimal
values of the hyperparameters for the RF and Catboost ML models were estimated by the
RandomizedSearchCV algorithm from the sklearn.model.selection library. Using cross-
validation on a user-defined parameter search grid, the algorithm determined the prediction
data model with the highest performance metrics for a definite ML algorithm. The choice of
hyperparameters for optimization usually depends on human expertise. A dense parameter
grid will lead to unreasonable computational costs, and even evolutionary optimization
algorithms will require a huge amount of processing time. Randomized search is used to
speed up the process. This step was performed to avoid instability of the feature selection
algorithms on the models with default parameters.

The linear kernel SVM performance can be optimized by a regularization parameter
(C). A lower C avoids overfitting, and a higher C allows the fine-tuning of the data model.
Usually, SVMs are used with default parameters. In RF implementation, the following
parameters of the search grid were used: number of trees in the random forest (50, 100,
and 1000), maximum number of levels in each tree (from 10 to 120 with step 12), minimum
sample number to split a node (2, 6, and 10), minimum sample number that can be stored
in a leaf node (1, 3, and 4), and using bootstrap for data points sampling. The number of
cross-validation runs (RandomizedSearchCV) was set to 10. The Catboost parameters grid:
learning rate (0.03, 0.1), depth (2, 4, 6, 10), and l2_leaf_reg (1, 3, 5, 7, 9) were optimized
by the build-in catboost.randomized_search procedure. A complete list of the optimized
values of these parameters is shown in Table S2, Supplementary Materials.

The efficiency of the ML models was estimated using 10-fold cross validation in terms
of the sensitivity, specificity, accuracy, and ROC-AUC values. Confidence matrices of each
fold were summarized, and final performance metrics were computed. Informative feature
selection was performed by the built-in procedures.

3. Results

A presentation of the CMI groups in a feature space using t-SNE and PCA is shown
in Figure 6. According to the t-SNE data presentation (Figure 6a), CMI group 1 (except
six red dots near the region with coordinates (−2, −2) corresponding to the spectra of
one sample) is separated from CMI groups 2 and 3. The points from CMI groups 2 and
3 are widely spread and mixed between each other. This is owing to the side effects of
the injections still being in place. This result is consistent with the conclusions based on a
1H-MRS analysis that neuro inflammation disappears by the third week [64]. According
to the PCA data presentation (Figure 6b), the CMI groups separation is worse compared
to that of t-SNE. Additional PCA projections for the CMI groups are shown Figure S1,
Supplementary Materials, which confirms that there is no separability between the groups
for the additional principal component projections.

A pair-wise comparison of the CMI groups (the first vs. the second weeks, the first
vs. the third weeks, and the second vs. the third weeks) in terms of quality metrics and
informative features was conducted. The best ROC-AUC metrics were achieved by the
SVM and Catboost classifiers (see Figure 7). Full ROC-AUC graphs for all classifiers and all
CMI groups are presented in Figure S2, Supplementary Materials. All classifiers demon-
strated very good performance metrics (see Table 3). The ideal separability was between
CMI groups 1 and 3, which confirms previous conclusions about the neuro inflammation
period. CMI groups 2 and 3 are not distinguished very accurately (see Figure S2d,f), so the
extraction of informative features differentiating them can be misleading.
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The results of the informative feature extraction by Catboost and SVM allowing the
pair-wise classification of CMI group 1 versus CMI group 2 and CMI group 1 versus CMI
group 3 are shown in Figure 8. A detailed analysis of the informative features for all
groups and classifiers is presented in Figure S3, Supplementary Materials. The results
of the SVM application coincide, but those of the Catboost application are different. The
latter is explained due to the computation of informative features in the extreme gradient
boosting methods. The more weight a feature has, the more often it is used to separate data
in each tree. Thus, a simple voting scheme was used for verifying the informative features
discovered by different classifiers, and the following spectral features: 0.35, 0.45, 0.55, 0.7,
0.9, and 1.05 THz were selected. These frequencies are potential TBI markers.
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CMI group 1 and the GBM group 3 were compared to differentiate TBI and GBM
(see Table 4). All classifiers are equally good in terms of AUC metrics, however, the speci-
ficity value for SVM and RF has a high variance.

Table 4. Mean and variance of AUC, sensitivity, specificity, and accuracy metrics of the TBI and the
GBM groups’ differentiation by various classifiers.

Classifier AUC, a.u. Sensitivity, % Specificity, % Accuracy, %

SVM 0.98 ± 0.05 100.00 ± 0.00 80.00 ± 40.00 91.43 ± 17.14
RF 0.95 ± 0.15 95.00 ± 15.00 80.00 ± 40.00 88.57 ± 23.73

Catboost 0.95 ± 0.12 95.00 ± 15.00 100.00 ± 0.00 97.15 ± 8.57

According to Figure 9, the informative features distinguishing TBI and GBM via SVM
are 0.37, 0.40, 0.55, 0.60, 0.70, and 0.90 THz. The results were the same for RF and Catboost
(see Figure S4, Supplementary Materials).



Appl. Sci. 2024, 14, 2872 14 of 21

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 22 
 

Table 4. Mean and variance of AUC, sensitivity, specificity, and accuracy metrics of the TBI and the 
GBM groups’ differentiation by various classifiers. 

Classifier AUC, a.u. Sensitivity, % Specificity, % Accuracy, % 
SVM 0.98 ± 0.05 100.00 ± 0.00 80.00 ± 40.00 91.43 ± 17.14 
RF 0.95 ± 0.15 95.00 ± 15.00 80.00 ± 40.00 88.57 ± 23.73 

Catboost 0.95 ± 0.12 95.00 ± 15.00 100.00 ± 0.00 97.15 ± 8.57 

According to Figure 9, the informative features distinguishing TBI and GBM via 
SVM are 0.37, 0.40, 0.55, 0.60, 0.70, and 0.90 THz. The results were the same for RF and 
Catboost (see Figure S4, Supplementary Materials). 

(a) 

 
(b) 

Figure 9. ROC-AUC analysis of SVM classifier (a) of the TBI group vs the GBM group and the 
corresponding informative features (b). 

4. Discussion 
To study glioblastoma development and find adequate therapeutic approaches, 

various experimental models of glioblastoma have been developed [60,69]. In the most 
popular models, tumor cells are injected into the brain of an animal [61]. However, the 
injection procedure is itself a factor of TBI [63,64,70]. A needle insertion into brain struc-
tures and the injection of different substances lead to the development of neuro inflam-
mation within the first 24 h after such manipulations [63,70,71]. MRS in vivo measure-
ments showed decreases in tNAA (the sum of N-acetylaspartate and 
N-acetylaspartylglutamic acid) and tCho (the sum of glycerophosphocholine and phos-

Figure 9. ROC-AUC analysis of SVM classifier (a) of the TBI group vs. the GBM group and the
corresponding informative features (b).

4. Discussion

To study glioblastoma development and find adequate therapeutic approaches, vari-
ous experimental models of glioblastoma have been developed [60,69]. In the most popular
models, tumor cells are injected into the brain of an animal [61]. However, the injection
procedure is itself a factor of TBI [63,64,70]. A needle insertion into brain structures and the
injection of different substances lead to the development of neuro inflammation within the
first 24 h after such manipulations [63,70,71]. MRS in vivo measurements showed decreases
in tNAA (the sum of N-acetylaspartate and N-acetylaspartylglutamic acid) and tCho (the
sum of glycerophosphocholine and phosphocholine) levels on the 7th day after CMI [64],
indicating possible neuronal death and axonal damage associated with TBI [72]. The level
of gamma aminobutyric acid also decreased, which is consistent with the dynamics of the
level of this metabolite after TBI [73].

The major goal of this work was to discover the informative features in blood serum
THz spectra, which differentiate TBI and glioblastoma. It should be noted that the blood
serum samples analyzed here were from the same mice, which were analyzed in vivo by
MRS (these data were presented in Ref. [64]). According to the presented results, the mean
THz spectrum of the blood serum samples from CMI group 1 (day 7 after the injection) had
lower intensities compared to similar spectra of CMI groups 2 and 3 (see Figure 3b). The
results of the PCA and t-SNE processing of the CMI groups’ THz spectra showed that CMI
group 1 was separated from CMI groups 2 and 3 (see Figure 6). This is consistent with the
data regarding the temporal development of TBI [63,64,70,71]. Therefore, CMI group 1 was
concluded to correspond to the TBI state.
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The development of neuro inflammation after CMI has a limited temporal period.
After day 14 of the experiment, the histological analysis did not demonstrate a significant
difference in the brains after CMI and healthy brains [70]. The aforementioned neuro
metabolites’ return to the levels of healthy mice was observed by day 21 after the CMI,
which confirms the restoration of neurons and their viability [64]. Therefore, CMI group 3
can be used as a group of animals that no longer show clear signs of neuro inflammation
and TBI. The mice in this group can be considered conditionally healthy. This was also
confirmed by the fact that the mean THz intensity of CMI group 3 was higher compared
to that of CMI groups 1 and 2 (see Figure 3b), growing closer to the amplitude of the THz
spectrum of water [58]. As mentioned above, changes in the relative proportions of free
and bound water and in relaxation times for either of these states can all be observed by
THz spectroscopy [34,46,65]. Changes in blood composition at diabetes mellitus [74], liver
cancer [75], and thyroid cancer [38], as well as GBM [65], were shown by us to be detected
in the blood THz absorption spectra.

The development of neuro inflammation [63,64,71] in experimental models of glioblas-
toma [61,64] and the subsequent development of the tumor lead to the release of inflamma-
tory and oncological molecular markers into the blood [14]. Molecular markers’ discovery
using THz spectroscopy is a complex and currently unsolved problem. ML methods allow
for building predictive data models and finding informative frequencies in the THz spectral
range associated with similar molecular markers [76–78].

A THz spectra analysis of blood serum from the CMI and GBM groups of mice to
estimate the THz spectral regions responsible for the differentiation of glioblastoma from
TBI was conducted. Two dimensionality reduction algorithms (PCA and t-SNE) were
used for data visualization. Three supervised machine learning algorithms—SVM, RF, and
Catboost—were used for classification and informative feature selection. The verification
of the data models’ efficiency was performed by 10-fold cross-validation. All algorithms
were implemented in Python 3.9 and scikit-learn library.

To obtain robust results, data standardization for PCA (mean value subtracting and
dividing by standard deviation) was used. This step is useful if the data have a high level
of variability, which is the case for THz spectra. Unlike PCA, the t-SNE algorithm considers
the distances between data points in the original space, and it delivered better results
without standardization. Euclidian and cosine distances for t-SNE were compared. The
latter showed a better separability.

The suggested ML pipeline allowed for selecting informative THz frequencies to
differentiate CMI group 1 from CMI group 3 (see Figure 7). The informative features were
0.35, 0.45, 0.55, 0.7, 0.9, and 1.05 THz. These groups had an excellent separability, and
the AUC was 0.99 for all classifiers (see Figure 6 and Table 3), which also confirms the
correctness of the definition of CMI group 1 (day 7 after culture medium injection) as TBI. In
Ref. [79], rat blood serum at different stages of experimental blast-induced traumatic brain
injury (bTBI) was studied in the attenuated total reflection (ATR) mode by THz-TDS and ML
methods. This study was carried out within 24 h after the experimental trauma. The THz
absorption spectra were analyzed by combining PCA and two machine learning algorithms
(k-Nearest neighbor and SVM) to identify the degree of bTBI. The SVM classifier provided
the best results on the test set with the highest diagnostic accuracy of 95.5%. The authors
concluded that ATR THz-TDS and ML have great potential for the early diagnosis of bTBI.
However, the authors did not select informative THz frequencies to separate groups.

The results of the pair-wise comparison of CMI group 1 and GBM group 3 to dif-
ferentiate between TBI and glioblastoma are shown in Table 4 and Figure 8. The same
frequencies obtained for SVM, RF, and Catboost, coupled with high performance metrics,
imply the robustness of the used ML algorithms. The proposed ML pipeline allowed us
to differentiate the TBI and GB groups with 95% sensitivity, 100% specificity, and 97%
accuracy. The informative features for distinguishing TBI and GBM were 0.37, 0.40, 0.55,
0.60, 0.70, and 0.90 THz.
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A common strategy for the verification of feature selection procedures is the removal
of these frequencies and then the calculation of performance metrics. This approach is good
for non-correlating features, yet for the case of THz spectra, it is not so effective. To verify
their importance, frequencies with the highest importance values but also a surrounding
one should be removed. The experimental results showed a drop in the average sensitivity,
specificity, accuracy, and precision of up to 13% for SVM, up to 7% for RF, and up to 17%
for Catboost. This proved that the selected frequencies were indeed informative for the
task under study.

In our previous study of mouse blood serum and the dynamics of U87 glioblastoma
development using THz-TDS [58], the ML pipeline included THz spectra smoothing using
the Savitsky–Golay filter, outlier removal using the isolated forest method, the subtraction
of the mean and normalizing data to the standard deviation, informative feature extraction,
and dimensionality reduction by PCA. The predictive data model was created using
linear SVM. By comparing GBM group 3 (the 21st day after U87 cell injection) and the
corresponding control group 3 (the 21st day after culture medium injection), the following
informative THz frequencies differentiating these groups were selected: 0.22, 0.56, 1.0,
1.2, 1.48, and 1.52 THz. As can be seen, these informative frequencies did not overlap
with those selected in this study. A possible reason for this was that TBI and GBM were
compared here, contrary to the GBM versus healthy groups study in the previous work. We
cannot accurately indicate specific metabolites, because the molecules’ absorption bands
overlapped in the THz spectral range. Moreover, there are more than 4600 metabolites
currently known in human blood serum [80], and the interactions between them are yet to
be fully established.

5. Conclusions

In this work, the popular glioblastoma model based on glioblastoma cells’ injection
into the mouse brain was used. But the injection itself can be considered as a TBI, and it is
necessary to differentiate metabolic disorders in the mouse brain caused by traumatic brain
injuries or/and glioblastoma development. Mouse blood serum was analyzed by THz
spectroscopy. In the first step, the homogeneity of the experimental groups with a cultural
medium injection was tested by unsupervised ML methods to prove that CMI group 1
(day 7 after CMI) was associated with a TBI state. In the second stage, this group was
compared with the group with the largest volume of glioblastoma (day 21 after injection
of glioblastoma cells) to differentiate between glioblastoma and TBI. The constructed
prediction data models were verified by the 10-fold cross-validation technique coupled
with an ROC-AUC analysis to ensure the repeatability of the results. Finally, informative
THz bands were selected, which had the most impact on the separability between the
glioblastoma group and the TBI group. As far as we know, this is the first work in which
differences in the blood serum THz spectra from small animals with glioblastoma and TBI
were studied. The presented results can be further expanded to the study of patient blood
and appropriate diagnostic method development.

Data quality strongly affects the prediction data model efficiency. The robustness of
these models can be increased by optimizing the hyperparameters. Considering a combina-
tion of such parameters for each method in the ML pipeline leads to high computational
costs. Understanding what effect each parameter has becomes crucial.

The limitations of the presented work are the following. ML models require plenty
of marked data to construct a reliable prediction data model, but glioma models are sub-
jected to a high variance due to the complex physiology of the carcinogenic process in glia.
Only “white box” algorithms were tested, yet complex “black box” models coupled with
the SHAP technique may produce better results. Still, the latter is more computationally
intensive. THz spectroscopy of biofluids is difficult because of strong water absorption, so
preliminary drying/lyophilization of samples is preferable. The binary classifier perfor-
mance metrics can also be enriched by the use of Matthews correlation coefficient, which is
argued to be the next gold standard in the evaluation of supervised ML models.
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Future work will be related to the data fusion of different modalities to increase
diagnostic potential and reveal the metabolites of glioma in the blood. This metabolic profile
can be discovered by Raman spectroscopy or MRS. Another option for improvements in ML
models is a combination of THz and MRI/PET/CT imaging to visualize tumor boundaries
that are crucial for surgery [81] and differentiate glioblastoma and TBI. Both intraoperative
MRI and PET are extremely expensive and time-consuming. PET has a low resolution
compared to THz and MRI [82]. The application of computer vision techniques based
on convolutional neural networks significantly boosts the segmentation quality of MRI
brain scans [83–85]. A combination of diagnostic MRI enhanced by ML methods and
intraoperative THz visualizations could be a promising solution for glioma surgery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14072872/s1, Experiment; Figure S1: Additional PCA pro-
jections of the CMI groups. PCA score plot for PC 3 and PC 4 (a); PC 5 and PC 6 (b); PC 7 and PC
8 (c); PC 9 and PC 10 (d); Figure S2: ROC-AUC analysis for: the CMI group 1 vs. the CMI group 2,
SVM method (a); the CMI group 1 vs. the CMI group 2, RF method (b); the CMI group 1 vs. the
CMI group 2, Catboost method (c); the CMI group 2 vs. the CMI group 3, SVM method (d); the
CMI group 2 vs. the CMI group 3, RF method (e); the CMI group 2 vs. the CMI group 3, Catboost
method (f); the CMI group 1 vs. the CMI group 3, SVM method (g); the CMI group 1 vs. the CMI
group 3, the CMI RF method (h); the CMI group 1 vs. the CMI group 3, Catboost method (i); Figure S3:
Informative features for: the CMI group 1 vs. the CMI group 2, SVM method (a); the CMI group 1
vs. the CMI group 2, RF method (b); the CMI group 1 vs. the CMI group 2, Catboost method (c);
the CMI group 2 vs. the CMI group 3, SVM method (d); the CMI group 2 vs. the CMI group 3, RF
method (e); the CMI group 2 vs. the CMI group 3, Catboost method (f); the CMI group 1 vs. the
CMI group 3, SVM method (g); the CMI group 1 vs. the CMI group 3, CMI RF method (h); the CMI
group 1 vs. the CMI group 3, Catboost method (i); Figure S4: the CMI group 1 vs. the GBM group 3:
SVM method ROC-AUC analysis (a), informative features (b); RF method ROC-AUC analysis (c),
informative features (d); Catboost method ROC-AUC analysis (e), informative features (f); Table S1.
Formulas for model performance evaluation metrics; Table S2. Optimized parameters’ values for ML
pipeline. References [86,87] are cited in the Supplementary Materials.
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