
Citation: Loh, C.-H.; Chen, Y.-C.; Su,

C.-T. Using Transfer Learning and

Radial Basis Function Deep Neural

Network Feature Extraction to

Upgrade Existing Product Fault

Detection Systems for Industry 4.0: A

Case Study of a Spring Factory. Appl.

Sci. 2024, 14, 2913. https://doi.org/

10.3390/app14072913

Academic Editor: Jose Machado

Received: 29 February 2024

Revised: 21 March 2024

Accepted: 24 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Using Transfer Learning and Radial Basis Function Deep
Neural Network Feature Extraction to Upgrade Existing
Product Fault Detection Systems for Industry 4.0: A Case
Study of a Spring Factory
Chee-Hoe Loh 1 , Yi-Chung Chen 2,* and Chwen-Tzeng Su 1

1 Department of Industrial Engineering and Management, National Yunlin University of Science and
Technology, Yunlin 640301, Taiwan; d10721004@yuntech.edu.tw (C.-H.L.); suct@yuntech.edu.tw (C.-T.S.)

2 Department of Computer Science and Engineering, National Chung Hsing University,
Taichung 402202, Taiwan

* Correspondence: chenyich@nchu.edu.tw

Abstract: In the era of Industry 3.0, product fault detection systems became important auxiliary
systems for factories. These systems efficiently monitor product quality, and as such, substantial
amounts of capital were invested in their development. However, with the arrival of Industry 4.0,
high-volume low-mix production modes are gradually being replaced by low-volume high-mix
production modes, reducing the applicability of existing systems. The extent of investment has
prompted factories to seek upgrades to tailor existing systems to suit new production modes. In
this paper, we propose an approach to upgrading based on the concept of transfer learning. The key
elements are (1) using a framework with a basic model and an add-on model rather than fine-tuning
parameters and (2) designing a radial basis function deep neural network (RBF-DNN) to extract
important features to construct the basic and add-on models. The effectiveness of the proposed
approach is verified using real-world data from a spring factory.

Keywords: Industry 4.0; fault detection systems; deep learning models

1. Introduction

In Industry 3.0, automated production became the standard of manufacturing world-
wide. Within this model, product fault detection systems are of paramount importance.
These systems collect data on machine operations from various sensors and analyze these
data to determine whether the manufactured products meet specifications. Thus, product
quality can be maintained with minimal human input. Various product fault detection
systems exist. For instance, Koscielny et al. [1] and Libal and Hasiewicz [2] performed
fault detection in sugar factories using fuzzy neural networks and a binary classification
model, respectively. Liu et al. [3] developed a fault detection system for textile products
based on the Pearson correlation coefficient and neural networks. Chiu et al. [4] developed
a lightweight deep learning model to predict CNC tool wear. More recently, Lee et al. [5]
confirmed that if the results of three different convolution kernel-based methods can be
ensembled, the fault detection system’s accuracy will be greatly improved. However, in the
era of Industry 4.0, cloud and diverse sensor technologies are being introduced to collect
production data and implement low-volume high-mix production modes. These changes
demand corresponding improvements in existing product fault detection systems.

Approaches to upgrading can be roughly divided into four categories. The first
category is incorporating cloud and IOT concepts into existing systems [6]. The works
in this category are examples of case-by-case design based on the circumstances of the
existing system and the environment of the factory. They therefore have little reference
value for other factories. The second category of approaches require a rebuilding of product

Appl. Sci. 2024, 14, 2913. https://doi.org/10.3390/app14072913 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072913
https://doi.org/10.3390/app14072913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0004-4240-908X
https://orcid.org/0000-0003-0353-7340
https://doi.org/10.3390/app14072913
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072913?type=check_update&version=1

Appl. Sci. 2024, 14, 2913 2 of 23

fault detection from scratch. These approaches increase the accuracy of fault detection
by incorporating data fusion or hybrid recognition models [7–10]. The third and fourth
categories are tailored to the low-volume, high-mix production modes of Industry 4.0.
Specifically, methods in the third category explore means of establishing highly accurate
fault detection with little training data. Kuo et al. [11] and Neupane et al. [12] both
emphasized the generalizability of this type of approach. However, these methods focus
on rebuilding rather than upgrading, which is less cost-effective. The fourth category
exploits the high-mix of new production modes, in which similar products of the same
basic structure but slightly different details are manufactured in low volumes. For example,
consider Figure 1. A clothes-hanger manufacturer will first develop a basic version and
then modify it into several different products based on the needs of downstream vendors,
such as bottoms of different lengths, notches in the top bars, or non-slip strips on the hanger.
This last category of product fault detection depends on transfer learning. A system is
first developed for the basic product, and then additional systems for new products are
created by fine-tuning the parameters of the existing system. Mazzoleni et al. [13], for
instance, investigated the application of fuzzy logic and transfer learning to industrial
environments without labeled data, while Raouf et al. [14] considered industrial robots
working in different environments.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 2 of 24

this category are examples of case-by-case design based on the circumstances of the ex-
isting system and the environment of the factory. They therefore have little reference
value for other factories. The second category of approaches require a rebuilding of
product fault detection from scratch. These approaches increase the accuracy of fault
detection by incorporating data fusion or hybrid recognition models [7–10]. The third
and fourth categories are tailored to the low-volume, high-mix production modes of In-
dustry 4.0. Specifically, methods in the third category explore means of establishing
highly accurate fault detection with little training data. Kuo et al. [11] and Neupane et al.
[12] both emphasized the generalizability of this type of approach. However, these
methods focus on rebuilding rather than upgrading, which is less cost-effective. The
fourth category exploits the high-mix of new production modes, in which similar prod-
ucts of the same basic structure but slightly different details are manufactured in low
volumes. For example, consider Figure 1. A clothes-hanger manufacturer will first de-
velop a basic version and then modify it into several different products based on the
needs of downstream vendors, such as bottoms of different lengths, notches in the top
bars, or non-slip strips on the hanger. This last category of product fault detection de-
pends on transfer learning. A system is first developed for the basic product, and then
additional systems for new products are created by fine-tuning the parameters of the
existing system. Mazzoleni et al. [13], for instance, investigated the application of fuzzy
logic and transfer learning to industrial environments without labeled data, while Raouf
et al. [14] considered industrial robots working in different environments.

Figure 1. An example of applying the concept of transfer learning to a factory in the Industry 4.0
era.

The application of transfer learning to upgrade existing systems is favored by facto-
ries because it requires the least financial and time investments. However, this method
still suffers from two major shortcomings. First, the formats of machine operating data
may not be the same for similar products, thereby preventing the fine-tuning of existing
systems. For example, in Figure 1, the basic version and the two modified products all
need only a wire bending machine; however, the third product requires an additional
machine to apply the non-slip strip. Thus, the formats for collecting data on the quality
of this product differ from those of the other products. Parameter fine-tuning to upgrade
the fault detection system is thus not possible. The second shortcoming is associated
with how factories manage their fault detection systems. Generally speaking, once a
factory establishes a fault detection system, details of the system will be kept in a data-
base for future use. However, if the fault detection system of a basic product is estab-
lished using deep learning, then the fault detection of the modified product will likely be
based on deep learning as well. In the case of production modes with high-mix products,

Basic Version

Modified Products 1
(Notches in the top bars)

Wire
Bending
Machine

Wire
Bending
Machine

Wire
Bending
Machine

Machine to
Apply the

Non-Slip Strip

Data

Data

Data

Data

Model

Cannot be
Applied

Modified Products 2
(Non-slip strips
on the hanger)

Transfer
Learning

Figure 1. An example of applying the concept of transfer learning to a factory in the Industry 4.0 era.

The application of transfer learning to upgrade existing systems is favored by factories
because it requires the least financial and time investments. However, this method still
suffers from two major shortcomings. First, the formats of machine operating data may not
be the same for similar products, thereby preventing the fine-tuning of existing systems.
For example, in Figure 1, the basic version and the two modified products all need only a
wire bending machine; however, the third product requires an additional machine to apply
the non-slip strip. Thus, the formats for collecting data on the quality of this product differ
from those of the other products. Parameter fine-tuning to upgrade the fault detection
system is thus not possible. The second shortcoming is associated with how factories
manage their fault detection systems. Generally speaking, once a factory establishes a fault
detection system, details of the system will be kept in a database for future use. However,
if the fault detection system of a basic product is established using deep learning, then the
fault detection of the modified product will likely be based on deep learning as well. In
the case of production modes with high-mix products, the fault detection database will
expand infinitely because it must store many deep learning models with similar structures
but slightly different parameters; this will increase the factory’s operating costs. Thus,
while the concept of transfer learning for upgrading product fault detection systems hold
promise, some issues must still be overcome.

Appl. Sci. 2024, 14, 2913 3 of 23

This study proposes two approaches to remedy these issues: (1) While previous
methods have realized transfer learning using parameter fine-tuning, we propose creating
an add-on model for the basic model. The basic model determines the quality of the basic
product, whereas the add-on model assesses the quality of the parts where the new product
differs. (2) Existing product fault detection systems use all possible features for modeling;
we propose identifying key features that can present product faults before establishing
the fault detection model. Figure 2a displays a schematic of the first approach. It does
not alter any of the parameters in the basic model but rather corrects the output results of
the basic model using the add-on model. In the example shown in Figure 2b, inputting
the collected features (x, y) and (x, z) of the first item into the basic model and the add-on
model, respectively, produces results in which the item is faultless and the basic model
needs no calibrations. We can therefore determine that there is nothing wrong with the
product corresponding to the first item. For the second item, inputting the same features
into the two models produces results in which the product is faultless and the basic model
needs calibrations. We can therefore determine that something is wrong with the product
of the second item of data. Furthermore, with the proposed method, the fault detection
models of different products can all be extended based on knowledge of the basic model,
as shown in Figure 3.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 24

the fault detection database will expand infinitely because it must store many deep
learning models with similar structures but slightly different parameters; this will in-
crease the factory’s operating costs. Thus, while the concept of transfer learning for up-
grading product fault detection systems hold promise, some issues must still be over-
come.

This study proposes two approaches to remedy these issues: (1) While previous
methods have realized transfer learning using parameter fine-tuning, we propose creat-
ing an add-on model for the basic model. The basic model determines the quality of the
basic product, whereas the add-on model assesses the quality of the parts where the new
product differs. (2) Existing product fault detection systems use all possible features for
modeling; we propose identifying key features that can present product faults before
establishing the fault detection model. Figure 2a displays a schematic of the first ap-
proach. It does not alter any of the parameters in the basic model but rather corrects the
output results of the basic model using the add-on model. In the example shown in Fig-
ure 2b, inputting the collected features (x, y) and (x, z) of the first item into the basic
model and the add-on model, respectively, produces results in which the item is faultless
and the basic model needs no calibrations. We can therefore determine that there is
nothing wrong with the product corresponding to the first item. For the second item,
inputting the same features into the two models produces results in which the product is
faultless and the basic model needs calibrations. We can therefore determine that some-
thing is wrong with the product of the second item of data. Furthermore, with the pro-
posed method, the fault detection models of different products can all be extended
based on knowledge of the basic model, as shown in Figure 3.

(a)

 Basic Input Basic Output Add-on Input Add-on Output Final Answer
Item 1 (x1, y1) Faultless (x1, z1) Need no Calibrations Faultless
Item 2 (x2, y2) Faultless (x2, z2) Need Calibrations Defective

(b)

Figure 2. Concept of basic and add-on models proposed in this work: (a) schematic, (b) example.

Figure 3. Concept of extending the basic fault detection models to various modified products.

Basic
Model

x
y

Add-on
Modelz

Faultless?
Defective?

Needs calibrations?
Needs not calibrations?

Final
Answer

x

Decide
the Answer

Basic
Model

x
y

Final
Answer

Basic Version

Basic
Model

x
y

Modified
Products 1

Add-on
Model 1w

Final
Answer

Basic
Model

x
y

Add-on
Model 2

w

Final
Answer

Modified
Products 2

z

v

Basic
Model

x
y

Add-on
Model nq

Final
Answer

v

Modified
Products n

Figure 2. Concept of basic and add-on models proposed in this work: (a) schematic, (b) example.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 24

the fault detection database will expand infinitely because it must store many deep
learning models with similar structures but slightly different parameters; this will in-
crease the factory’s operating costs. Thus, while the concept of transfer learning for up-
grading product fault detection systems hold promise, some issues must still be over-
come.

This study proposes two approaches to remedy these issues: (1) While previous
methods have realized transfer learning using parameter fine-tuning, we propose creat-
ing an add-on model for the basic model. The basic model determines the quality of the
basic product, whereas the add-on model assesses the quality of the parts where the new
product differs. (2) Existing product fault detection systems use all possible features for
modeling; we propose identifying key features that can present product faults before
establishing the fault detection model. Figure 2a displays a schematic of the first ap-
proach. It does not alter any of the parameters in the basic model but rather corrects the
output results of the basic model using the add-on model. In the example shown in Fig-
ure 2b, inputting the collected features (x, y) and (x, z) of the first item into the basic
model and the add-on model, respectively, produces results in which the item is faultless
and the basic model needs no calibrations. We can therefore determine that there is
nothing wrong with the product corresponding to the first item. For the second item,
inputting the same features into the two models produces results in which the product is
faultless and the basic model needs calibrations. We can therefore determine that some-
thing is wrong with the product of the second item of data. Furthermore, with the pro-
posed method, the fault detection models of different products can all be extended
based on knowledge of the basic model, as shown in Figure 3.

(a)

 Basic Input Basic Output Add-on Input Add-on Output Final Answer
Item 1 (x1, y1) Faultless (x1, z1) Need no Calibrations Faultless
Item 2 (x2, y2) Faultless (x2, z2) Need Calibrations Defective

(b)

Figure 2. Concept of basic and add-on models proposed in this work: (a) schematic, (b) example.

Figure 3. Concept of extending the basic fault detection models to various modified products.

Basic
Model

x
y

Add-on
Modelz

Faultless?
Defective?

Needs calibrations?
Needs not calibrations?

Final
Answer

x

Decide
the Answer

Basic
Model

x
y

Final
Answer

Basic Version

Basic
Model

x
y

Modified
Products 1

Add-on
Model 1w

Final
Answer

Basic
Model

x
y

Add-on
Model 2

w

Final
Answer

Modified
Products 2

z

v

Basic
Model

x
y

Add-on
Model nq

Final
Answer

v

Modified
Products n

Figure 3. Concept of extending the basic fault detection models to various modified products.

The proposed approaches overcome the shortcomings discussed above as follows.
First, input features of the two models can be designed independently; the basic model only
needs to consider the features of the basic product, and the add-on model only needs to
consider the features that are unique to the modified product. This circumvents the problem
of differing data formats. Next, the proposed approach does not adjust the parameters
of the basic model but includes an add-on model, so the database will ultimately only

Appl. Sci. 2024, 14, 2913 4 of 23

contain one basic model and multiple add-on models. This is more efficient than deep
learning, as while the basic model must consider a large quantity of information to detect
faults in the basic product, the add-on models only consider variations. In other words,
the proposed approach effectively reduces the number of model parameters stored in
the database. Furthermore, the second approach only uses key features to establish the
fault detection model. Existing systems include all features to help clarify the complex
associations between machine features and product faults. However, inputting all features
into the basic and add-on models not only greatly increases the size of the two models
but, more importantly, causes the add-on model to learn information that the basic model
already has, which increases training costs unnecessarily.

This paper is the first to explore the inclusion of these approaches to upgrading product
fault detection systems. We designed a radial basis function deep neural network (RBF-DNN)
and identified key features through training and analysis of the RBF parameters. The proposed
RBF-DNN model has a neuron with an RBF as the activation function. RBF has previously been
combined with deep learning models to extract key features for modeling for complex time series
prediction [4,15]. However, RBF is not limited to time series [16,17]. Thus, the current paper
applies this concept to find key input features for product fault detection. We then designed a
comprehensive procedure for the creation of add-on models to overcome the insufficiencies of
the basic model in detecting faults in new products. Finally, we used production data from a
spring factory [11,18] to verify the effectiveness of the proposed approaches.

The remainder of this paper is arranged as follows: Section 2 presents related works,
Section 3 introduces the establishment of our framework, Section 4 discusses the results of
our experiments, and Section 5 presents our conclusions and future work.

2. Related Works

In this section, we review the existing literature on both machine fault detection
systems and product fault detection systems. This is because, in a broad sense, fault
detection systems in factory practices generally include those for products and those for
the machines, and as the design principles of these two types of algorithms are similar, we
introduce them together.

The design methods of fault detection systems can be divided into two categories:
statistical analysis methods and data-driven methods. The former compiles the statistics
of fluctuations in machine signals and detects faults using these statistics. For instance,
Isermanm [19] performed fault detection using standard deviations; they indicated that
when the standard deviation does not equal zero, it means that an error has occurred in
the product during the production process. Brkovic et al. [20] proposed a fault detection
method that compares the residuals of signal amplitudes. Based on principal component
analysis, Sarit et al. [21] developed an online fault detection system for industrial fans.
Yu et al. [22] combined a corrected reconstruction algorithm with principal component
analysis to analyze the sensor data from a nuclear power plant to achieve fault detection.
As this methodology was too slow to execute in practice, Yu et al. [23] combined MapReduce
with principal component analysis to detect faults in high dimensional data in factories in
real time. Xue et al. [24] developed a non-supervisory model aimed at data discrepancies
based on k-means and the Apriori algorithm to detect malfunctions in district heating
stations. Limaua et al. [25] proposed combining Fourier transform with a sliding window
for better resolution in the frequency data. Some researchers have pointed out that the
difficulty in implementing this method is setting the size of the window, so Anouar et al. [26]
proposed using wavelet analysis to filter data. They filtered and disassembled the data
before selecting useful signal features for fault detection. Hartono et al. [27] posited that
different types of data have different signal characteristics and important features, so they
proposed integrated approaches for feature selection.

Data-driven methods train models individually for product fault detection based on data
type. These are currently one of the most popular methods, applied to fields such as electri-
cal systems, industrial processes, and robotics. In earlier research, Wang and Shen et al. [28]

Appl. Sci. 2024, 14, 2913 5 of 23

proposed applying the Kalman filter for fault detection using the vibration collected from
operating machines. However, a number of researchers pointed out that the Kalman filter
has two major shortcomings: (1) the standard definitions must be linear, and (2) the fault
detection of the model must be fixed. To overcome these issues, Jiang et al. [29] proposed
unscented Kalman filter models that can process nonlinear standard definitions to establish
their fault detection system. In contrast, Khan et al. [30] added linear regression onto the
unscented Kalman filter. With the popularization of artificially intelligent methodology, a
growing number of researchers have attempted to increase the complexity of the problems
targeted by their approaches. For instance, Nykyri et al. [31] integrated different machine
learning methods such as random forest, logistic regression, multilayer perceptron, naive
Bayes classification, and linear discrimination to forecast the conditions of a motor in the next
ten minutes. Based on fuzzy theory and a hidden Markov model combined with a support
vector machine, Mazzoleni et al. [25] developed a system to detect faults in machine health
status. Mishra et al. [32] and Nguyen [33], respectively, constructed a neural network and
a radial basis function neural network for their target machine signals and then used these
models to perform fault detection based on the discrepancies between predicted and actual
values. Liu et al. [3] combined Pearson correlation and a neural network to detect faults using
the frequencies of sounds made by sewing machines in textile factories. Koscielny et al. [1]
employed fuzzy neural networks to perform fault detection based on the temperatures and
residue in the evaporation units in a sugar factory. Based on the VGG-16 model, Lilhore
et al. [34] proposed a fault detection system that can automatically detect whether a machine
is damaged and aid factories in estimating the lifespan of product components. In more
recent years, Wen et al. [35] and Chen et al. [36] developed fault detection systems by com-
bining different convolutional neural networks (CNNs) with deep neural networks (DNNs).
Hermawan et al. [37] proposed a long short-term memory (LSTM) algorithm based on the
lookback principle that, in the event of sensor damage or loss in automated factories, can
automatically repair and restore information collected before the damage occurred. Finally,
Lee et al. [5] proposed that ensembling different convolution kernel-based methods can greatly
improve the accuracy of fault detection.

The above methods verified through experiments that their approach can effectively
achieve high-precision single-model fault detection. However, significant shortcomings
include the following: (1) Every time the factories work with a different machine (even
if it is the same model), they will need to re-collect the machine data and re-establish
the model to ensure accuracy. (2) It is costly to collect sufficient data for newly added
machines or new error types, making it difficult to train a fault detection model for the
target machine. To overcome these shortcomings, the most common approach applies
the concept of transfer learning. First, to quickly build models to detect motor faults in
different machines of the same type, Kumar and Hati [38] and Skowron [39] used deep
learning models and transfer learning. Liu et al. [40] proposed construction chiller defect
detection based on transfer learning, claiming that it could be used to establish individual
diagnostic models for similar chillers. Chen et al. [41] proposed using TRU fault detection
layering technology based on transfer learning to establish models for similar equipment.
Li et al. [42] proposed a detection method based on transfer learning and convolutional
autoencoders; this was applied to wind turbines. Xu et al. [43] proposed a two-stage digital
twin-assisted fault detection method which first predicts the problems that will occur in the
machine in a virtual space and builds a detection model for the predicted problems. The
model is transferred from the virtual space to the physical space using transfer learning,
thereby accelerating the development of fault detection models. To overcome shortages
in training data, Cho et al. [44] and Dong et al. [45] developed a fault detection method
based on a neural model architecture. Other scholars extended this method. For example,
Zhang et al. [46] believed that not all knowledge needs to be transferred, so they proposed
transferring only part of the knowledge to the target domain. Chen et al. [41] proposed
using the hierarchical structure of convolutional neural networks to perform transfer
learning for different fault types. Lee et al. [47] proposed generating adversarial networks

Appl. Sci. 2024, 14, 2913 6 of 23

to build high-accuracy models in the case of data imbalance. Recently, Wang et al. [48]
used the concepts of dual graph neural networks and transfer learning to establish a fault
detection model suitable for intelligent manufacturing systems.

Finally, it is worth mentioning that with the rise of the concept of sustainable develop-
ment, new fault detection systems have been developed based on this concept. For example,
Legutko [49] discussed additional factors that should be considered. Patalas-Maliszewska
and Łosyk [50] discussed machine maintenance sustainability and developed a corresponding
fuzzy neural network model. In addition, considering that most factories already have existing
machine fault detection systems, creating new systems is expensive. Therefore, in recent years,
most of the efforts in this field have been to extend existing systems to comply with sustainable
development. Priority targets such as [51–53] all fall into this category of research.

3. Algorithms

The framework of the product fault detection system developed in this study is shown
in Figure 4: it includes two offline phases for the construction of the basic model and the
add-on model and an online phase where the basic model and the add-on model operate
together. In the beginning of the two offline model construction phases, we employ the
radial basis function deep neural network (RBF-DNN) designed in this study and the
corresponding parameter analysis methods to identify key features for model construction.
This procedure should be applied when the factory has no existing product fault detection
system. If they already have their own fault detection system, then the offline phase for
basic model construction is ignored and only the second offline phase and the online phase
are executed. Below, we introduce the three phases.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 24

dicts the problems that will occur in the machine in a virtual space and builds a detec-
tion model for the predicted problems. The model is transferred from the virtual space
to the physical space using transfer learning, thereby accelerating the development of
fault detection models. To overcome shortages in training data, Cho et al. [44] and Dong
et al. [45] developed a fault detection method based on a neural model architecture.
Other scholars extended this method. For example, Zhang et al. [46] believed that not all
knowledge needs to be transferred, so they proposed transferring only part of the
knowledge to the target domain. Chen et al. [41] proposed using the hierarchical struc-
ture of convolutional neural networks to perform transfer learning for different fault
types. Lee et al. [47] proposed generating adversarial networks to build high-accuracy
models in the case of data imbalance. Recently, Wang et al. [48] used the concepts of dual
graph neural networks and transfer learning to establish a fault detection model suitable
for intelligent manufacturing systems.

Finally, it is worth mentioning that with the rise of the concept of sustainable de-
velopment, new fault detection systems have been developed based on this concept. For
example, Legutko [49] discussed additional factors that should be considered. Pata-
las-Maliszewska and Łosyk [50] discussed machine maintenance sustainability and de-
veloped a corresponding fuzzy neural network model. In addition, considering that
most factories already have existing machine fault detection systems, creating new sys-
tems is expensive. Therefore, in recent years, most of the efforts in this field have been to
extend existing systems to comply with sustainable development. Priority targets such
as [51–53] all fall into this category of research.

3. Algorithms
The framework of the product fault detection system developed in this study is

shown in Figure 4: it includes two offline phases for the construction of the basic model
and the add-on model and an online phase where the basic model and the add-on model
operate together. In the beginning of the two offline model construction phases, we em-
ploy the radial basis function deep neural network (RBF-DNN) designed in this study
and the corresponding parameter analysis methods to identify key features for model
construction. This procedure should be applied when the factory has no existing product
fault detection system. If they already have their own fault detection system, then the of-
fline phase for basic model construction is ignored and only the second offline phase
and the online phase are executed. Below, we introduce the three phases.

Figure 4. The framework of the product fault detection system developed in this study.

Offline phase—Basic model construction

Offline phase—Add-on model construction

Data of
basic

version

Training and
analysis of an

RBF-DNN

Key features
of basic model

Constructing the
basic model

Data of
modified
product

Running the trained
basic model

Result of
the basic model

Determining whether
correction is needed

Training and analysis
of an RBF-DNN

Label changeCorrect
Answer

Key features
of add-on

model

Constructing
the add-on

model

Real-time
data of

modified
product

Running the
trained

basic model
Running the

trained
add-on model

Deciding
the final answer

Result of
the basic model

Label change

Online phase

Trained
basic model

Collected
dada

Collected
dada

Trained
add-on model

Final
Answer

Figure 4. The framework of the product fault detection system developed in this study.

3.1. Algorithm for Offline Basic Model Construction

The algorithm designed to construct the basic model in this study comprises two parts:
training and analysis of an RBF-DNN to obtain the key features needed to construct the basic
model and the means of utilizing these key features to construct the basic model. Note that
the content of the first part is more complex, so we further divide our introduction of the first
part into three portions: (1) the design concept of the RBF-DNN, (2) the network framework
of the RBF-DNN, and (3) the means of analyzing the trained RBF-DNN parameters to
obtain the key features.

The RBF-DNN is constructed with a neuron that has an RBF as the activation function
added before the DNN. This method has been proven by researchers to be useful in finding
the most important input features for modeling. Studies on radial basis function neural
networks [16,17] and fuzzy neural networks [54,55], for example, have discussed this issue.
For deep learning models, the feasibility of this theory has also been successfully proven on

Appl. Sci. 2024, 14, 2913 7 of 23

LSTM [15] and RNNs [4]. We therefore extended this concept and added an RBF neuron to
an existing model to identify important input features for product fault detection models.
We adopted a DNN for our deep learning model rather than the previously discussed
LSTM [15] and RNNs [4] because product fault detection models usually process the
machine data that they collect from different products separately. In this case, machine
data with a sequential format are segmented into independent items of data for processing.
LSTM and RNNs, which are dedicated to sequential data, are therefore unsuitable for the
target problem. Below, we introduce the proposed RBF-DNN for feature extraction.

The framework of the proposed RBF-DNN is shown in Figure 5, comprising an input
layer, an RBF layer, multiple fully connected layers, and an output layer. First, the input
layer brings the input features of the model into the neural network. Assuming that
the product fault detection system extracts a total of n features from the machine data,
expressed as {fb1, fb2, . . ., fbn}, then the input layer will have n neurons, each responsible
for accepting the values of one feature. Next, in the RBF layer, each input layer output
will have q neurons responsible for converting it into q probability values. As shown in
Figure 6, for example, the RBF centers of three neurons are located at low, middle, and high
values. If an input layer value is 0.8, it will be converted into three probabilities, (0, 0.2, 0.7),
as shown in Figure 6a. If another input layer value is 0.1, it will be converted into three
probabilities, (0.7, 0, 0), as shown in Figure 6b. As for the RBF conversion formula in this
paper, we adopted the most common approach, set as

Oij = exp[−(Oinputi − mij)
2/σij

2], (1)

where Oij denotes the output of RBF neuron j (j ≤ q) of input layer neuron i in the RBF
layer; Oinputi represents the output of input layer neuron i; and mij and σij are the mean
and standard deviation of this RBF neuron, respectively. After the RBF layer converts
the input feature values into probabilities, we next use multiple fully connected layers to
establish the nonlinear relationships between these probabilities and the output results.
The format of the RBF-DNN output is consistent with that of the product fault detection
(i.e., good/bad product or Type 1/Type 2 bad product). For activation of the fully connected
layers, considering the fact that these layers explore the nonlinear relationships between
the RBF layer outputs and the results, we adopted the tangent sigmoid function below
rather than other commonly used functions such as Relu or Leaky Relu:

Oj = tanh(wijIi) + bj, (2)

where Oj represents the output of node j of a layer; tanh(•) denotes the tangent sigmoid
function; Ii is the output value of node i of the previous layer; wij is the weight between
node i of the previous layer and node j of the current layer; and bj is the bias of node j
of the current layer. We let the number of neurons in the output layer equal the number
of categories defined by the fault detection system. As this modeling processing is a
classification problem, we selected SoftMax as the activation function. Finally, for RBF-
DNN training, we chose the classic back-propagation algorithm. As back-propagation is a
commonly used algorithm, we do not discuss it in detail here.

We next discuss how the key input features are obtained using the trained RBF-DNN.
Many studies [4,15] have pointed out that when an RBF neuron is placed before a neural
network in training, the RBF neuron acts like a switch. For instance, if an input feature
uses three RBFs with low, middle, and high centers to perform probability conversions,
and it is known that the input feature will have no impact on the output result when it
has a higher value, then the highest RBF of the three will adjust its standard deviation to
become extremely small or extremely large so that higher values will be converted to zero
or fixed probabilities no matter what, as shown in Figure 7. In other words, we need only
check whether the RBF neuron output value of each input feature remains at zero or a fixed
value to know whether this input feature is useful. If the value of an RBF neuron output
fluctuates more widely, this input feature has a greater impact on the output results.

Appl. Sci. 2024, 14, 2913 8 of 23

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 24

fication problem, we selected SoftMax as the activation function. Finally, for RBF-DNN
training, we chose the classic back-propagation algorithm. As back-propagation is a
commonly used algorithm, we do not discuss it in detail here.

Figure 5. The structure of the proposed RBF-DNN.

(a) (b)

Figure 6. Examples to explain how the RBF layers work. (a) An example for the input layer value is
0.8. (b), An example for the input layer value is 0.1.

We next discuss how the key input features are obtained using the trained
RBF-DNN. Many studies [4,15] have pointed out that when an RBF neuron is placed be-
fore a neural network in training, the RBF neuron acts like a switch. For instance, if an
input feature uses three RBFs with low, middle, and high centers to perform probability
conversions, and it is known that the input feature will have no impact on the output
result when it has a higher value, then the highest RBF of the three will adjust its stand-
ard deviation to become extremely small or extremely large so that higher values will be
converted to zero or fixed probabilities no matter what, as shown in Figure 7. In other
words, we need only check whether the RBF neuron output value of each input feature
remains at zero or a fixed value to know whether this input feature is useful. If the value
of an RBF neuron output fluctuates more widely, this input feature has a greater impact
on the output results.

Σ f

Σ f

Σ f

•
•
•

•
•
•

•
•
•

Input
Layer

RBF
Layer

Fully connected
Layer

fb1

fbn

Good product
fb2

Σ f

Σ f

Σ f

Σ f

Σ f

Σ f

•
•
•

Σ f

Σ f

Σ f

•
•
•

Σ f

Σ f

Σ f

Σ f

q neurons

•
•
•

Type-m
bad product

•
•
•

Tangent
sigmoid

Softmax

•••

RBFa RBFb RBFc

0.8

RBFa

RBFb

RBFc

0

0.2

0.7 Input=0.8

RBFc=0.7
RBFb=0.2
RBFa=0

RBFa RBFb RBFc

0.1

RBFa

RBFb

RBFc

0.7

0

0 Input=0.1

RBFb=RBFc=0
RBFa=0.7

Figure 5. The structure of the proposed RBF-DNN.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 24

fication problem, we selected SoftMax as the activation function. Finally, for RBF-DNN
training, we chose the classic back-propagation algorithm. As back-propagation is a
commonly used algorithm, we do not discuss it in detail here.

Figure 5. The structure of the proposed RBF-DNN.

(a) (b)

Figure 6. Examples to explain how the RBF layers work. (a) An example for the input layer value is
0.8. (b), An example for the input layer value is 0.1.

We next discuss how the key input features are obtained using the trained
RBF-DNN. Many studies [4,15] have pointed out that when an RBF neuron is placed be-
fore a neural network in training, the RBF neuron acts like a switch. For instance, if an
input feature uses three RBFs with low, middle, and high centers to perform probability
conversions, and it is known that the input feature will have no impact on the output
result when it has a higher value, then the highest RBF of the three will adjust its stand-
ard deviation to become extremely small or extremely large so that higher values will be
converted to zero or fixed probabilities no matter what, as shown in Figure 7. In other
words, we need only check whether the RBF neuron output value of each input feature
remains at zero or a fixed value to know whether this input feature is useful. If the value
of an RBF neuron output fluctuates more widely, this input feature has a greater impact
on the output results.

Σ f

Σ f

Σ f

•
•
•

•
•
•

•
•
•

Input
Layer

RBF
Layer

Fully connected
Layer

fb1

fbn

Good product
fb2

Σ f

Σ f

Σ f

Σ f

Σ f

Σ f

•
•
•

Σ f

Σ f

Σ f

•
•
•

Σ f

Σ f

Σ f

Σ f

q neurons

•
•
•

Type-m
bad product

•
•
•

Tangent
sigmoid

Softmax

•••

RBFa RBFb RBFc

0.8

RBFa

RBFb

RBFc

0

0.2

0.7 Input=0.8

RBFc=0.7
RBFb=0.2
RBFa=0

RBFa RBFb RBFc

0.1

RBFa

RBFb

RBFc

0.7

0

0 Input=0.1

RBFb=RBFc=0
RBFa=0.7

Figure 6. Examples to explain how the RBF layers work. (a) An example for the input layer value is
0.8. (b), An example for the input layer value is 0.1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 24

(a) (b)

Figure 7. How to use the RBF function to map input values that do not affect the output to 0. (a)
Using the RBFc with its standard deviation extremely large. (b) Using the RBFc with its standard
deviation extremely small.

The approach that we designed begins with α RBF-DNNs with different initial
weights. Note that multiple RBF-DNNs must be trained because researchers have
demonstrated that the important input features that an RBF-DNN selects each time vary
with the initial parameters of each network. For this reason, it is necessary to create mul-
tiple initial models and then compile the statistics of the results generated by the models
before more reasonable results can be produced. After training α RBF-DNNs, we first
calculate the standard deviations of the q RBF output values within each RBF-DNN for
each input feature. Note that there will be q × α standard deviations for each feature.
Then, we calculate the summation of all standard deviations of each feature, rank the
values of this summation, and use this to understand the importance ranking of each
feature. End users can use this ranked list to select appropriate features based on their
needs. For example, suppose that the factory’s computer hardware can only run an AI
model with three real-time inputs. In that case, the factory can select the top three from
the ranked list to use as key features. On the other hand, if the factory computer has no
restrictions, the list is helpful in selecting the features which improve the accuracy of the
basic model with the minimum modeling costs.

After using the above method to identify the key features of the basic model, we use
these key features to construct the basic model. In selecting the framework of the basic
model, the model that each factory uses to perform product fault detection varies. As we
cannot test them all, we use the most common artificial neural network to verify the ef-
fectiveness of the proposed approach. The inputs of this artificial neural network are the
key features that we identified for the basic model, and the output is the fault detection
categories defined by the proposed product fault detection system.

3.2. Algorithm for Offline Add-on Model Construction
The algorithm used to construct the add-on model in this study contains a total of

three parts: (1) inputting the features of all of the production data obtained from the
modified product into the basic model to collect the accuracy rates of the basic model
with regard to said data, (2) training and analyzing another RBF-DNN with the produc-
tion data features of the extended product as the input and the accuracy of the analysis
results of the basic model as the output to obtain the key features for add-on model con-
struction, and (3) using the key add-on model features identified in the previous part to
construct the add-on model. We next introduce these three parts. Our explanation is
aided by the data in Table 1.

In the first part, suppose that the input features of the basic model are {fb1, fb2, ...,
fbm}, and the features we can obtain from the production data of the modified product
are {fe1, fe2, ..., fek}; then, we will select the intersection features of the two sets and input
them to the basic model for calculation (i.e., the first m columns of Table 1). Note that the
production data collected from the modified product may differ from those used in the
basic model. There may be more, an equal amount of, or less data. In the first two cases,

RBFa RBFb RBFc
Input=0.8

RBFa=RBFb=RBFc≒0

RBFa RBFb RBFc
Input=0.8

RBFa=RBFb=RBFc≒0

Figure 7. How to use the RBF function to map input values that do not affect the output to 0. (a) Using
the RBFc with its standard deviation extremely large. (b) Using the RBFc with its standard deviation
extremely small.

Appl. Sci. 2024, 14, 2913 9 of 23

The approach that we designed begins with α RBF-DNNs with different initial weights.
Note that multiple RBF-DNNs must be trained because researchers have demonstrated
that the important input features that an RBF-DNN selects each time vary with the initial
parameters of each network. For this reason, it is necessary to create multiple initial
models and then compile the statistics of the results generated by the models before more
reasonable results can be produced. After training α RBF-DNNs, we first calculate the
standard deviations of the q RBF output values within each RBF-DNN for each input feature.
Note that there will be q × α standard deviations for each feature. Then, we calculate the
summation of all standard deviations of each feature, rank the values of this summation,
and use this to understand the importance ranking of each feature. End users can use this
ranked list to select appropriate features based on their needs. For example, suppose that
the factory’s computer hardware can only run an AI model with three real-time inputs. In
that case, the factory can select the top three from the ranked list to use as key features. On
the other hand, if the factory computer has no restrictions, the list is helpful in selecting the
features which improve the accuracy of the basic model with the minimum modeling costs.

After using the above method to identify the key features of the basic model, we use
these key features to construct the basic model. In selecting the framework of the basic
model, the model that each factory uses to perform product fault detection varies. As
we cannot test them all, we use the most common artificial neural network to verify the
effectiveness of the proposed approach. The inputs of this artificial neural network are the
key features that we identified for the basic model, and the output is the fault detection
categories defined by the proposed product fault detection system.

3.2. Algorithm for Offline Add-On Model Construction

The algorithm used to construct the add-on model in this study contains a total of three
parts: (1) inputting the features of all of the production data obtained from the modified
product into the basic model to collect the accuracy rates of the basic model with regard to
said data, (2) training and analyzing another RBF-DNN with the production data features
of the extended product as the input and the accuracy of the analysis results of the basic
model as the output to obtain the key features for add-on model construction, and (3) using
the key add-on model features identified in the previous part to construct the add-on model.
We next introduce these three parts. Our explanation is aided by the data in Table 1.

Table 1. An example for explaining how add-on models work.

Input Features of
the Basic Model fb1 fb2 fb3 . . . fbm - -

Basic
Judgment

Real
Condition
of the Item

Label
Change

Add on
Judgment

Basic + Add on
Judgment

(Final Judgment)
Features from

Modified
Products

fe1 - fe2 . . . fek-2 fek-1 fek

Item 1 0.9 0 0.4 . . . 1.2 2.5 1.3 Good Good do not
change

do not
change Good

Item 2 0.7 0 0.6 . . . 1.1 2.9 4.1 Bad Bad do not
change change Good

Item 3 0.2 0 1.3 . . . 0.5 2.7 3.5 Good Bad change change Bad
Item 4 0.1 0 1.8 . . . 0.6 2.6 2.7 Bad Good change change Good

In the first part, suppose that the input features of the basic model are {fb1, fb2, . . .,
fbm}, and the features we can obtain from the production data of the modified product
are {fe1, fe2, . . ., fek}; then, we will select the intersection features of the two sets and input
them to the basic model for calculation (i.e., the first m columns of Table 1). Note that the
production data collected from the modified product may differ from those used in the
basic model. There may be more, an equal amount of, or less data. In the first two cases, the
features that the basic model needs are all present, so the basic model can operate normally.
In the last case, however, the basic model may lack some features. We thus input the value
zero for these input features to ensure that the basic model can operate normally, as shown

Appl. Sci. 2024, 14, 2913 10 of 23

in the second column of Table 1. After the basic model completes its calculations, we obtain
the results of the basic model for each item of production data from the modified product,
as shown in the “Basic judgment” column of Table 1. We compare this column with the
“Real condition” column and define a “Label change” column. As modified products may
differ significantly from the basic product, and there is no general solution, we ask factories
to define this label change themselves. For instance, if the fault detection results of the basic
and modified products in Table 1 are similarly either “good product” or “bad product”,
then the label change can be defined as “change” or “do not change”. With the first and
second items of data in Table 1, for example, the results of the basic model are the same
as those of the modified product, so the label is set as “do not change”. In contrast, with
the third and fourth items of data, the results of the basic model are the opposite of those
of the modified product, so the label is set as “change”. For a more complex example,
suppose that the fault detection results of the basic product are either “good product” or
“bad product—too long”, but the factory adds a “bad product—too short” category. In
this case, there will be five labels: “do not change”, “good product changed to too long”,
“too long changed to good product”, “good product changed to too short”, and “too long
changed to too short”. After the label changes for each item of the modified product have
been defined, we can proceed to the next step.

The objective of the second part is to train the RBF-DNN again and then analyze this
RBF-DNN to obtain the key features needed to construct the add-on model. The RBF-DNN
is expected to use k features {fe1, fe2, . . ., fek} of each item of data in the production data of
the modified product as inputs, so the number of input neurons of the RBF-DNN equals
k. As for the output layer of the RBF-DNN, the main objective is to output the type of
label for each item of data. Thus, the number of neurons in the output layer of this model
similarly equals the number of label categories defined by the factory. As the differences
between each modified product and the basic product vary, the number of label categories
also varies. For this reason, we suggest that users balance the data based on the number
of labels before training the RBF-DNN; otherwise, the training results will be poor, and
the number of key features obtained from analyzing the model will be inaccurate. The
principle, framework, training algorithm, and key feature identification method of this
RBF-DNN are all identical to those introduced in the previous section, so we do not discuss
them here. Finally, after completing this part of the calculations, we expect to obtain l key
features {fadd1, fadd2, . . ., faddl} needed to construct the add-on model from the RBF-DNN.

The third part of this phase is the construction of the add-on model. To enable the add-
on model to smoothly operate with the basic model, we adopted an artificial neural network.
The inputs of this network comprise l key features {fadd1, fadd2, . . ., faddl} identified in the
previous part, and the outputs are the label changes defined for each item of data in the
first part. Finally, we use back-propagation to complete the training of this add-on model.

3.3. Simultaneous Operation of Basic and Add-On Models Online

In this section, we introduce how the basic and add-on models operate together in
the online phase and produce the fault detection results of the current product. Suppose
that we obtain k features {fe1, fe2, . . ., fek} from the production data of the modified product,
and the key input features of the basic model and the add-on model are {fs1, fs2, . . ., fsm}
and {fadd1, fadd2, . . ., faddl}, respectively. We therefore extract the features needed for the
basic model and the add-on model from {fe1, fe2, . . ., fek}. If the features needed by the basic
model cannot be found in {fe1, fe2, . . ., fek}, then we use zero values for the inputs of this
dimension. Next, after obtaining the respective outputs of the basic model and the add-on
model, we combine the two results and output the fault detection results of the current
product. For example, for the case presented in Table 1, the fault detection results of the
basic and modified product comprise “good product” and “bad product”, and there are
two label changes: “change” and “do not change”. Thus, the first item of data in Table 1
is marked “good product” by the basic model and “do not change” by the add-on model,

Appl. Sci. 2024, 14, 2913 11 of 23

which means that no product flaws were detected. The outputs of the second, third, and
fourth items of data are “good product”, “bad product”, and “good product”.

4. Simulations

In this section, we use a real-world dataset to verify the proposed methodology. The
content is divided into four parts: introduction to the dataset and experiment param-
eters, the performance of basic model construction, the performance of add-on model
construction, and the performance of combining the basic model and the add-on model.

4.1. Introduction to Dataset and Experiment Parameters

The real-world dataset used in this study was obtained from a spring factory and has
been employed by multiple studies in the past [11,18]. Figure 8a shows the architecture
of this machine. Figure 8b–d illustrate its operation. It comprises a wire feeding hole in
the center column and eight wire benders surrounding it. During operation, a wire is fed
from the hole at a fixed speed, and the surrounding wire benders reach out at the right
moments to bend the wire and form the spring shape designated by the user. To collect the
data, a triaxial accelerometer was installed on the center column, as shown in Figure 8a.
This sensor collects acceleration data of the vibrations along the X, Y, and Z axes generated
as the wire is fed from the hole and bent by the wire benders. The directions of three axes
(X, Y, and Z) are marked on Figure 8a with arrows. The resulting data are displayed in
Figure 9: each cycle of variations in acceleration represents the production of one spring.
The datasets mentioned in [11,18] include the production data from springs of over a dozen
types of lengths. For our research requirement, we only used data from springs that were
171 mm, 181 mm, 188 mm, 189 mm, 190 mm, 210 mm, and 230 mm in length. Those
that were 171 mm or 181 mm long were considered to be bad products due to insufficient
length; those that were 188 mm, 189 mm, or 190 mm long were considered to be good
products; and those that were 210 mm or 230 mm long were considered to be bad products
due to excessive length. Based on the characteristics of this dataset, we saw spring length
as the difference between the basic product and the modified product and designed two
experiments: (1) the basic model only detects good products and bad products that were
too long while the add-on model considers three fault categories, and (2) the basic model
only detects good products and bad products that were too short while the add-on model
considers three fault categories.

The acceleration signal values collected for the spring change periodically (as shown
in Figure 9). Therefore, as suggested by previous papers [11,18], we did not use recursive
neural networks for modelling, but rather adopted a windowing approach. This method
starts by extracting a window for the time series of each acceleration segment and then
calculating seven features for each window’s points. The seven features are mean, maxi-
mum, energy, root mean square, variance, mean absolute deviation, and standard deviation.
As each item of data contains three time series (one for each of the axes, x, y, and z), we
ultimately obtained 21 features for each item of data. Based on the needs of our experiment,
we set the sizes of the windows and overlaps to be 150 points and 50 points, respectively.
Furthermore, as we only considered the length differences between the basic and modified
products, we only needed the original accelerator; i.e., there were no issues with increasing
or decreasing the features. Thus, in the construction of both the basic model and the add-on
model, we considered 21 features.

Appl. Sci. 2024, 14, 2913 12 of 23Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 24

(a)

(b)

(c)

(d)

Figure 8. The machine used in this experiment: (a) the structure of the machine, where the num-
bers 1 to 8 on the picture respectively represent the eight wire benders of the machine (b) the first
step in making a spring, (c) the second step in making a spring, and (d) the third step in making a
spring.

The acceleration signal values collected for the spring change periodically (as
shown in Figure 9). Therefore, as suggested by previous papers [11,18], we did not use
recursive neural networks for modelling, but rather adopted a windowing approach.
This method starts by extracting a window for the time series of each acceleration seg-
ment and then calculating seven features for each window’s points. The seven features
are mean, maximum, energy, root mean square, variance, mean absolute deviation, and
standard deviation. As each item of data contains three time series (one for each of the
axes, x, y, and z), we ultimately obtained 21 features for each item of data. Based on the
needs of our experiment, we set the sizes of the windows and overlaps to be 150 points
and 50 points, respectively. Furthermore, as we only considered the length differences
between the basic and modified products, we only needed the original accelerator; i.e.,
there were no issues with increasing or decreasing the features. Thus, in the construction
of both the basic model and the add-on model, we considered 21 features.

Figure 9. An example of using windows to extract features from acceleration signals.

Wire Feeding Hole

Eight Wire Benders

Triaxial Accelerometer

1
2

3

4

56

7

8

xy

z

The wire starts to
feed from the hole

Bender 3 wait here
to bend the wire

Spring is taking shape

Bender 3 wait
here to bend the wire

Probe for checking
spring displacement

The central axis is
rotated to facilitate
the cutting of the spring

Bender 4 extends to
cut off the spring

-10

-5

0

5

10

1 101 201 301 401 501 601 701 801

x y z

T
he

 m
ag

ni
tu

de
 o

f a
cc

el
er

at
io

n

Time step

Window

−

−

Figure 8. The machine used in this experiment: (a) the structure of the machine, where the numbers
1 to 8 on the picture respectively represent the eight wire benders of the machine (b) the first step in
making a spring, (c) the second step in making a spring, and (d) the third step in making a spring.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 24

(a)

(b)

(c)

(d)

Figure 8. The machine used in this experiment: (a) the structure of the machine, where the num-
bers 1 to 8 on the picture respectively represent the eight wire benders of the machine (b) the first
step in making a spring, (c) the second step in making a spring, and (d) the third step in making a
spring.

The acceleration signal values collected for the spring change periodically (as
shown in Figure 9). Therefore, as suggested by previous papers [11,18], we did not use
recursive neural networks for modelling, but rather adopted a windowing approach.
This method starts by extracting a window for the time series of each acceleration seg-
ment and then calculating seven features for each window’s points. The seven features
are mean, maximum, energy, root mean square, variance, mean absolute deviation, and
standard deviation. As each item of data contains three time series (one for each of the
axes, x, y, and z), we ultimately obtained 21 features for each item of data. Based on the
needs of our experiment, we set the sizes of the windows and overlaps to be 150 points
and 50 points, respectively. Furthermore, as we only considered the length differences
between the basic and modified products, we only needed the original accelerator; i.e.,
there were no issues with increasing or decreasing the features. Thus, in the construction
of both the basic model and the add-on model, we considered 21 features.

Figure 9. An example of using windows to extract features from acceleration signals.

Wire Feeding Hole

Eight Wire Benders

Triaxial Accelerometer

1
2

3

4

56

7

8

xy

z

The wire starts to
feed from the hole

Bender 3 wait here
to bend the wire

Spring is taking shape

Bender 3 wait
here to bend the wire

Probe for checking
spring displacement

The central axis is
rotated to facilitate
the cutting of the spring

Bender 4 extends to
cut off the spring

-10

-5

0

5

10

1 101 201 301 401 501 601 701 801

x y z

T
he

 m
ag

ni
tu

de
 o

f a
cc

el
er

at
io

n

Time step

Window

−

−

Figure 9. An example of using windows to extract features from acceleration signals.

The four models used in this experiment included (1) the RBF-DNN that determines the
key features of the basic model, (2) the basic model itself, (3) the RBF-DNN that determines
the key features of the add-on model, and (4) the add-on model itself. We introduce their
parameter settings below. First are the two RBF-DNNs in (1) and (3). In the construction
phases of the basic and add-on models, 21 features were considered, so the number of input
neurons in both RBF-DNNs was 21. Next, regarding the number of neurons in the RBF
layer, we referred to the settings of past studies [4,15], in which each input neuron uses three
RBF neurons to describe it. Thus, the RBF layer contained a total of 63 neurons. As for the
subsequent fully connected layers, we had the number of neurons decrease to a fourth of
the former number each time. Thus, the first fully connected layer contained 16 neurons,
and the second fully connected layer contained four neurons. Any more fully connected
layers would reduce the number to lower than the number of categories considered for
product fault detection, so there were no more fully connected layers. The output layer of

Appl. Sci. 2024, 14, 2913 13 of 23

the RBF-DNN paired with the basic model was expected to have two neurons, whereas that
of the RBF-DNN paired with the add-on model was expected to have three neurons. For
the training parameters of the two RBF-DNNs, we set 100 epochs, and the learning rate was
0.001. Also, to avoid overfitting, we employed an early stopping procedure in the training
process. Finally, we used Adam to avoid local minima. For the training set, we employed the
synthesized minority oversampling technique to balance the amounts of data in the different
fault detection categories. We selected 70% to serve as the training data and the remaining
30% to serve as the test data. Last of all is the operating environment of these two RBF-DNNs.
Both were run in Windows 10, 64-bit, with an AMD Ryzen 9 5900X 12-core processor, 3.7 GHz,
and 128 GB of memory. In terms of key feature selection, to verify the high error recognition
rate of the proposed method, we assume that the factory does not have any restrictions in
terms of hardware and seek features with the highest modeling accuracy and lowest cost.
Next are the basic and add-on models themselves in (2) and (4). As we did not want the
efficacy of the models themselves to affect our analysis results, we only adopted the simplest
method to implement the artificial neural networks of these two models, which was using
the NNstart kit provided by Matlab. The default values of the kit were used for all of the
parameters of the two artificial neural networks.

4.2. Verification of Basic Model

In this section, we verify the efficacy of RBF-DNN for the identification of key features
for basic model construction. First, Figures 10 and 11 show the importance ranking of the
21 features found by RBF-DNN for the basic model. Specifically, Figure 10 shows the results of
constructing the basic model for products that are good and too long, and Figure 11 presents
the results of constructing the basic model for products that are good and too short. Higher
rankings are indicated by a darker gradient. It can be seen that the importance ranking is
generally consistent with better features on the X axis than those on the Y axis, which are better
than those on the Z axis. This is not surprising because the machine used in this experiment
mainly moves in the direction of the x axis, and then in the direction of the y axis. Thus, the
features identified by the RBF-DNN are ranked accordingly. The z axis is only related to the
output movement of the wire, and the signal on the accelerometer remains almost unchanged,
so the data represented on this axis are unrelated to product damage.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 24

Figure 10. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
long), where darker gradients indicate higher rankings.

Figure 11. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
short), where darker gradients indicate higher rankings.

Figure 12 shows the results of experiments on selecting the number of key features.
The x axis of these two figures represents the use of the first few features to build the
basic model, and the y axis represents the accuracy of the established basic model. This
figure shows that x = 7 is the watershed for accuracy changes. Before 7, the accuracy
slowly increases, but after 7, it remains stable. Therefore, we select seven modeling fea-
tures for each of the two sets of experiments.

Figure 12. Results of selecting the number of key features for the basic model.

Tables 2 and 3 compare the efficacy of the proposed approach (i.e., using the top
seven features identified using the RBF-DNN) with other methods for basic model con-
struction. The latter included using all 21 features, with the 8th to 14th most important
features (seven in total) identified using the RBF-DNN, the 15th to 21st most important
features identified using the RBF-DNN, the 1st to 7th most important features (seven in
total) identified using the random forest, the 8th to 14th most important features (seven
in total) identified using the random forest, and the 15th to 21st most important features
identified using the random forest for basic model construction. Note that this paper us-
es random forests as the comparison method because they are the most commonly ap-
plied for feature extraction in machine learning. The important feature values are set in
units of 7 to allow RBF-DNNs to be compared fairly with random forests. Table 2 shows
the results of constructing the basic model for products that are good and too long, and

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

8 10 6
9 2 18
5 16 19
7 13 20
1 17 21
4 11 14
3 12 15

0

20

40

60

80

100

120

2 7 12 17

Good + Too long Good + Too short

A
cc

ur
ac

y

Number of used features

Figure 10. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
long), where darker gradients indicate higher rankings.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 24

Figure 10. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
long), where darker gradients indicate higher rankings.

Figure 11. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
short), where darker gradients indicate higher rankings.

Figure 12 shows the results of experiments on selecting the number of key features.
The x axis of these two figures represents the use of the first few features to build the
basic model, and the y axis represents the accuracy of the established basic model. This
figure shows that x = 7 is the watershed for accuracy changes. Before 7, the accuracy
slowly increases, but after 7, it remains stable. Therefore, we select seven modeling fea-
tures for each of the two sets of experiments.

Figure 12. Results of selecting the number of key features for the basic model.

Tables 2 and 3 compare the efficacy of the proposed approach (i.e., using the top
seven features identified using the RBF-DNN) with other methods for basic model con-
struction. The latter included using all 21 features, with the 8th to 14th most important
features (seven in total) identified using the RBF-DNN, the 15th to 21st most important
features identified using the RBF-DNN, the 1st to 7th most important features (seven in
total) identified using the random forest, the 8th to 14th most important features (seven
in total) identified using the random forest, and the 15th to 21st most important features
identified using the random forest for basic model construction. Note that this paper us-
es random forests as the comparison method because they are the most commonly ap-
plied for feature extraction in machine learning. The important feature values are set in
units of 7 to allow RBF-DNNs to be compared fairly with random forests. Table 2 shows
the results of constructing the basic model for products that are good and too long, and

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

8 10 6
9 2 18
5 16 19
7 13 20
1 17 21
4 11 14
3 12 15

0

20

40

60

80

100

120

2 7 12 17

Good + Too long Good + Too short

A
cc

ur
ac

y

Number of used features

Figure 11. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
short), where darker gradients indicate higher rankings.

Appl. Sci. 2024, 14, 2913 14 of 23

Figure 12 shows the results of experiments on selecting the number of key features.
The x axis of these two figures represents the use of the first few features to build the basic
model, and the y axis represents the accuracy of the established basic model. This figure
shows that x = 7 is the watershed for accuracy changes. Before 7, the accuracy slowly
increases, but after 7, it remains stable. Therefore, we select seven modeling features for
each of the two sets of experiments.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 24

Figure 10. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
long), where darker gradients indicate higher rankings.

Figure 11. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
short), where darker gradients indicate higher rankings.

Figure 12 shows the results of experiments on selecting the number of key features.
The x axis of these two figures represents the use of the first few features to build the
basic model, and the y axis represents the accuracy of the established basic model. This
figure shows that x = 7 is the watershed for accuracy changes. Before 7, the accuracy
slowly increases, but after 7, it remains stable. Therefore, we select seven modeling fea-
tures for each of the two sets of experiments.

Figure 12. Results of selecting the number of key features for the basic model.

Tables 2 and 3 compare the efficacy of the proposed approach (i.e., using the top
seven features identified using the RBF-DNN) with other methods for basic model con-
struction. The latter included using all 21 features, with the 8th to 14th most important
features (seven in total) identified using the RBF-DNN, the 15th to 21st most important
features identified using the RBF-DNN, the 1st to 7th most important features (seven in
total) identified using the random forest, the 8th to 14th most important features (seven
in total) identified using the random forest, and the 15th to 21st most important features
identified using the random forest for basic model construction. Note that this paper us-
es random forests as the comparison method because they are the most commonly ap-
plied for feature extraction in machine learning. The important feature values are set in
units of 7 to allow RBF-DNNs to be compared fairly with random forests. Table 2 shows
the results of constructing the basic model for products that are good and too long, and

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

8 10 6
9 2 18
5 16 19
7 13 20
1 17 21
4 11 14
3 12 15

0

20

40

60

80

100

120

2 7 12 17

Good + Too long Good + Too short
A

cc
ur

ac
y

Number of used features
Figure 12. Results of selecting the number of key features for the basic model.

Tables 2 and 3 compare the efficacy of the proposed approach (i.e., using the top seven
features identified using the RBF-DNN) with other methods for basic model construction.
The latter included using all 21 features, with the 8th to 14th most important features (seven
in total) identified using the RBF-DNN, the 15th to 21st most important features identified
using the RBF-DNN, the 1st to 7th most important features (seven in total) identified
using the random forest, the 8th to 14th most important features (seven in total) identified
using the random forest, and the 15th to 21st most important features identified using the
random forest for basic model construction. Note that this paper uses random forests as
the comparison method because they are the most commonly applied for feature extraction
in machine learning. The important feature values are set in units of 7 to allow RBF-DNNs
to be compared fairly with random forests. Table 2 shows the results of constructing the
basic model for products that are good and too long, and Table 3 presents the results of
constructing the basic model for products that are good and too short. It is clear from the
two tables that, in most cases, the results of using the features ranked as more important by
the RBF-DNN were better than those of using less important features. The accuracy of the
model constructed using the last seven features was the poorest. These results demonstrate
the effectiveness of the proposed RBF-DNN. Next, using all 21 features to construct the
basic model produces better results than using only the top seven features identified using
the RBF-DNN. However, the computational costs of using all 21 features for modeling
are more than three times as high as those of the proposed approach. As both models
offer high accuracy, the additional computational costs of the comparative model seem
unnecessary. Finally, comparing the RBF-DNN method with a random forest, we can see
that the RBF-DNN method can improve modeling accuracy under only seven features.
This further confirms the rationality of using the RBF-DNN in the proposed method.

Appl. Sci. 2024, 14, 2913 15 of 23

Table 2. Results of constructing basic model for products that are good and too long.

Inputs of the Basic Model Accuracy

All 21 features 100%
1st to 7th most important features identified using the random forest 90.2%

8th to 14th most important features identified using the random forest 85.3%
15th to 21st most important features identified using the random forest 83.7%

1st to 7th most important features identified using RBF-DNN 94.4%
8th to 14th most important features identified using RBF-DNN 84.1%
15th to 21st most important features identified using RBF-DNN 81.1%

Table 3. Results of constructing basic model for products that are good and too short.

Inputs of the Basic Model Accuracy

All 21 features 98.5%
1st to 7th most important features identified using the random forest 90.2%

8th to 14th most important features identified using the random forest 87.9%
15th to 21st most important features identified using the random forest 87.7%

1st to 7th most important features identified using RBF-DNN 93.8%
8th to 14th most important features identified using RBF-DNN 88.1%
15th to 21st most important features identified using RBF-DNN 85.5%

4.3. Verification of Add-On Model Construction

In this section, we explore the efficacy of the add-on model. Note that when a factory
builds and uses an add-on model, it is possible to (1) use the method proposed in this paper
to build a basic model and (2) directly use the company’s existing method as a basic model.
Thus, we conduct two rounds of experimental simulation.

First, we use the proposed method to build a basic model as well as the add-on model.
The accuracy of the basic models are 94.4% and 93.8% for the two experiments, respectively.
Figures 13 and 14 present the importance rankings of the 21 features found by the RBF-DNN
for the add-on model. Specifically, Figure 13 shows the results of identifying products that are
too short as well as good products and products that are too long, while Figure 14 displays
the results of identifying products that are too long as well as good products and products
that are too short. A darker gradient indicates a higher ranking. First, the figures show that
for all experiments, energy and root mean square improve significantly compared with the
basic model (i.e., Figures 10 and 11). Since the primary learning goal of the add-on model is
identifying the difference between the new category of product errors and the old category,
the ranking of the place where the difference between the two is the largest will naturally
increase. For the machine in this experiment, the length of the spring is related to the amount
of time in which the machine outputs the wire and the time in which the machine allows the
wire to form a ring. In addition, the length of the wire output time is related to the energy and
root mean square of the Z axis. The amount of time the machine allows the wire to form a
ring is related to the energy and root mean square of the Y axis, so the rankings of these four
features will naturally increase. Second, the importance ranking of most features on the X axis
shows a downward trend compared with the ranking of the basic model. This is because the
proposed add-on model can take into account less knowledge than the basic model. Therefore,
if the basic model learns the features on the X axis (as shown in Figures 10 and 11), then the
importance ranking of these repeated features will naturally reduce. Third, the Z-axis features,
other than energy and root mean square, are ranked very low in the add-on and basic models.
Whether the RBF-DNN is used for the basic or add-on model, it will not select features that
are not helpful for modeling. As shown in Figures 10, 11, 13 and 14, Z-axis features other than
energy and root mean square are irrelevant to the spring manufacturing process, so they are
always ranked low.

Appl. Sci. 2024, 14, 2913 16 of 23

Figure 13. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) using proposed method to construct basic model, where darker gradients indicate
higher rankings.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 24

which the machine outputs the wire and the time in which the machine allows the wire
to form a ring. In addition, the length of the wire output time is related to the energy and
root mean square of the Z axis. The amount of time the machine allows the wire to form
a ring is related to the energy and root mean square of the Y axis, so the rankings of
these four features will naturally increase. Second, the importance ranking of most fea-
tures on the X axis shows a downward trend compared with the ranking of the basic
model. This is because the proposed add-on model can take into account less knowledge
than the basic model. Therefore, if the basic model learns the features on the X axis (as
shown in Figures 10 and 11), then the importance ranking of these repeated features will
naturally reduce. Third, the Z-axis features, other than energy and root mean square, are
ranked very low in the add-on and basic models. Whether the RBF-DNN is used for the
basic or add-on model, it will not select features that are not helpful for modeling. As
shown in Figures 10, 11, 13 and 14, Z-axis features other than energy and root mean
square are irrelevant to the spring manufacturing process, so they are always ranked
low.

.

Figure 13. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) using proposed method to construct basic model, where darker gradients indi-
cate higher rankings.

Figure 14. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
short → too long) using proposed method to construct basic model, where darker gradients indi-
cate higher rankings.

Figure 15 shows the experimental results of selecting the number of key features,
where the x axis represents the number of the most important features used for add-on
model construction and the y axis indicates the accuracy in the resulting add-on model.
It is clear that there are turning points in error at x = 7. We therefore selected x = 7 as the
number of features for add-on model construction to strike a balance between prediction
accuracy and modelling cost.

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

15 13 14
3 4 16
9 2 5
8 1 7
11 10 20
12 19 18
6 17 21

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

15 13 14
3 4 16
9 2 5
8 1 7
11 10 20
12 19 18
6 17 21

13 16 12
3 4 14
7 2 11
6 1 10
8 9 20
15 19 18
5 17 21

Figure 14. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
short → too long) using proposed method to construct basic model, where darker gradients indicate
higher rankings.

Figure 15 shows the experimental results of selecting the number of key features,
where the x axis represents the number of the most important features used for add-on
model construction and the y axis indicates the accuracy in the resulting add-on model.
It is clear that there are turning points in error at x = 7. We therefore selected x = 7 as the
number of features for add-on model construction to strike a balance between prediction
accuracy and modelling cost.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 24

Figure 15. The results of selecting the number of key features for the add-on model in the first sit-
uation.

Tables 4 and 5 compare the efficacy of the proposed approach with that of existing
methods in add-on model construction. The latter again included all 21 features, with
the 8th to 14th most important features (seven in total) identified using the RBF-DNN,
the 15th to 21st identified using the RBF-DNN for model construction, and the three sets
of experiments with the random forest. Table 4 shows the results of identifying products
that are too short in addition to products that are good and too long. Table 5 displays the
results of identifying products that are too long in addition to products that are good
and too short. It is clear that the accuracy of the model constructed using the seven most
important features ranked by the RBF-DNN was better than that of using less important
features. Next, using all 21 features to construct the add-on model produced slightly
better results than using the seven most important features ranked by the RBF-DNN.
However, this approach increases the construction costs of the add-on model substan-
tially. Finally, the RBF-DNN outperforms the random forest. This again confirms the ra-
tionality of using the RBF-DNN to select features for modeling.

Table 4. Results of constructing add-on model for basic model constructed using proposed meth-
od for products that are too short.

Inputs of Basic Model Accuracy
All 21 features 92.3%

1st to 7th most important features identified using the random forest 86.3%
8th to 14th most important features identified using the random forest 85.1%
15th to 21st most important features identified using the random forest 85.9%

1st to 7th most important features identified using RBF-DNN 91.7%
8th to 14th most important features identified using RBF-DNN 87.3%
15th to 21st most important features identified using RBF-DNN 84%

Table 5. Results of constructing add-on model for basic model constructed using proposed meth-
od for products that are too long.

Inputs of Basic Model Accuracy
All 21 features 90.1%

1st to 7th most important features identified using the random forest 84.7%
8th to 14th most important features identified using the random forest 83.9%
15th to 21st most important features identified using the random forest 83.5%

1st to 7th most important features identified using RBF-DNN 88.7%
8th to 14th most important features identified using RBF-DNN 84.3%
15th to 21st most important features identified using RBF-DNN 82.7%

A
cc

ur
ac

y

Number of used features

0

20

40

60

80

100

120

2 7 12 17

Good + Too long --> Too short
Good + Too short --> Too long

Figure 15. The results of selecting the number of key features for the add-on model in the first situation.

Tables 4 and 5 compare the efficacy of the proposed approach with that of existing
methods in add-on model construction. The latter again included all 21 features, with the
8th to 14th most important features (seven in total) identified using the RBF-DNN, the
15th to 21st identified using the RBF-DNN for model construction, and the three sets of
experiments with the random forest. Table 4 shows the results of identifying products
that are too short in addition to products that are good and too long. Table 5 displays

Appl. Sci. 2024, 14, 2913 17 of 23

the results of identifying products that are too long in addition to products that are good
and too short. It is clear that the accuracy of the model constructed using the seven most
important features ranked by the RBF-DNN was better than that of using less important
features. Next, using all 21 features to construct the add-on model produced slightly better
results than using the seven most important features ranked by the RBF-DNN. However,
this approach increases the construction costs of the add-on model substantially. Finally,
the RBF-DNN outperforms the random forest. This again confirms the rationality of using
the RBF-DNN to select features for modeling.

Table 4. Results of constructing add-on model for basic model constructed using proposed method
for products that are too short.

Inputs of Basic Model Accuracy

All 21 features 92.3%
1st to 7th most important features identified using the random forest 86.3%

8th to 14th most important features identified using the random forest 85.1%
15th to 21st most important features identified using the random forest 85.9%

1st to 7th most important features identified using RBF-DNN 91.7%
8th to 14th most important features identified using RBF-DNN 87.3%
15th to 21st most important features identified using RBF-DNN 84%

Table 5. Results of constructing add-on model for basic model constructed using proposed method
for products that are too long.

Inputs of Basic Model Accuracy

All 21 features 90.1%
1st to 7th most important features identified using the random forest 84.7%

8th to 14th most important features identified using the random forest 83.9%
15th to 21st most important features identified using the random forest 83.5%

1st to 7th most important features identified using RBF-DNN 88.7%
8th to 14th most important features identified using RBF-DNN 84.3%
15th to 21st most important features identified using RBF-DNN 82.7%

The second scenario simulated uses an existing basic model and an add-on model
constructed using the proposed method. We adopt the most intuitive approach to the basic
model and directly input all 21 features into a neural network implemented using the suite
provided by Matlab R2022b. That is, in Tables 2 and 3, all 21 dimensions are used as the
control group of model inputs. The accuracy of the basic models was 100% and 98.5% for
the two experiments, respectively.

First, Figures 16 and 17 show the importance rankings of the 21 features found by the
RBF-DNN for the add-on model in this situation. Figure 16 shows the results of identifying
products that are too short in addition to products that are good and too long. Figure 17
displays the results of identifying products that are too long in addition to products that are
good and too short. Darker gradients indicate higher rankings. Comparing these figures
with Figures 13 and 14, we see that the results are almost the same. This is because the main
goal of the add-on model is to learn the difference between the new category of product
errors and the old category; thus, it is not concerned with information related to the old
category on its own. Thus, as long as the product error categories identified by the basic
models are the same, the add-on models will be similar. In other words, this experiment
confirms that the proposed add-on model can be successfully built on the existing factory
model, enabling the factory to upgrade from Industry 3.0 to Industry 4.0 without building
a new model.

Appl. Sci. 2024, 14, 2913 18 of 23

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 24

The second scenario simulated uses an existing basic model and an add-on model
constructed using the proposed method. We adopt the most intuitive approach to the
basic model and directly input all 21 features into a neural network implemented using
the suite provided by Matlab R2022b. That is, in Tables 2 and 3, all 21 dimensions are
used as the control group of model inputs. The accuracy of the basic models was 100%
and 98.5% for the two experiments, respectively.

First, Figures 16 and 17 show the importance rankings of the 21 features found by
the RBF-DNN for the add-on model in this situation. Figure 16 shows the results of
identifying products that are too short in addition to products that are good and too
long. Figure 17 displays the results of identifying products that are too long in addition
to products that are good and too short. Darker gradients indicate higher rankings.
Comparing these figures with Figures 13 and 14, we see that the results are almost the
same. This is because the main goal of the add-on model is to learn the difference be-
tween the new category of product errors and the old category; thus, it is not concerned
with information related to the old category on its own. Thus, as long as the product er-
ror categories identified by the basic models are the same, the add-on models will be
similar. In other words, this experiment confirms that the proposed add-on model can be
successfully built on the existing factory model, enabling the factory to upgrade from
Industry 3.0 to Industry 4.0 without building a new model.

Figure 16. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) for existing basic model, where darker gradients indicate higher rankings.

Figure 17. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
short → too long) for existing basic model, where darker gradients indicate higher rankings.

The remaining experiments included selecting the number of features (Figure 18)
and performance verification (Tables 6 and 7). However, as these results are similar to
those depicted in Figure 15 and Tables 4 and 5, we do not discuss these further.

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

12 13 14
3 5 17

10 2 7
6 1 9
11 8 18
15 20 19
4 16 21

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

13 12 14
5 3 15
11 2 10
4 1 8
7 9 19

17 18 20
6 16 21

Figure 16. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) for existing basic model, where darker gradients indicate higher rankings.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 24

The second scenario simulated uses an existing basic model and an add-on model
constructed using the proposed method. We adopt the most intuitive approach to the
basic model and directly input all 21 features into a neural network implemented using
the suite provided by Matlab R2022b. That is, in Tables 2 and 3, all 21 dimensions are
used as the control group of model inputs. The accuracy of the basic models was 100%
and 98.5% for the two experiments, respectively.

First, Figures 16 and 17 show the importance rankings of the 21 features found by
the RBF-DNN for the add-on model in this situation. Figure 16 shows the results of
identifying products that are too short in addition to products that are good and too
long. Figure 17 displays the results of identifying products that are too long in addition
to products that are good and too short. Darker gradients indicate higher rankings.
Comparing these figures with Figures 13 and 14, we see that the results are almost the
same. This is because the main goal of the add-on model is to learn the difference be-
tween the new category of product errors and the old category; thus, it is not concerned
with information related to the old category on its own. Thus, as long as the product er-
ror categories identified by the basic models are the same, the add-on models will be
similar. In other words, this experiment confirms that the proposed add-on model can be
successfully built on the existing factory model, enabling the factory to upgrade from
Industry 3.0 to Industry 4.0 without building a new model.

Figure 16. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) for existing basic model, where darker gradients indicate higher rankings.

Figure 17. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
short → too long) for existing basic model, where darker gradients indicate higher rankings.

The remaining experiments included selecting the number of features (Figure 18)
and performance verification (Tables 6 and 7). However, as these results are similar to
those depicted in Figure 15 and Tables 4 and 5, we do not discuss these further.

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

12 13 14
3 5 17

10 2 7
6 1 9
11 8 18
15 20 19
4 16 21

X Y Z
Mean 6 16 15
Maximum 14 2 19
Energy 4 18 20
Root mean square 5 17 21
Variance 1 12 13
Mean absolute deviation 7 8 11
Standard deviation 3 10 9

13 12 14
5 3 15
11 2 10
4 1 8
7 9 19

17 18 20
6 16 21

Figure 17. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
short → too long) for existing basic model, where darker gradients indicate higher rankings.

The remaining experiments included selecting the number of features (Figure 18) and
performance verification (Tables 6 and 7). However, as these results are similar to those
depicted in Figure 15 and Tables 4 and 5, we do not discuss these further.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 24

Figure 18. Results of selecting the number of key features for the add-on model in the second situ-
ation.

Table 6. Results of constructing add-on model for existing basic model for products that are too
short.

Inputs of Basic Model Accuracy
All 21 features 93.7%

1st to 7th most important features identified using the random forest 91.7%
8th to 14th most important features identified using the random forest 89.2%
15th to 21st most important features identified using the random forest 88.6%

1st to 7th most important features identified using RBF-DNN 92.8%
8th to 14th most important features identified using RBF-DNN 90%
15th to 21st most important features identified using RBF-DNN 88.3%

Table 7. Results of constructing add-on model for existing model for products that are too long.

Inputs of Basic Model Accuracy
All 21 features 94%

1st to 7th most important features identified using the random forest 91.4%
8th to 14th most important features identified using the random forest 89.1%
15th to 21st most important features identified using the random forest 88.1%

1st to 7th most important features identified using RBF-DNN 91.8%
8th to 14th most important features identified using RBF-DNN 90.2%
15th to 21st most important features identified using RBF-DNN 84.6%

4.4. Verification of Transfer Learning for the Combination of Basic and Add-On Models
The experimental results shown in Table 8 confirm the effectiveness of transfer

learning in the combination of basic and add-on models to upgrade existing fault detec-
tion systems. There are three sets of experiments in total, and the values in each set of
experiments in the table are the best results of 30 experiments. The first group uses all 21
features to establish three categories of classification models as the control group. These
classification models were implemented using Matlab’s NNstart toolbox and the deep
neural network kit [56]. The network directly uses the toolbox’s default value. Deep
neural networks use six hidden layers and one output layer. Each hidden layer uses the
tangent sigmoid function as the activation function, and the last layer uses SoftMax. As
for other parameters, we use the Adam accelerator for training and early stops to avoid
overfitting. This control group represents the case in which a factory does not use the
transfer learning concept and directly uses the old categories with a new error category
(which is the most common scenario in practice). The second and third groups are the
two sets of experiments we conducted in the above two sections. These two sets of ex-

A
cc

ur
ac

y

Number of used features

0

20

40

60

80

100

120

2 7 12 17

Good + Too long --> Too short
Good + Too short --> Too long

Figure 18. Results of selecting the number of key features for the add-on model in the second situation.

Table 6. Results of constructing add-on model for existing basic model for products that are too short.

Inputs of Basic Model Accuracy

All 21 features 93.7%
1st to 7th most important features identified using the random forest 91.7%

8th to 14th most important features identified using the random forest 89.2%
15th to 21st most important features identified using the random forest 88.6%

1st to 7th most important features identified using RBF-DNN 92.8%
8th to 14th most important features identified using RBF-DNN 90%
15th to 21st most important features identified using RBF-DNN 88.3%

Appl. Sci. 2024, 14, 2913 19 of 23

Table 7. Results of constructing add-on model for existing model for products that are too long.

Inputs of Basic Model Accuracy

All 21 features 94%
1st to 7th most important features identified using the random forest 91.4%

8th to 14th most important features identified using the random forest 89.1%
15th to 21st most important features identified using the random forest 88.1%

1st to 7th most important features identified using RBF-DNN 91.8%
8th to 14th most important features identified using RBF-DNN 90.2%
15th to 21st most important features identified using RBF-DNN 84.6%

4.4. Verification of Transfer Learning for the Combination of Basic and Add-On Models

The experimental results shown in Table 8 confirm the effectiveness of transfer learning
in the combination of basic and add-on models to upgrade existing fault detection systems.
There are three sets of experiments in total, and the values in each set of experiments in
the table are the best results of 30 experiments. The first group uses all 21 features to
establish three categories of classification models as the control group. These classification
models were implemented using Matlab’s NNstart toolbox and the deep neural network
kit [56]. The network directly uses the toolbox’s default value. Deep neural networks
use six hidden layers and one output layer. Each hidden layer uses the tangent sigmoid
function as the activation function, and the last layer uses SoftMax. As for other parameters,
we use the Adam accelerator for training and early stops to avoid overfitting. This control
group represents the case in which a factory does not use the transfer learning concept
and directly uses the old categories with a new error category (which is the most common
scenario in practice). The second and third groups are the two sets of experiments we
conducted in the above two sections. These two sets of experiments can also be regarded
as the results of using basic and add-on models to realize the concept of transfer learning.
Note that although the basic model considers different types of errors in these two sets
of experiments, they still identify the same three categories of errors with the add-on
model. We thus compared these with the control group. The results in Table 8 show the
superiority of the experimental results of the control group. This is not surprising, because
if all categories of data are given to the model at once, the model will be able to fully
consider the differences in the three categories of data when learning and thus obtain the
highest recognition accuracy. However, we observe the results of these sets of experiments
from the perspective of statistical significance, as shown in Figure 19, where the highest,
middle, and lowest values of each set represent the mean + standard deviation, mean,
and mean−standard deviation results of 30 experiments. As shown, the numerical ranges
between the four groups of experiments overlap, which means that there is no statistically
significant difference between them. Therefore, the results of the proposed method are
similar to those of the control group, but the proposed model enables factories to upgrade
existing models without abandoning the original model or using a low-cost model with
fewer features to build an add-on model. This means that the proposed model approach is
in line with real-world demands. This conclusion verifies the effectiveness of the transfer
learning concept.

Table 8. Best results of combining basic and add-on models.

Control group: one model (good + too long + too short)

Method Accuracy

All 21 features + Matlab’s NNstart toolbox 94.5%

All 21 features + deep neural network kit 93.6%

Appl. Sci. 2024, 14, 2913 20 of 23

Table 8. Cont.

Group 1: Basic model (good + too long)→add-on model (too short)

Method Accuracy

Basic (random forest’s 7 features) + add-on (random forest’s 7 features) 83.1%

Basic (all 21 features) + add-on (random forest’s 7 features) 91.7%

Basic (RBF-DNN’s 7 features) + add-on (RBF-DNN’s 7 features) 89%

Basic (all 21 features) + add-on (7 features selected by RBF-DNN) 92.8%

Group 2: Basic model (good + too short)→add-on model (too long)

Method Accuracy

Basic (random forest’s 7 features) + add-on (random forest’s 7 features) 83.1%

Basic (all 21 features) + add-on (random forest’s 7 features) 89.3%

Basic (RBF-DNN’s 7 features) + add-on (RBF-DNN’s 7 features) 88.3%

Basic (all 21 features) + add-on (RBF-DNN’s 7 features) 91.9%
Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 24

Figure 19. The results of statistical significance experiments on four main groups.

4.5. Applicability of Proposed Method in Practice
The approach proposed in this paper can help existing fault detection systems to

achieve upgrades through the transfer learning concept without reducing accuracy. This
section discusses the applicability of the proposed method in practice from the perspec-
tives of implementation complexity, computational resource requirements, and scalabil-
ity.

The implementation complexity of the proposed method is described by the algo-
rithm flow chart presented in Figure 4. In the offline stage, the factory only needs to
build two models each time to implement the algorithm. In the online stage, the factory
only needs to run basic and add-on models once each is finished. This method resembles
the actions required by traditional fault detection systems; that is, there is no increase in
implementation complexity.

Table 9 presents the computational resource requirements of the target method in
the offline and online stages. The average values obtained after conducting the same ex-
periment 30 times are presented. The execution environment is Windows 10, 64-bit, with
an AMD Ryzen 9 5900X 12-core processor, 3.7 GHz, and 128 GB of memory. In the offline
stage, the execution time of the RBF-DNN is about 30 s, and the Matlab neural kit only
takes 5 s to complete. Thus, the computer environment and model running costs are ac-
ceptable to most factories. In the online stage, the Matlab neural kit can be completed in
about 1 second. This is less than the production time of a single product, so it can be ef-
fectively applied for instant fault detection.

Table 9. Computational resource requirements for proposed method.

Phase Offline Online

Action
Construction of
an RBF-DNN

Construction of a neural net-
work using Matlab

Running a neural network
in Matlab

Time cost about 30 s <5 s <1 s

As described in Figure 3, the goal of the proposed method is to enable factories to
quickly use existing fault detection models to establish extended models. Thus, the ap-
proach is inherently scalable, thereby meeting the needs of factories in practice.

80

82

84

86

88

90

92

94

Control group:
Matlab's toolbox

Control group:
DNN

Group 1:
Basic (21 features)
+ add-on (RBF-DNN)

Group 2:
Basic (21 features)
+ add-on (RBF-DNN)

88.74%

Method

A
cc

ur
ac

y
(%

)

92.27%

90.51%
89.14%

82.33%

85.74%

92.51%

89.82%

91.17% 90.34%

88.04%

89.19%

Figure 19. The results of statistical significance experiments on four main groups.

4.5. Applicability of Proposed Method in Practice

The approach proposed in this paper can help existing fault detection systems to
achieve upgrades through the transfer learning concept without reducing accuracy. This
section discusses the applicability of the proposed method in practice from the perspectives
of implementation complexity, computational resource requirements, and scalability.

The implementation complexity of the proposed method is described by the algorithm
flow chart presented in Figure 4. In the offline stage, the factory only needs to build
two models each time to implement the algorithm. In the online stage, the factory only
needs to run basic and add-on models once each is finished. This method resembles
the actions required by traditional fault detection systems; that is, there is no increase in
implementation complexity.

Table 9 presents the computational resource requirements of the target method in
the offline and online stages. The average values obtained after conducting the same
experiment 30 times are presented. The execution environment is Windows 10, 64-bit, with
an AMD Ryzen 9 5900X 12-core processor, 3.7 GHz, and 128 GB of memory. In the offline
stage, the execution time of the RBF-DNN is about 30 s, and the Matlab neural kit only takes
5 s to complete. Thus, the computer environment and model running costs are acceptable

Appl. Sci. 2024, 14, 2913 21 of 23

to most factories. In the online stage, the Matlab neural kit can be completed in about 1 s.
This is less than the production time of a single product, so it can be effectively applied for
instant fault detection.

Table 9. Computational resource requirements for proposed method.

Phase Offline Online

Action Construction of an
RBF-DNN

Construction of a
neural network using

Matlab

Running a neural
network in Matlab

Time cost about 30 s <5 s <1 s

As described in Figure 3, the goal of the proposed method is to enable factories
to quickly use existing fault detection models to establish extended models. Thus, the
approach is inherently scalable, thereby meeting the needs of factories in practice.

5. Conclusions and Future Works

Product fault detection systems are important auxiliary systems for factories and
have thus attracted considerable investment. However, as production modes change,
many existing systems are becoming invalid. Upgrading existing product fault detection
systems will enable factories to move into the era of Industry 4.0 at minimal cost. Existing
methods, however, ask factories to completely rebuild their systems. Transfer learning can
help factories retain their original systems, but some challenges must still be overcome.
This paper proposes two approaches to transfer learning for the upgrading of existing
product fault detection systems: (1) using a framework with a basic model and an add-
on model and (2) designing an RBF-DNN to extract key features for model construction.
We verified the effectiveness of the proposed approach using a real-world dataset. The
proposed framework will assist factories in reducing costs associated with upgrading
existing product fault detection systems.

The above paragraph summarizes the research motivation and advantages of the
proposed framework. However, our approach is subject to certain limitations. Since the
framework of this paper is based on the concept of supervised learning, if insufficient error
category data are collected by the factory, the framework will not be able to obtain enough
training data, leading to system failure. In future work, we plan to include generative AI
in this framework to simulate error category data. By using RBF-DNN as a generative AI
recognizer, analyzing the critical features captured by this RBF-DNN would also improve
the target framework. These additions would likely improve the practical applicability of
the proposed framework.

Author Contributions: Conceptualization, C.-H.L. and Y.-C.C.; Data curation, C.-H.L.; Formal anal-
ysis, C.-H.L. and Y.-C.C.; Funding acquisition, Y.-C.C. and C.-T.S.; Investigation, C.-H.L. and Y.-C.C.;
Methodology, C.-H.L. and Y.-C.C.; Project administration, Y.-C.C. and C.-T.S.; Resources, Y.-C.C. and
C.-T.S.; Software, C.-H.L.; Supervision, Y.-C.C. and C.-T.S.; Validation, C.-H.L. and Y.-C.C.; Visualization,
C.-H.L. and Y.-C.C.; Writing—original draft, C.-H.L. and Y.-C.C.; Writing—review & editing, C.-H.L.
and Y.-C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science and Technology Council, grant number
111-2121-M-005-003 and 112-2121-M-005-006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this article are not readily available because
of a confidentiality agreement signed with Shuai Hao Spring Industrial Co., Ltd. Requests to access
the datasets should be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2024, 14, 2913 22 of 23

References
1. Kościelny, J.M.; Ostasz, A.; Wasiewicz, P. Fault Detection Based on Fuzzy Neural Networks—Application to Sugar Factory

Evaporator. IFAC Proc. Vol. 2000, 33, 343–348. [CrossRef]
2. Libal, U.; Hasiewicz, Z. Wavelet based rule for fault detection. IFAC-PapersOnLine 2018, 51, 255–262. [CrossRef]
3. Liu, Z.; Zhou, Z.; Xu, Z.; Tan, D. An adaptive VNCMD and its application for fault diagnosis of industrial sewing machines. Appl.

Acoust. 2023, 213, 109500. [CrossRef]
4. Chiu, S.M.; Chen, Y.C.; Kuo, C.J.; Hung, L.C.; Hung, M.H.; Chen, C.C.; Lee, C. Development of Lightweight RBF-DRNN and

Automated Framework for CNC Tool-Wear Prediction. IEEE Trans. Instrum. Meas. 2022, 71, 2506711. [CrossRef]
5. Lee, X.Y.; Kumar, A.; Vidyaratne, L.; Rao, A.R.; Farahat, A.; Gupta, C. An ensemble of convolution-based methods for fault

detection using vibration signals. In Proceedings of the IEEE International Conference on Prognostics and Health Management
(ICPHM), Montreal, QC, Canada, 5–7 June 2023; pp. 172–179.

6. Li, Z.; Wang, Y.; Wang, K.S. Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0
scenario. Adv. Manuf. 2017, 5, 377–387. [CrossRef]

7. Mezair, T.; Djenouri, Y.; Belhadi, A.; Srivastava, G.; Lin, J.C. W, A sustainable deep learning framework for fault detection in 6G
Industry 4.0 heterogeneous data environments. Comput. Commun. 2022, 187, 164–171. [CrossRef]

8. Vita, F.D.; Bruneo, D.; Das, S.K. On the use of a full stack hardware/software infrastructure for sensor data fusion and fault
prediction in industry 4.0. Pattern Recognit. Lett. 2020, 138, 30–37. [CrossRef]

9. Drakaki, M.; Karnavas, Y.L.; Tzionas, P.; Chasiotis, I.D. Recent Developments towards Industry 4.0 Oriented Predictive Mainte-
nance in Induction Motors. Procedia Comput. Sci. 2021, 180, 943–949. [CrossRef]

10. Yan, J.; Meng, Y.; Lu, L.; Li, L. Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for
Predictive Maintenance. IEEE Access 2017, 5, 23484–23491. [CrossRef]

11. Kuo, C.J.; Ting, K.C.; Chen, Y.C.; Yang, D.L.; Chen, H.M. Automatic machine status prediction in the era of Industry 4.0: Case
study of machines in a spring factory. J. Syst. Archit. 2017, 81, 44–53. [CrossRef]

12. Neupane, D.; Kim, Y.; Seok, J.; Hong, J. CNN-Based Fault Detection for Smart Manufacturing. Appl. Sci. 2021, 11, 11732. [CrossRef]
13. Mazzoleni, M.; Sarda, K.; Acernese, A.; Russo, L.; Manfredi, L.; Glielmo, L.; Vecchio, C.D. A fuzzy logic-based approach for fault

diagnosis and condition monitoring of industry 4.0 manufacturing processes. Eng. Appl. Artif. Intell. 2022, 115, 105317. [CrossRef]
14. Raouf, I.; Kumar, P.; Lee, H.; Kim, H.S. Transfer Learning-Based Intelligent Fault Detection Approach for the Industrial Robotic

System. Mathematics 2023, 11, 945. [CrossRef]
15. Chen, Y.C.; Li, D.C. Selection of key features for PM2.5 prediction using a wavelet model and RBF-LSTM. Appl. Intell. 2021, 51, 2534–2555.

[CrossRef]
16. Yang, L. Risk Prediction Algorithm of Social Security Fund Operation Based on RBF Neural Network. Int. J. Antennas Propag.

2021, 2021, 6525955. [CrossRef]
17. Zhang, A.; Xie, H.; Cao, Q. The Study of Safety of Ships’ Setting Sail Assessment Based on RBF Neural Network. In Proceedings of

the International Conference on Automation, Control and Robotics Engineering, Dalian, China, 19–20 September 2020; pp. 607–611.
18. Chen, Y.-C.; Ting, K.-C.; Chen, Y.-M.; Yang, D.-L.; Chen, H.-M.; Ying, J.J.-C. A Low-Cost Add-On Sensor and Algorithm to Help

Small- and Medium-Sized Enterprises Monitor Machinery and Schedule Processes. Appl. Sci. 2019, 9, 1549. [CrossRef]
19. Isermann, R. Fault-Diagnosis Systems—An Introduction from Fault Detection to Fault Tolerance, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006.
20. Brkovic, A.; Gajic, D.; Gligorijevic, J.; Savic-Gajic, I.; Georgieva, O.; Gennaro, S.D. Early fault detection and diagnosis in bearings

for more efficient operation of rotating machinery. Energy 2017, 136, 63–71. [CrossRef]
21. Sarita, K.; Devarapalli, R.; Kumar, S.; Malik, H.; Márquez, F.P.G.; Rai, P.; Malik, H.; Chaudhary, G.; Srivastava, S. Principal

component analysis technique for early fault detection. J. Intell. Fuzzy Syst. 2022, 42, 861–872. [CrossRef]
22. Yu, Y.; Peng, M.J.; Wang, H.; Ma, Z.G.; Li, W. Improved PCA model for multiple fault detection, isolation and reconstruction of

sensors in nuclear power plant. Ann. Nucl. Energy 2020, 148, 107662. [CrossRef]
23. Yu, W.; Dillon, T.; Mostafa, F.; Rahayu, W.; Liu, Y. A Global Manufacturing Big Data Ecosystem for Fault Detection in Predictive

Maintenance. IEEE Trans. Ind. Inform. 2020, 16, 183–192. [CrossRef]
24. Xue, P.; Zhou, Z.; Fang, X.; Chen, X.; Liu, L.; Liu, Y.; Liu, J. Fault detection and operation optimization in district heating

substations based on data mining techniques. Appl. Energy 2017, 205, 926–940. [CrossRef]
25. Limaua, F.S.D.; Guedes, L.A.H.; Silva, D.R. Application of Fourier Descriptors and Pearson Correlation for fault detection in

Sucker Rod Pumping System. In Proceedings of the IEEE Conference on Emerging Technologies & Factory Automation, Palma
de Mallorca, Spain, 22–25 September 2009; pp. 1–4.

26. Anouar, B.A.E.; Elamrani, M.; Elkihel, B.; Delaunois, F. Fault diagnosis of Rotating Machinery using Vibration Measurement:
Application of the Wavelet Transform. In Proceedings of the International Conference on Industrial Engineering and Operations
Management, Rabat, Morocco, 11–13 April 2017.

27. Hartono, D.; Halim, D.; Widodo, A.; Roberts, G. Bevel Gearbox Fault Diagnosis using Vibration Measurements. In Proceedings of the
2016 International Conference on Frontiers of Sensors Technologies (ICFST 2016), Hong Kong, China, 12–14 March 2016; Volume 59.

28. Wang, Z.; Shen, Y. Kalman Filter-Based Fault Diagnosis. In Model-Based Fault Diagnosis. Studies in Systems, Decision and Control, 1st
ed.; Springer: Singapore, 2023; Volume 221, pp. 154–196.

29. Jiang, H.; Liu, G.; Li, J.; Zhang, T.; Wang, C.; Ren, K. Model based fault diagnosis for drillstring washout using iterated unscented
Kalman filter. J. Pet. Sci. Eng. 2019, 180, 246–256. [CrossRef]

https://doi.org/10.1016/S1474-6670(17)37381-0
https://doi.org/10.1016/j.ifacol.2018.09.585
https://doi.org/10.1016/j.apacoust.2023.109500
https://doi.org/10.1109/TIM.2022.3164063
https://doi.org/10.1007/s40436-017-0203-8
https://doi.org/10.1016/j.comcom.2022.02.010
https://doi.org/10.1016/j.patrec.2020.06.028
https://doi.org/10.1016/j.procs.2021.01.345
https://doi.org/10.1109/ACCESS.2017.2765544
https://doi.org/10.1016/j.sysarc.2017.10.007
https://doi.org/10.3390/app112411732
https://doi.org/10.1016/j.engappai.2022.105317
https://doi.org/10.3390/math11040945
https://doi.org/10.1007/s10489-020-02031-5
https://doi.org/10.1155/2021/6525955
https://doi.org/10.3390/app9081549
https://doi.org/10.1016/j.energy.2016.08.039
https://doi.org/10.3233/JIFS-189755
https://doi.org/10.1016/j.anucene.2020.107662
https://doi.org/10.1109/TII.2019.2915846
https://doi.org/10.1016/j.apenergy.2017.08.035
https://doi.org/10.1016/j.petrol.2019.05.043

Appl. Sci. 2024, 14, 2913 23 of 23

30. Khan, R.; Khan, S.U.; Khan, S.; Khan, M.U.A. Localization Performance Evaluation of Extended Kalman Filter in Wireless Sensors
Network. Procedia Comput. Sci. 2014, 32, 117–124. [CrossRef]

31. Nykyri, M.; Kuisma, M.; Kärkkäinen, T.J.; Junkkari, T.; Kerkelä, K.; Puustinen, J.; Myrberg, J.; Hallikas, J. Predictive Analytics
in a Pulp Mill using Factory Automation Data-Hidden Potential. In Proceedings of the IEEE 17th International Conference on
Industrial Informatics, Helsinki, Finland, 22–25 July 2019; pp. 1014–1020.

32. Mishra, K.M.; Huhtala, K.J. Fault Detection of Elevator Systems Using Multilayer Perceptron Neural Network. In Proceedings of the IEEE
International Conference on Emerging Technologies and Factory Automation, Zaragoza, Spain, 10–13 September 2019; pp. 904–909.

33. Nguyen, N.B. Fault localization on the transmission lines by wavelet technique combined radial basis function neural network. J.
Tech. Educ. Sci. 2019, 14, 7–11.

34. Lilhore, U.K.; Simaiya, S.; Sandhu, J.K.; Trivedi, N.K.; Garg, A.; Moudgil, A. Deep Learning-Based Predictive Model for Defect
Detection and Classification in Industry 4.0. In Proceedings of the International Conference on Emerging Smart Computing and
Informatics, Pune, India, 9–11 March 2022; pp. 1–5.

35. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans.
Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

36. Chen, Z.; Deng, S.; Chen, X.; Li, C.; Sanchez, R.V.; Qin, H. Deep neural networks-based rolling bearing fault diagnosis.
Microelectron. Reliab. 2017, 75, 327–333. [CrossRef]

37. Hermawan, A.P.; Kim, D.-S.; Lee, J.-M. Sensor Failure Recovery using Multi Look-back LSTM Algorithm in Industrial Internet
of Things. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, Vienna,
Austria, 8–11 September 2020; pp. 1363–1366.

38. Kumar, P.; Hati, A.S. Transfer learning-based deep CNN model for multiple faults detection in SCIM. Neural Comput. Appl. 2021,
2021, 15851–15862. [CrossRef]

39. Skowron, M. Analysis of PMSM Short-Circuit Detection Systems Using Transfer Learning of Deep Convolutional Networks.
Power Electron. Drives 2024, 9, 21–33. [CrossRef]

40. Liu, J.Y.; Zhang, Q.; Li, X.; Li, G.N.; Liu, Z.M.; Xie, Y.; Li, K.N.; Liu, B. Transfer learning-based strategies for fault diagnosis in
building energy systems. Energy Build. 2021, 250, 111256. [CrossRef]

41. Chen, S.W.; Ge, H.J.; Li, H.; Sun, Y.C.; Qian, X.Y. Hierarchical deep convolution neural networks based on transfer learning for
transformer rectifier unit fault diagnosis. Measurement 2021, 167, 108257. [CrossRef]

42. Li, Y.T.; Jiang, W.B.; Zhang, G.Y.; Shu, L.J. Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder
with small-scale data. Renew. Energy 2021, 171, 103–115. [CrossRef]

43. Xu, Y.; Sun, Y.M.; Liu, X.L.; Zheng, Y.H. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019,
7, 19990–19999. [CrossRef]

44. Cho, S.H.; Kim, S.; Choi, J.-H. Transfer Learning-Based Fault Diagnosis under Data Deficiency. Appl. Sci. 2020, 10, 7768. [CrossRef]
45. Dong, Y.J.; Li, Y.Q.; Zheng, H.L.; Wang, R.X.; Xu, M.Q. A new dynamic model and transfer learning based intelligent fault diagnosis

framework for rolling element bearings race faults: Solving the small sample problem. ISA Trans. 2022, 121, 327–348. [CrossRef] [PubMed]
46. Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted

adversarial networks. Neural Netw. 2020, 129, 312–322. [CrossRef] [PubMed]
47. Li, J.; Liu, Y.B.; Li, Q.J. Generative adversarial network and transfer-learning-based fault detection for rotating machinery with

imbalanced data condition. Meas. Sci. Technol. 2022, 33, 045103. [CrossRef]
48. Wang, H.; Wang, J.W.; Zhao, Y.; Liu, Q.; Liu, M.; Shen, W.M. Few-Shot Learning for Fault Diagnosis with a Dual Graph Neural

Network. IEEE Trans. Ind. Inform. 2023, 19, 1559–1568. [CrossRef]
49. Legutko, S. Industry 4.0 Technologies for the Sustainable Management of Maintenance Resources. In Proceedings of the 2022

International Conference Innovation in Engineering, Minho, Portugal, 28–30 June 2022; pp. 37–48.
50. Patalas-Maliszewska, J.; Łosyk, H. An approach to maintenance sustainability level assessment integrated with Industry 4.0

technologies using Fuzzy-TOPSIS: A real case study. Adv. Prod. Eng. Manag. 2022, 17, 455–468. [CrossRef]
51. Mendes, D.; Gaspar, P.D.; Charrua-Santos, F.; Navas, H. Synergies between Lean and Industry 4.0 for Enhanced Maintenance

Management in Sustainable Operations: A Model Proposal. Processes 2023, 11, 2691. [CrossRef]
52. Kaczmarek, M.J.; Gola, A. Maintenance 4.0 Technologies for Sustainable Manufacturing—An Overview. IFAC-PapersOnLine 2019, 52, 91–96.
53. Hadjadji, A.; Sattarpanah Karganroudi, S.; Barka, N.; Echchakoui, S. Advances in Smart Maintenance for Sustainable Manufactur-

ing in Industry 4.0. In Sustainable Manufacturing in Industry 4.0; Springer: Singapore, 2023; pp. 97–123.
54. Wang, Y.; Luo, C. An intelligent quantitative trading system based on intuitionistic-GRU fuzzy neural networks. Appl. Soft

Comput. 2021, 108, 107471. [CrossRef]
55. Yao, J.; Lu, B.; Zhang, J. Multi-Step-Ahead Tool State Monitoring Using Clustering Feature-Based Recurrent Fuzzy Neural

Networks. IEEE Access 2021, 9, 113443–113453. [CrossRef]
56. Keras 3 API Documentation/Models API/The Sequential Class. Available online: https://keras.io/api/models/sequential/

(accessed on 10 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procs.2014.05.405
https://doi.org/10.1109/TIE.2017.2774777
https://doi.org/10.1016/j.microrel.2017.03.006
https://doi.org/10.1007/s00521-021-06205-1
https://doi.org/10.2478/pead-2024-0002
https://doi.org/10.1016/j.enbuild.2021.111256
https://doi.org/10.1016/j.measurement.2020.108257
https://doi.org/10.1016/j.renene.2021.01.143
https://doi.org/10.1109/ACCESS.2018.2890566
https://doi.org/10.3390/app10217768
https://doi.org/10.1016/j.isatra.2021.03.042
https://www.ncbi.nlm.nih.gov/pubmed/33962795
https://doi.org/10.1016/j.neunet.2020.06.014
https://www.ncbi.nlm.nih.gov/pubmed/32585512
https://doi.org/10.1088/1361-6501/ac3945
https://doi.org/10.1109/TII.2022.3205373
https://doi.org/10.14743/apem2022.4.448
https://doi.org/10.3390/pr11092691
https://doi.org/10.1016/j.asoc.2021.107471
https://doi.org/10.1109/ACCESS.2021.3104668
https://keras.io/api/models/sequential/

	Introduction
	Related Works
	Algorithms
	Algorithm for Offline Basic Model Construction
	Algorithm for Offline Add-On Model Construction
	Simultaneous Operation of Basic and Add-On Models Online

	Simulations
	Introduction to Dataset and Experiment Parameters
	Verification of Basic Model
	Verification of Add-On Model Construction
	Verification of Transfer Learning for the Combination of Basic and Add-On Models
	Applicability of Proposed Method in Practice

	Conclusions and Future Works
	References

