Morphology Characteristics of the Liquid–Vapour Interface in Porous Media
Abstract
:1. Introduction
2. CT Sample Preparation
2.1. CT Scanning Experimental Setup
2.2. Sample Preparation
- Soil samples were tightly packed into sample tubes based on their inner diameter (D = 2.7 mm) and height (H = 4.0 mm) and compacted to the target height using a given mass.
- The mass of KI solution (30% mass fraction) required for the intended saturation was calculated and added to the top of the soil sample using a pipette, which was then absorbed into the pores via capillary action.
- Pure water was added to the sample tube to fully saturate the soil sample, which was then allowed to evaporate freely to the target saturation level.
- The sample tube was sealed with a resin plug, and to prevent moisture escape, the exterior of the tube was sealed with sealant and heat-shrink tubing.
3. CT Image Processing Process
3.1. Area Cropping and Luminance Normalisation
3.2. Interactive Machine Learning for Enhanced Recognition
3.3. Watershed Algorithm to Repair Interface
3.4. Three-Phase Identification and Interface Extraction
4. Discussion
4.1. Soil Pore Connectivity Characteristics
4.2. Liquid–Vapour Phase Connectivity Analysis
4.3. Evolutionary Trend of l–v Interface
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alhosani, A.; Scanziani, A.; Lin, Q.; Foroughi, S.; Alhammadi, A.M.; Blunt, M.J.; Bijeljic, B. Dynamics of water injection in an oil-wet reservoir rock at subsurface conditions: Invasion patterns and pore-filling events. Phys. Rev. E 2020, 102, 023110. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, B.; Mo, X.; Yang, X.; Yu, L.; Hu, X.; Liu, K. Fast Water Evaporation from Nanopores. Adv. Mater. Interfaces 2021, 8, 2100660. [Google Scholar] [CrossRef]
- Mularczyk, A.; Lin, Q.; Blunt, M.J.; Lamibrac, A.; Marone, F.; Schmidt, T.J.; Büchi, F.N.; Eller, J. Droplet and percolation network interactions in a fuel cell gas diffusion layer. J. Electrochem. Soc. 2020, 167, 084506. [Google Scholar] [CrossRef]
- Hu, R.; Wan, J.; Yang, Z.; Chen, Y.; Tokunaga, T. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model. Geophys. Res. Lett. 2018, 45, 3077–3086. [Google Scholar] [CrossRef]
- Krevor, S.; Blunt, M.J.; Benson, S.M.; Pentland, C.H.; Reynolds, C.; Al-Menhali, A.; Niu, B. Capillary trapping for geologic carbon dioxide storage—From pore scale physics to field scale implications. Int. J. Greenh. Gas Control 2015, 40, 221–237. [Google Scholar] [CrossRef]
- Lu, Z.; Narayanan, S.; Wang, E.N. Modeling of evaporation from nanopores with nonequilibrium and nonlocal effects. Langmuir 2015, 31, 9817–9824. [Google Scholar] [CrossRef] [PubMed]
- Plawsky, J.L.; Ojha, M.; Chatterjee, A.; Wayner, P.C., Jr. Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chem. Eng. Commun. 2008, 196, 658–696. [Google Scholar] [CrossRef]
- Wildenschild, D.; Culligan, K.A.; Christensen, B.S.B. Application of x-ray microtomography to environmental fluid flow problems. In Proceedings of the Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, CO, USA, 2–6 August 2004; pp. 432–441. [Google Scholar]
- Willson, C.S.; Lu, N.; Likos, W.J. Quantification of Grain, Pore, and Fluid Microstructure of Unsaturated Sand from X-ray Computed Tomography Images. Geotech. Test. J. 2012, 35, 1–13. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Wei, C. Characterization of liquid-vapour interface in pores during evaporation. Water. Resour. Res. 2021, 58, e2021WR031908. [Google Scholar] [CrossRef]
- Lin, Q.; Bijeljic, B.; Berg, S.; Pini, R.; Blunt, M.J.; Krevor, S. Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone. Phys. Rev. E 2019, 99, 063105. [Google Scholar] [CrossRef] [PubMed]
- Saba, T.; Illangasekare, T.; Ewing, J. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. J. Contam. Hydrol. 2001, 51, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Johns, M.; Gladden, L. Magnetic resonance imaging study of the dissolution kinetics of octanol in porous media. J. Colloid Interface Sci. 1999, 210, 261–270. [Google Scholar] [CrossRef]
- Armstrong, R.T.; Pentland, C.H.; Berg, S.; Hummel, J.N.; Lichau, D.; Bernard, L. Estimation of curvature from micro-CT liquid-liquid displacement studies with pore scale resolution. In Proceedings of the International Symposium of the Society of Core Analysts (SCA), Aberdeen, UK, 27–30 August 2012. [Google Scholar]
- Armstrong, R.T.; Porter, M.L.; Wildenschild, D. Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 2012, 46, 55–62. [Google Scholar] [CrossRef]
- Culligan, K.; Wildenschild, D.; Christensen, B.; Gray, W.; Rivers, M.; Tompson, A. Interfacial area measurements for un-saturated flow through a porous medium. Water. Resour. Res. 2004, 40, W12413. [Google Scholar] [CrossRef]
- Garing, C.; de Chalendar, J.A.; Voltolini, M.; Ajo-Franklin, J.B.; Benson, S.M. Pore-scale capillary pressure analysis using multi-scale X-ray micromotography. Adv. Water Resour. 2017, 104, 223–241. [Google Scholar] [CrossRef]
- Higo, Y.; Oka, F.; Kimoto, S.; Sanagawa, T.; Matsushima, Y. Study of strain localization and microstructural changes in par-tially saturated sand during triaxial tests using microfocus X-ray CT. Soils. Found. 2011, 51, 95–111. [Google Scholar] [CrossRef]
- Higo, Y.; Oka, F.; Sato, T.; Matsushima, Y.; Kimoto, S. Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils Found. 2013, 53, 181–198. [Google Scholar] [CrossRef]
- Wildenschild, D.; Sheppard, A.P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 2013, 51, 217–246. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Andrew, M.; Menke, H.; Blunt, M.J.; Bijeljic, B. the imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp. Porous Media 2015, 110, 1–24. [Google Scholar] [CrossRef]
- Berg, S.; Rücker, M.; Ott, H.; Georgiadis, A.; van der Linde, H.; Enzmann, F.; Kersten, M.; Armstrong, R.; de With, S.; Becker, J.; et al. Connected pathway relative permeability from pore-scale imaging of imbibition. Adv. Water Resour. 2016, 90, 24–35. [Google Scholar] [CrossRef]
- Berg, S.; Ott, H.; Klapp, S.A.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Enzmann, F.; Schwarz, J.-O.; et al. Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA 2013, 110, 3755–3759. [Google Scholar] [CrossRef] [PubMed]
- Pak, T.; Butler, I.B.; Geiger, S.; van Dijke, M.I.J.; Sorbie, K.S. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media. Proc. Natl. Acad. Sci. USA 2015, 112, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Menke, H.; Andrew, M.; Lin, Q.; Rau, C.; Blunt, M.J.; Bijeljic, B. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 2017, 7, 5192. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.A.; Menke, H.; Andrew, M.; Blunt, M.J.; Krevor, S. Dynamic fluid connectivity during steady-state multi phase flow in a sandstone. Proc. Natl. Acad. Sci. USA 2017, 114, 8187. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.J.; Agada, S.; Reynolds, C.A.; Krevor, S. characterizing drainage multiphase flow in heterogeneous sandstones. Water Resour. Res. 2018, 54, 3139–3161. [Google Scholar] [CrossRef]
- Reynolds, C.A.; Blunt, M.J.; Krevor, S. Multiphase flow characteristics of heterogeneous rocks from CO2 storage reservoirs in the United Kingdom. Water. Resour. Res. 2018, 54, 729. [Google Scholar] [CrossRef]
- Pini, R.; Krevor, S.C.M.; Benson, S.M. Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Adv. Water. Resour. 2012, 38, 48–59. [Google Scholar] [CrossRef]
- Rasband, W. ImageJ Software; National Institutes of Health: Bethesda, MD, USA, 1997; Volume 2012.
- Lei, L.; Seol, Y.; Jarvis, K. Pore-scale visualization of methanehydrate-bearing sediments with micro-CT. Geophys. Res. Lett. 2018, 45, 5417–5426. [Google Scholar] [CrossRef]
- Andrew, M.; Bijeljic, B.; Blunt, M.J. Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual CO2. Water. Resour. Res. 2014, 50, 8760–8774. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmen-tation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Strähle, C.; Köthe, U.; Hamprecht, F.A. Ilastik: Interactive learning and segmentation toolkit Paper. In Proceedings of the Eighth IEEE International Symposium on Biomedical Imaging, Chicago, IL, USA, 30 March–2 April 2011. [Google Scholar]
- Rad, M.N.; Shokri, N. Effects of grain angularity on NaCl precipitation in porous media during evaporation. Water Resour. Res. 2014, 50, 9020–9030. [Google Scholar] [CrossRef]
- Rad, M.N.; Shokri, N.; Keshmiri, A.; Withers, P.J. Effects of Grain and Pore Size on Salt Precipitation During Evaporation from Porous Media. Transp. Porous Media 2015, 110, 281–294. [Google Scholar] [CrossRef]
- Armstrong, R.T.; McClure, J.E.; Robins, V.; Liu, Z.; Arns, C.H.; Schlüter, S.; Berg, S. Porous media characterization using Min-kowski functionals: Theories, applications and future directions. Transport. Porous. Med. 2019, 130, 305–335. [Google Scholar] [CrossRef]
- Herring, A.L.; Harper, E.J.; Andersson, L.; Sheppard, A.; Bay, B.K.; Wildenschild, D. Effect of fluid topology on residual non-wetting phase trapping: Implications for geologic CO2 sequestration. Adv. Water. Resour. 2013, 62, 47–58. [Google Scholar] [CrossRef]
- Greco, R.; Gargano, R. Anovel equation for determining thesuction stress of unsaturated soils from the water retention curve based onwetted surface area in pores. Water. Resour. Res. 2015, 51, 6143–6155. [Google Scholar] [CrossRef]
- Shahraeeni, E.; Or, D. Pore scale mechanisms for enhanced vapour transport through partially saturated porous media. Water. Resour. Res. 2012, 48, W05511. [Google Scholar] [CrossRef]
- Cass, A.; Campbell, G.S.; Jones, T.L. Enhancement of thermal water vapour diffusion in soil. Soil. Sci. Soc. Am. J. 1984, 48, 25–32. [Google Scholar] [CrossRef]
- Gray, W.G.; Miller, C.T. Elements of Thermodynamically Constrained Averaging Theory. Adv. Water. Resour. 2011, 34, 770–778. [Google Scholar] [CrossRef]
- Hassanizadeh, S.; Gray, W.G. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 1990, 13, 169–186. [Google Scholar] [CrossRef]
Droplet | Liquid Bridge | Multi Liquid Bridge | |
---|---|---|---|
Typical objects | |||
Geometric pattern | |||
Euler number (1, 2, ,) | 1 (1, 0, 0) | 0 (1, 1, 0) | −1 (1, 2, 0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dong, Y. Morphology Characteristics of the Liquid–Vapour Interface in Porous Media. Appl. Sci. 2024, 14, 2881. https://doi.org/10.3390/app14072881
Zhang Y, Dong Y. Morphology Characteristics of the Liquid–Vapour Interface in Porous Media. Applied Sciences. 2024; 14(7):2881. https://doi.org/10.3390/app14072881
Chicago/Turabian StyleZhang, Yu, and Yi Dong. 2024. "Morphology Characteristics of the Liquid–Vapour Interface in Porous Media" Applied Sciences 14, no. 7: 2881. https://doi.org/10.3390/app14072881
APA StyleZhang, Y., & Dong, Y. (2024). Morphology Characteristics of the Liquid–Vapour Interface in Porous Media. Applied Sciences, 14(7), 2881. https://doi.org/10.3390/app14072881