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Abstract: In the era of Industry 3.0, product fault detection systems became important auxiliary
systems for factories. These systems efficiently monitor product quality, and as such, substantial
amounts of capital were invested in their development. However, with the arrival of Industry 4.0,
high-volume low-mix production modes are gradually being replaced by low-volume high-mix
production modes, reducing the applicability of existing systems. The extent of investment has
prompted factories to seek upgrades to tailor existing systems to suit new production modes. In
this paper, we propose an approach to upgrading based on the concept of transfer learning. The key
elements are (1) using a framework with a basic model and an add-on model rather than fine-tuning
parameters and (2) designing a radial basis function deep neural network (RBF-DNN) to extract
important features to construct the basic and add-on models. The effectiveness of the proposed
approach is verified using real-world data from a spring factory.

Keywords: Industry 4.0; fault detection systems; deep learning models

1. Introduction

In Industry 3.0, automated production became the standard of manufacturing world-
wide. Within this model, product fault detection systems are of paramount importance.
These systems collect data on machine operations from various sensors and analyze these
data to determine whether the manufactured products meet specifications. Thus, product
quality can be maintained with minimal human input. Various product fault detection
systems exist. For instance, Koscielny et al. [1] and Libal and Hasiewicz [2] performed
fault detection in sugar factories using fuzzy neural networks and a binary classification
model, respectively. Liu et al. [3] developed a fault detection system for textile products
based on the Pearson correlation coefficient and neural networks. Chiu et al. [4] developed
a lightweight deep learning model to predict CNC tool wear. More recently, Lee et al. [5]
confirmed that if the results of three different convolution kernel-based methods can be
ensembled, the fault detection system’s accuracy will be greatly improved. However, in the
era of Industry 4.0, cloud and diverse sensor technologies are being introduced to collect
production data and implement low-volume high-mix production modes. These changes
demand corresponding improvements in existing product fault detection systems.

Approaches to upgrading can be roughly divided into four categories. The first
category is incorporating cloud and IOT concepts into existing systems [6]. The works
in this category are examples of case-by-case design based on the circumstances of the
existing system and the environment of the factory. They therefore have little reference
value for other factories. The second category of approaches require a rebuilding of product
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fault detection from scratch. These approaches increase the accuracy of fault detection
by incorporating data fusion or hybrid recognition models [7–10]. The third and fourth
categories are tailored to the low-volume, high-mix production modes of Industry 4.0.
Specifically, methods in the third category explore means of establishing highly accurate
fault detection with little training data. Kuo et al. [11] and Neupane et al. [12] both
emphasized the generalizability of this type of approach. However, these methods focus
on rebuilding rather than upgrading, which is less cost-effective. The fourth category
exploits the high-mix of new production modes, in which similar products of the same
basic structure but slightly different details are manufactured in low volumes. For example,
consider Figure 1. A clothes-hanger manufacturer will first develop a basic version and
then modify it into several different products based on the needs of downstream vendors,
such as bottoms of different lengths, notches in the top bars, or non-slip strips on the hanger.
This last category of product fault detection depends on transfer learning. A system is
first developed for the basic product, and then additional systems for new products are
created by fine-tuning the parameters of the existing system. Mazzoleni et al. [13], for
instance, investigated the application of fuzzy logic and transfer learning to industrial
environments without labeled data, while Raouf et al. [14] considered industrial robots
working in different environments.
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Figure 1. An example of applying the concept of transfer learning to a factory in the Industry 4.0 era.

The application of transfer learning to upgrade existing systems is favored by factories
because it requires the least financial and time investments. However, this method still
suffers from two major shortcomings. First, the formats of machine operating data may not
be the same for similar products, thereby preventing the fine-tuning of existing systems.
For example, in Figure 1, the basic version and the two modified products all need only a
wire bending machine; however, the third product requires an additional machine to apply
the non-slip strip. Thus, the formats for collecting data on the quality of this product differ
from those of the other products. Parameter fine-tuning to upgrade the fault detection
system is thus not possible. The second shortcoming is associated with how factories
manage their fault detection systems. Generally speaking, once a factory establishes a fault
detection system, details of the system will be kept in a database for future use. However,
if the fault detection system of a basic product is established using deep learning, then the
fault detection of the modified product will likely be based on deep learning as well. In
the case of production modes with high-mix products, the fault detection database will
expand infinitely because it must store many deep learning models with similar structures
but slightly different parameters; this will increase the factory’s operating costs. Thus,
while the concept of transfer learning for upgrading product fault detection systems hold
promise, some issues must still be overcome.
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This study proposes two approaches to remedy these issues: (1) While previous
methods have realized transfer learning using parameter fine-tuning, we propose creating
an add-on model for the basic model. The basic model determines the quality of the basic
product, whereas the add-on model assesses the quality of the parts where the new product
differs. (2) Existing product fault detection systems use all possible features for modeling;
we propose identifying key features that can present product faults before establishing
the fault detection model. Figure 2a displays a schematic of the first approach. It does
not alter any of the parameters in the basic model but rather corrects the output results of
the basic model using the add-on model. In the example shown in Figure 2b, inputting
the collected features (x, y) and (x, z) of the first item into the basic model and the add-on
model, respectively, produces results in which the item is faultless and the basic model
needs no calibrations. We can therefore determine that there is nothing wrong with the
product corresponding to the first item. For the second item, inputting the same features
into the two models produces results in which the product is faultless and the basic model
needs calibrations. We can therefore determine that something is wrong with the product
of the second item of data. Furthermore, with the proposed method, the fault detection
models of different products can all be extended based on knowledge of the basic model,
as shown in Figure 3.
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The proposed approaches overcome the shortcomings discussed above as follows.
First, input features of the two models can be designed independently; the basic model only
needs to consider the features of the basic product, and the add-on model only needs to
consider the features that are unique to the modified product. This circumvents the problem
of differing data formats. Next, the proposed approach does not adjust the parameters
of the basic model but includes an add-on model, so the database will ultimately only
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contain one basic model and multiple add-on models. This is more efficient than deep
learning, as while the basic model must consider a large quantity of information to detect
faults in the basic product, the add-on models only consider variations. In other words,
the proposed approach effectively reduces the number of model parameters stored in
the database. Furthermore, the second approach only uses key features to establish the
fault detection model. Existing systems include all features to help clarify the complex
associations between machine features and product faults. However, inputting all features
into the basic and add-on models not only greatly increases the size of the two models
but, more importantly, causes the add-on model to learn information that the basic model
already has, which increases training costs unnecessarily.

This paper is the first to explore the inclusion of these approaches to upgrading product
fault detection systems. We designed a radial basis function deep neural network (RBF-DNN)
and identified key features through training and analysis of the RBF parameters. The proposed
RBF-DNN model has a neuron with an RBF as the activation function. RBF has previously been
combined with deep learning models to extract key features for modeling for complex time series
prediction [4,15]. However, RBF is not limited to time series [16,17]. Thus, the current paper
applies this concept to find key input features for product fault detection. We then designed a
comprehensive procedure for the creation of add-on models to overcome the insufficiencies of
the basic model in detecting faults in new products. Finally, we used production data from a
spring factory [11,18] to verify the effectiveness of the proposed approaches.

The remainder of this paper is arranged as follows: Section 2 presents related works,
Section 3 introduces the establishment of our framework, Section 4 discusses the results of
our experiments, and Section 5 presents our conclusions and future work.

2. Related Works

In this section, we review the existing literature on both machine fault detection
systems and product fault detection systems. This is because, in a broad sense, fault
detection systems in factory practices generally include those for products and those for
the machines, and as the design principles of these two types of algorithms are similar, we
introduce them together.

The design methods of fault detection systems can be divided into two categories:
statistical analysis methods and data-driven methods. The former compiles the statistics
of fluctuations in machine signals and detects faults using these statistics. For instance,
Isermanm [19] performed fault detection using standard deviations; they indicated that
when the standard deviation does not equal zero, it means that an error has occurred in
the product during the production process. Brkovic et al. [20] proposed a fault detection
method that compares the residuals of signal amplitudes. Based on principal component
analysis, Sarit et al. [21] developed an online fault detection system for industrial fans.
Yu et al. [22] combined a corrected reconstruction algorithm with principal component
analysis to analyze the sensor data from a nuclear power plant to achieve fault detection.
As this methodology was too slow to execute in practice, Yu et al. [23] combined MapReduce
with principal component analysis to detect faults in high dimensional data in factories in
real time. Xue et al. [24] developed a non-supervisory model aimed at data discrepancies
based on k-means and the Apriori algorithm to detect malfunctions in district heating
stations. Limaua et al. [25] proposed combining Fourier transform with a sliding window
for better resolution in the frequency data. Some researchers have pointed out that the
difficulty in implementing this method is setting the size of the window, so Anouar et al. [26]
proposed using wavelet analysis to filter data. They filtered and disassembled the data
before selecting useful signal features for fault detection. Hartono et al. [27] posited that
different types of data have different signal characteristics and important features, so they
proposed integrated approaches for feature selection.

Data-driven methods train models individually for product fault detection based on data
type. These are currently one of the most popular methods, applied to fields such as electri-
cal systems, industrial processes, and robotics. In earlier research, Wang and Shen et al. [28]
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proposed applying the Kalman filter for fault detection using the vibration collected from
operating machines. However, a number of researchers pointed out that the Kalman filter
has two major shortcomings: (1) the standard definitions must be linear, and (2) the fault
detection of the model must be fixed. To overcome these issues, Jiang et al. [29] proposed
unscented Kalman filter models that can process nonlinear standard definitions to establish
their fault detection system. In contrast, Khan et al. [30] added linear regression onto the
unscented Kalman filter. With the popularization of artificially intelligent methodology, a
growing number of researchers have attempted to increase the complexity of the problems
targeted by their approaches. For instance, Nykyri et al. [31] integrated different machine
learning methods such as random forest, logistic regression, multilayer perceptron, naive
Bayes classification, and linear discrimination to forecast the conditions of a motor in the next
ten minutes. Based on fuzzy theory and a hidden Markov model combined with a support
vector machine, Mazzoleni et al. [25] developed a system to detect faults in machine health
status. Mishra et al. [32] and Nguyen [33], respectively, constructed a neural network and
a radial basis function neural network for their target machine signals and then used these
models to perform fault detection based on the discrepancies between predicted and actual
values. Liu et al. [3] combined Pearson correlation and a neural network to detect faults using
the frequencies of sounds made by sewing machines in textile factories. Koscielny et al. [1]
employed fuzzy neural networks to perform fault detection based on the temperatures and
residue in the evaporation units in a sugar factory. Based on the VGG-16 model, Lilhore
et al. [34] proposed a fault detection system that can automatically detect whether a machine
is damaged and aid factories in estimating the lifespan of product components. In more
recent years, Wen et al. [35] and Chen et al. [36] developed fault detection systems by com-
bining different convolutional neural networks (CNNs) with deep neural networks (DNNs).
Hermawan et al. [37] proposed a long short-term memory (LSTM) algorithm based on the
lookback principle that, in the event of sensor damage or loss in automated factories, can
automatically repair and restore information collected before the damage occurred. Finally,
Lee et al. [5] proposed that ensembling different convolution kernel-based methods can greatly
improve the accuracy of fault detection.

The above methods verified through experiments that their approach can effectively
achieve high-precision single-model fault detection. However, significant shortcomings
include the following: (1) Every time the factories work with a different machine (even
if it is the same model), they will need to re-collect the machine data and re-establish
the model to ensure accuracy. (2) It is costly to collect sufficient data for newly added
machines or new error types, making it difficult to train a fault detection model for the
target machine. To overcome these shortcomings, the most common approach applies
the concept of transfer learning. First, to quickly build models to detect motor faults in
different machines of the same type, Kumar and Hati [38] and Skowron [39] used deep
learning models and transfer learning. Liu et al. [40] proposed construction chiller defect
detection based on transfer learning, claiming that it could be used to establish individual
diagnostic models for similar chillers. Chen et al. [41] proposed using TRU fault detection
layering technology based on transfer learning to establish models for similar equipment.
Li et al. [42] proposed a detection method based on transfer learning and convolutional
autoencoders; this was applied to wind turbines. Xu et al. [43] proposed a two-stage digital
twin-assisted fault detection method which first predicts the problems that will occur in the
machine in a virtual space and builds a detection model for the predicted problems. The
model is transferred from the virtual space to the physical space using transfer learning,
thereby accelerating the development of fault detection models. To overcome shortages
in training data, Cho et al. [44] and Dong et al. [45] developed a fault detection method
based on a neural model architecture. Other scholars extended this method. For example,
Zhang et al. [46] believed that not all knowledge needs to be transferred, so they proposed
transferring only part of the knowledge to the target domain. Chen et al. [41] proposed
using the hierarchical structure of convolutional neural networks to perform transfer
learning for different fault types. Lee et al. [47] proposed generating adversarial networks
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to build high-accuracy models in the case of data imbalance. Recently, Wang et al. [48]
used the concepts of dual graph neural networks and transfer learning to establish a fault
detection model suitable for intelligent manufacturing systems.

Finally, it is worth mentioning that with the rise of the concept of sustainable develop-
ment, new fault detection systems have been developed based on this concept. For example,
Legutko [49] discussed additional factors that should be considered. Patalas-Maliszewska
and Łosyk [50] discussed machine maintenance sustainability and developed a corresponding
fuzzy neural network model. In addition, considering that most factories already have existing
machine fault detection systems, creating new systems is expensive. Therefore, in recent years,
most of the efforts in this field have been to extend existing systems to comply with sustainable
development. Priority targets such as [51–53] all fall into this category of research.

3. Algorithms

The framework of the product fault detection system developed in this study is shown
in Figure 4: it includes two offline phases for the construction of the basic model and the
add-on model and an online phase where the basic model and the add-on model operate
together. In the beginning of the two offline model construction phases, we employ the
radial basis function deep neural network (RBF-DNN) designed in this study and the
corresponding parameter analysis methods to identify key features for model construction.
This procedure should be applied when the factory has no existing product fault detection
system. If they already have their own fault detection system, then the offline phase for
basic model construction is ignored and only the second offline phase and the online phase
are executed. Below, we introduce the three phases.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 24 
 

dicts the problems that will occur in the machine in a virtual space and builds a detec-
tion model for the predicted problems. The model is transferred from the virtual space 
to the physical space using transfer learning, thereby accelerating the development of 
fault detection models. To overcome shortages in training data, Cho et al. [44] and Dong 
et al. [45] developed a fault detection method based on a neural model architecture. 
Other scholars extended this method. For example, Zhang et al. [46] believed that not all 
knowledge needs to be transferred, so they proposed transferring only part of the 
knowledge to the target domain. Chen et al. [41] proposed using the hierarchical struc-
ture of convolutional neural networks to perform transfer learning for different fault 
types. Lee et al. [47] proposed generating adversarial networks to build high-accuracy 
models in the case of data imbalance. Recently, Wang et al. [48] used the concepts of dual 
graph neural networks and transfer learning to establish a fault detection model suitable 
for intelligent manufacturing systems. 

Finally, it is worth mentioning that with the rise of the concept of sustainable de-
velopment, new fault detection systems have been developed based on this concept. For 
example, Legutko [49] discussed additional factors that should be considered. Pata-
las-Maliszewska and Łosyk [50] discussed machine maintenance sustainability and de-
veloped a corresponding fuzzy neural network model. In addition, considering that 
most factories already have existing machine fault detection systems, creating new sys-
tems is expensive. Therefore, in recent years, most of the efforts in this field have been to 
extend existing systems to comply with sustainable development. Priority targets such 
as [51–53] all fall into this category of research. 

3. Algorithms 
The framework of the product fault detection system developed in this study is 

shown in Figure 4: it includes two offline phases for the construction of the basic model 
and the add-on model and an online phase where the basic model and the add-on model 
operate together. In the beginning of the two offline model construction phases, we em-
ploy the radial basis function deep neural network (RBF-DNN) designed in this study 
and the corresponding parameter analysis methods to identify key features for model 
construction. This procedure should be applied when the factory has no existing product 
fault detection system. If they already have their own fault detection system, then the of-
fline phase for basic model construction is ignored and only the second offline phase 
and the online phase are executed. Below, we introduce the three phases. 

 
Figure 4. The framework of the product fault detection system developed in this study. 

Offline phase—Basic model construction

Offline phase—Add-on model construction

Data of
basic 

version

Training and 
analysis of an 

RBF-DNN

Key features
of basic model

Constructing the 
basic model

Data of
modified
product

Running the trained
basic model

Result of 
the basic model

Determining whether 
correction is needed

Training and analysis 
of an RBF-DNN

Label changeCorrect
Answer

Key features 
of add-on 

model

Constructing 
the add-on 

model

Real-time 
data of

modified
product

Running the 
trained

basic model
Running the 

trained
add-on model

Deciding
the final answer

Result of 
the basic model

Label change

Online phase

Trained 
basic model

Collected
dada

Collected
dada

Trained 
add-on model

Final
Answer

Figure 4. The framework of the product fault detection system developed in this study.

3.1. Algorithm for Offline Basic Model Construction

The algorithm designed to construct the basic model in this study comprises two parts:
training and analysis of an RBF-DNN to obtain the key features needed to construct the basic
model and the means of utilizing these key features to construct the basic model. Note that
the content of the first part is more complex, so we further divide our introduction of the first
part into three portions: (1) the design concept of the RBF-DNN, (2) the network framework
of the RBF-DNN, and (3) the means of analyzing the trained RBF-DNN parameters to
obtain the key features.

The RBF-DNN is constructed with a neuron that has an RBF as the activation function
added before the DNN. This method has been proven by researchers to be useful in finding
the most important input features for modeling. Studies on radial basis function neural
networks [16,17] and fuzzy neural networks [54,55], for example, have discussed this issue.
For deep learning models, the feasibility of this theory has also been successfully proven on
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LSTM [15] and RNNs [4]. We therefore extended this concept and added an RBF neuron to
an existing model to identify important input features for product fault detection models.
We adopted a DNN for our deep learning model rather than the previously discussed
LSTM [15] and RNNs [4] because product fault detection models usually process the
machine data that they collect from different products separately. In this case, machine
data with a sequential format are segmented into independent items of data for processing.
LSTM and RNNs, which are dedicated to sequential data, are therefore unsuitable for the
target problem. Below, we introduce the proposed RBF-DNN for feature extraction.

The framework of the proposed RBF-DNN is shown in Figure 5, comprising an input
layer, an RBF layer, multiple fully connected layers, and an output layer. First, the input
layer brings the input features of the model into the neural network. Assuming that
the product fault detection system extracts a total of n features from the machine data,
expressed as {fb1, fb2, . . ., fbn}, then the input layer will have n neurons, each responsible
for accepting the values of one feature. Next, in the RBF layer, each input layer output
will have q neurons responsible for converting it into q probability values. As shown in
Figure 6, for example, the RBF centers of three neurons are located at low, middle, and high
values. If an input layer value is 0.8, it will be converted into three probabilities, (0, 0.2, 0.7),
as shown in Figure 6a. If another input layer value is 0.1, it will be converted into three
probabilities, (0.7, 0, 0), as shown in Figure 6b. As for the RBF conversion formula in this
paper, we adopted the most common approach, set as

Oij = exp[−(Oinputi − mij)
2/σij

2], (1)

where Oij denotes the output of RBF neuron j (j ≤ q) of input layer neuron i in the RBF
layer; Oinputi represents the output of input layer neuron i; and mij and σij are the mean
and standard deviation of this RBF neuron, respectively. After the RBF layer converts
the input feature values into probabilities, we next use multiple fully connected layers to
establish the nonlinear relationships between these probabilities and the output results.
The format of the RBF-DNN output is consistent with that of the product fault detection
(i.e., good/bad product or Type 1/Type 2 bad product). For activation of the fully connected
layers, considering the fact that these layers explore the nonlinear relationships between
the RBF layer outputs and the results, we adopted the tangent sigmoid function below
rather than other commonly used functions such as Relu or Leaky Relu:

Oj = tanh(wijIi) + bj, (2)

where Oj represents the output of node j of a layer; tanh(•) denotes the tangent sigmoid
function; Ii is the output value of node i of the previous layer; wij is the weight between
node i of the previous layer and node j of the current layer; and bj is the bias of node j
of the current layer. We let the number of neurons in the output layer equal the number
of categories defined by the fault detection system. As this modeling processing is a
classification problem, we selected SoftMax as the activation function. Finally, for RBF-
DNN training, we chose the classic back-propagation algorithm. As back-propagation is a
commonly used algorithm, we do not discuss it in detail here.

We next discuss how the key input features are obtained using the trained RBF-DNN.
Many studies [4,15] have pointed out that when an RBF neuron is placed before a neural
network in training, the RBF neuron acts like a switch. For instance, if an input feature
uses three RBFs with low, middle, and high centers to perform probability conversions,
and it is known that the input feature will have no impact on the output result when it
has a higher value, then the highest RBF of the three will adjust its standard deviation to
become extremely small or extremely large so that higher values will be converted to zero
or fixed probabilities no matter what, as shown in Figure 7. In other words, we need only
check whether the RBF neuron output value of each input feature remains at zero or a fixed
value to know whether this input feature is useful. If the value of an RBF neuron output
fluctuates more widely, this input feature has a greater impact on the output results.
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The approach that we designed begins with α RBF-DNNs with different initial weights.
Note that multiple RBF-DNNs must be trained because researchers have demonstrated
that the important input features that an RBF-DNN selects each time vary with the initial
parameters of each network. For this reason, it is necessary to create multiple initial
models and then compile the statistics of the results generated by the models before more
reasonable results can be produced. After training α RBF-DNNs, we first calculate the
standard deviations of the q RBF output values within each RBF-DNN for each input feature.
Note that there will be q × α standard deviations for each feature. Then, we calculate the
summation of all standard deviations of each feature, rank the values of this summation,
and use this to understand the importance ranking of each feature. End users can use this
ranked list to select appropriate features based on their needs. For example, suppose that
the factory’s computer hardware can only run an AI model with three real-time inputs. In
that case, the factory can select the top three from the ranked list to use as key features. On
the other hand, if the factory computer has no restrictions, the list is helpful in selecting the
features which improve the accuracy of the basic model with the minimum modeling costs.

After using the above method to identify the key features of the basic model, we use
these key features to construct the basic model. In selecting the framework of the basic
model, the model that each factory uses to perform product fault detection varies. As
we cannot test them all, we use the most common artificial neural network to verify the
effectiveness of the proposed approach. The inputs of this artificial neural network are the
key features that we identified for the basic model, and the output is the fault detection
categories defined by the proposed product fault detection system.

3.2. Algorithm for Offline Add-On Model Construction

The algorithm used to construct the add-on model in this study contains a total of three
parts: (1) inputting the features of all of the production data obtained from the modified
product into the basic model to collect the accuracy rates of the basic model with regard to
said data, (2) training and analyzing another RBF-DNN with the production data features
of the extended product as the input and the accuracy of the analysis results of the basic
model as the output to obtain the key features for add-on model construction, and (3) using
the key add-on model features identified in the previous part to construct the add-on model.
We next introduce these three parts. Our explanation is aided by the data in Table 1.

Table 1. An example for explaining how add-on models work.

Input Features of
the Basic Model fb1 fb2 fb3 . . . fbm - -

Basic
Judgment

Real
Condition
of the Item

Label
Change

Add on
Judgment

Basic + Add on
Judgment

(Final Judgment)
Features from

Modified
Products

fe1 - fe2 . . . fek-2 fek-1 fek

Item 1 0.9 0 0.4 . . . 1.2 2.5 1.3 Good Good do not
change

do not
change Good

Item 2 0.7 0 0.6 . . . 1.1 2.9 4.1 Bad Bad do not
change change Good

Item 3 0.2 0 1.3 . . . 0.5 2.7 3.5 Good Bad change change Bad
Item 4 0.1 0 1.8 . . . 0.6 2.6 2.7 Bad Good change change Good

In the first part, suppose that the input features of the basic model are {fb1, fb2, . . .,
fbm}, and the features we can obtain from the production data of the modified product
are {fe1, fe2, . . ., fek}; then, we will select the intersection features of the two sets and input
them to the basic model for calculation (i.e., the first m columns of Table 1). Note that the
production data collected from the modified product may differ from those used in the
basic model. There may be more, an equal amount of, or less data. In the first two cases, the
features that the basic model needs are all present, so the basic model can operate normally.
In the last case, however, the basic model may lack some features. We thus input the value
zero for these input features to ensure that the basic model can operate normally, as shown
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in the second column of Table 1. After the basic model completes its calculations, we obtain
the results of the basic model for each item of production data from the modified product,
as shown in the “Basic judgment” column of Table 1. We compare this column with the
“Real condition” column and define a “Label change” column. As modified products may
differ significantly from the basic product, and there is no general solution, we ask factories
to define this label change themselves. For instance, if the fault detection results of the basic
and modified products in Table 1 are similarly either “good product” or “bad product”,
then the label change can be defined as “change” or “do not change”. With the first and
second items of data in Table 1, for example, the results of the basic model are the same
as those of the modified product, so the label is set as “do not change”. In contrast, with
the third and fourth items of data, the results of the basic model are the opposite of those
of the modified product, so the label is set as “change”. For a more complex example,
suppose that the fault detection results of the basic product are either “good product” or
“bad product—too long”, but the factory adds a “bad product—too short” category. In
this case, there will be five labels: “do not change”, “good product changed to too long”,
“too long changed to good product”, “good product changed to too short”, and “too long
changed to too short”. After the label changes for each item of the modified product have
been defined, we can proceed to the next step.

The objective of the second part is to train the RBF-DNN again and then analyze this
RBF-DNN to obtain the key features needed to construct the add-on model. The RBF-DNN
is expected to use k features {fe1, fe2, . . ., fek} of each item of data in the production data of
the modified product as inputs, so the number of input neurons of the RBF-DNN equals
k. As for the output layer of the RBF-DNN, the main objective is to output the type of
label for each item of data. Thus, the number of neurons in the output layer of this model
similarly equals the number of label categories defined by the factory. As the differences
between each modified product and the basic product vary, the number of label categories
also varies. For this reason, we suggest that users balance the data based on the number
of labels before training the RBF-DNN; otherwise, the training results will be poor, and
the number of key features obtained from analyzing the model will be inaccurate. The
principle, framework, training algorithm, and key feature identification method of this
RBF-DNN are all identical to those introduced in the previous section, so we do not discuss
them here. Finally, after completing this part of the calculations, we expect to obtain l key
features {fadd1, fadd2, . . ., faddl} needed to construct the add-on model from the RBF-DNN.

The third part of this phase is the construction of the add-on model. To enable the add-
on model to smoothly operate with the basic model, we adopted an artificial neural network.
The inputs of this network comprise l key features {fadd1, fadd2, . . ., faddl} identified in the
previous part, and the outputs are the label changes defined for each item of data in the
first part. Finally, we use back-propagation to complete the training of this add-on model.

3.3. Simultaneous Operation of Basic and Add-On Models Online

In this section, we introduce how the basic and add-on models operate together in
the online phase and produce the fault detection results of the current product. Suppose
that we obtain k features {fe1, fe2, . . ., fek} from the production data of the modified product,
and the key input features of the basic model and the add-on model are {fs1, fs2, . . ., fsm}
and {fadd1, fadd2, . . ., faddl}, respectively. We therefore extract the features needed for the
basic model and the add-on model from {fe1, fe2, . . ., fek}. If the features needed by the basic
model cannot be found in {fe1, fe2, . . ., fek}, then we use zero values for the inputs of this
dimension. Next, after obtaining the respective outputs of the basic model and the add-on
model, we combine the two results and output the fault detection results of the current
product. For example, for the case presented in Table 1, the fault detection results of the
basic and modified product comprise “good product” and “bad product”, and there are
two label changes: “change” and “do not change”. Thus, the first item of data in Table 1
is marked “good product” by the basic model and “do not change” by the add-on model,
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which means that no product flaws were detected. The outputs of the second, third, and
fourth items of data are “good product”, “bad product”, and “good product”.

4. Simulations

In this section, we use a real-world dataset to verify the proposed methodology. The
content is divided into four parts: introduction to the dataset and experiment param-
eters, the performance of basic model construction, the performance of add-on model
construction, and the performance of combining the basic model and the add-on model.

4.1. Introduction to Dataset and Experiment Parameters

The real-world dataset used in this study was obtained from a spring factory and has
been employed by multiple studies in the past [11,18]. Figure 8a shows the architecture
of this machine. Figure 8b–d illustrate its operation. It comprises a wire feeding hole in
the center column and eight wire benders surrounding it. During operation, a wire is fed
from the hole at a fixed speed, and the surrounding wire benders reach out at the right
moments to bend the wire and form the spring shape designated by the user. To collect the
data, a triaxial accelerometer was installed on the center column, as shown in Figure 8a.
This sensor collects acceleration data of the vibrations along the X, Y, and Z axes generated
as the wire is fed from the hole and bent by the wire benders. The directions of three axes
(X, Y, and Z) are marked on Figure 8a with arrows. The resulting data are displayed in
Figure 9: each cycle of variations in acceleration represents the production of one spring.
The datasets mentioned in [11,18] include the production data from springs of over a dozen
types of lengths. For our research requirement, we only used data from springs that were
171 mm, 181 mm, 188 mm, 189 mm, 190 mm, 210 mm, and 230 mm in length. Those
that were 171 mm or 181 mm long were considered to be bad products due to insufficient
length; those that were 188 mm, 189 mm, or 190 mm long were considered to be good
products; and those that were 210 mm or 230 mm long were considered to be bad products
due to excessive length. Based on the characteristics of this dataset, we saw spring length
as the difference between the basic product and the modified product and designed two
experiments: (1) the basic model only detects good products and bad products that were
too long while the add-on model considers three fault categories, and (2) the basic model
only detects good products and bad products that were too short while the add-on model
considers three fault categories.

The acceleration signal values collected for the spring change periodically (as shown
in Figure 9). Therefore, as suggested by previous papers [11,18], we did not use recursive
neural networks for modelling, but rather adopted a windowing approach. This method
starts by extracting a window for the time series of each acceleration segment and then
calculating seven features for each window’s points. The seven features are mean, maxi-
mum, energy, root mean square, variance, mean absolute deviation, and standard deviation.
As each item of data contains three time series (one for each of the axes, x, y, and z), we
ultimately obtained 21 features for each item of data. Based on the needs of our experiment,
we set the sizes of the windows and overlaps to be 150 points and 50 points, respectively.
Furthermore, as we only considered the length differences between the basic and modified
products, we only needed the original accelerator; i.e., there were no issues with increasing
or decreasing the features. Thus, in the construction of both the basic model and the add-on
model, we considered 21 features.
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Figure 9. An example of using windows to extract features from acceleration signals.

The four models used in this experiment included (1) the RBF-DNN that determines the
key features of the basic model, (2) the basic model itself, (3) the RBF-DNN that determines
the key features of the add-on model, and (4) the add-on model itself. We introduce their
parameter settings below. First are the two RBF-DNNs in (1) and (3). In the construction
phases of the basic and add-on models, 21 features were considered, so the number of input
neurons in both RBF-DNNs was 21. Next, regarding the number of neurons in the RBF
layer, we referred to the settings of past studies [4,15], in which each input neuron uses three
RBF neurons to describe it. Thus, the RBF layer contained a total of 63 neurons. As for the
subsequent fully connected layers, we had the number of neurons decrease to a fourth of
the former number each time. Thus, the first fully connected layer contained 16 neurons,
and the second fully connected layer contained four neurons. Any more fully connected
layers would reduce the number to lower than the number of categories considered for
product fault detection, so there were no more fully connected layers. The output layer of



Appl. Sci. 2024, 14, 2913 13 of 23

the RBF-DNN paired with the basic model was expected to have two neurons, whereas that
of the RBF-DNN paired with the add-on model was expected to have three neurons. For
the training parameters of the two RBF-DNNs, we set 100 epochs, and the learning rate was
0.001. Also, to avoid overfitting, we employed an early stopping procedure in the training
process. Finally, we used Adam to avoid local minima. For the training set, we employed the
synthesized minority oversampling technique to balance the amounts of data in the different
fault detection categories. We selected 70% to serve as the training data and the remaining
30% to serve as the test data. Last of all is the operating environment of these two RBF-DNNs.
Both were run in Windows 10, 64-bit, with an AMD Ryzen 9 5900X 12-core processor, 3.7 GHz,
and 128 GB of memory. In terms of key feature selection, to verify the high error recognition
rate of the proposed method, we assume that the factory does not have any restrictions in
terms of hardware and seek features with the highest modeling accuracy and lowest cost.
Next are the basic and add-on models themselves in (2) and (4). As we did not want the
efficacy of the models themselves to affect our analysis results, we only adopted the simplest
method to implement the artificial neural networks of these two models, which was using
the NNstart kit provided by Matlab. The default values of the kit were used for all of the
parameters of the two artificial neural networks.

4.2. Verification of Basic Model

In this section, we verify the efficacy of RBF-DNN for the identification of key features
for basic model construction. First, Figures 10 and 11 show the importance ranking of the
21 features found by RBF-DNN for the basic model. Specifically, Figure 10 shows the results of
constructing the basic model for products that are good and too long, and Figure 11 presents
the results of constructing the basic model for products that are good and too short. Higher
rankings are indicated by a darker gradient. It can be seen that the importance ranking is
generally consistent with better features on the X axis than those on the Y axis, which are better
than those on the Z axis. This is not surprising because the machine used in this experiment
mainly moves in the direction of the x axis, and then in the direction of the y axis. Thus, the
features identified by the RBF-DNN are ranked accordingly. The z axis is only related to the
output movement of the wire, and the signal on the accelerometer remains almost unchanged,
so the data represented on this axis are unrelated to product damage.
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Figure 10. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
long), where darker gradients indicate higher rankings.
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Figure 11. Importance ranking of 21 features found by RBF-DNN for basic model (good and too
short), where darker gradients indicate higher rankings.
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Figure 12 shows the results of experiments on selecting the number of key features.
The x axis of these two figures represents the use of the first few features to build the basic
model, and the y axis represents the accuracy of the established basic model. This figure
shows that x = 7 is the watershed for accuracy changes. Before 7, the accuracy slowly
increases, but after 7, it remains stable. Therefore, we select seven modeling features for
each of the two sets of experiments.
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Figure 12. Results of selecting the number of key features for the basic model.

Tables 2 and 3 compare the efficacy of the proposed approach (i.e., using the top seven
features identified using the RBF-DNN) with other methods for basic model construction.
The latter included using all 21 features, with the 8th to 14th most important features (seven
in total) identified using the RBF-DNN, the 15th to 21st most important features identified
using the RBF-DNN, the 1st to 7th most important features (seven in total) identified
using the random forest, the 8th to 14th most important features (seven in total) identified
using the random forest, and the 15th to 21st most important features identified using the
random forest for basic model construction. Note that this paper uses random forests as
the comparison method because they are the most commonly applied for feature extraction
in machine learning. The important feature values are set in units of 7 to allow RBF-DNNs
to be compared fairly with random forests. Table 2 shows the results of constructing the
basic model for products that are good and too long, and Table 3 presents the results of
constructing the basic model for products that are good and too short. It is clear from the
two tables that, in most cases, the results of using the features ranked as more important by
the RBF-DNN were better than those of using less important features. The accuracy of the
model constructed using the last seven features was the poorest. These results demonstrate
the effectiveness of the proposed RBF-DNN. Next, using all 21 features to construct the
basic model produces better results than using only the top seven features identified using
the RBF-DNN. However, the computational costs of using all 21 features for modeling
are more than three times as high as those of the proposed approach. As both models
offer high accuracy, the additional computational costs of the comparative model seem
unnecessary. Finally, comparing the RBF-DNN method with a random forest, we can see
that the RBF-DNN method can improve modeling accuracy under only seven features.
This further confirms the rationality of using the RBF-DNN in the proposed method.
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Table 2. Results of constructing basic model for products that are good and too long.

Inputs of the Basic Model Accuracy

All 21 features 100%
1st to 7th most important features identified using the random forest 90.2%

8th to 14th most important features identified using the random forest 85.3%
15th to 21st most important features identified using the random forest 83.7%

1st to 7th most important features identified using RBF-DNN 94.4%
8th to 14th most important features identified using RBF-DNN 84.1%
15th to 21st most important features identified using RBF-DNN 81.1%

Table 3. Results of constructing basic model for products that are good and too short.

Inputs of the Basic Model Accuracy

All 21 features 98.5%
1st to 7th most important features identified using the random forest 90.2%

8th to 14th most important features identified using the random forest 87.9%
15th to 21st most important features identified using the random forest 87.7%

1st to 7th most important features identified using RBF-DNN 93.8%
8th to 14th most important features identified using RBF-DNN 88.1%
15th to 21st most important features identified using RBF-DNN 85.5%

4.3. Verification of Add-On Model Construction

In this section, we explore the efficacy of the add-on model. Note that when a factory
builds and uses an add-on model, it is possible to (1) use the method proposed in this paper
to build a basic model and (2) directly use the company’s existing method as a basic model.
Thus, we conduct two rounds of experimental simulation.

First, we use the proposed method to build a basic model as well as the add-on model.
The accuracy of the basic models are 94.4% and 93.8% for the two experiments, respectively.
Figures 13 and 14 present the importance rankings of the 21 features found by the RBF-DNN
for the add-on model. Specifically, Figure 13 shows the results of identifying products that are
too short as well as good products and products that are too long, while Figure 14 displays
the results of identifying products that are too long as well as good products and products
that are too short. A darker gradient indicates a higher ranking. First, the figures show that
for all experiments, energy and root mean square improve significantly compared with the
basic model (i.e., Figures 10 and 11). Since the primary learning goal of the add-on model is
identifying the difference between the new category of product errors and the old category,
the ranking of the place where the difference between the two is the largest will naturally
increase. For the machine in this experiment, the length of the spring is related to the amount
of time in which the machine outputs the wire and the time in which the machine allows the
wire to form a ring. In addition, the length of the wire output time is related to the energy and
root mean square of the Z axis. The amount of time the machine allows the wire to form a
ring is related to the energy and root mean square of the Y axis, so the rankings of these four
features will naturally increase. Second, the importance ranking of most features on the X axis
shows a downward trend compared with the ranking of the basic model. This is because the
proposed add-on model can take into account less knowledge than the basic model. Therefore,
if the basic model learns the features on the X axis (as shown in Figures 10 and 11), then the
importance ranking of these repeated features will naturally reduce. Third, the Z-axis features,
other than energy and root mean square, are ranked very low in the add-on and basic models.
Whether the RBF-DNN is used for the basic or add-on model, it will not select features that
are not helpful for modeling. As shown in Figures 10, 11, 13 and 14, Z-axis features other than
energy and root mean square are irrelevant to the spring manufacturing process, so they are
always ranked low.
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Figure 13. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) using proposed method to construct basic model, where darker gradients indicate
higher rankings.
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Figure 15 shows the experimental results of selecting the number of key features,
where the x axis represents the number of the most important features used for add-on
model construction and the y axis indicates the accuracy in the resulting add-on model.
It is clear that there are turning points in error at x = 7. We therefore selected x = 7 as the
number of features for add-on model construction to strike a balance between prediction
accuracy and modelling cost.
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Figure 15. The results of selecting the number of key features for the add-on model in the first situation.

Tables 4 and 5 compare the efficacy of the proposed approach with that of existing
methods in add-on model construction. The latter again included all 21 features, with the
8th to 14th most important features (seven in total) identified using the RBF-DNN, the
15th to 21st identified using the RBF-DNN for model construction, and the three sets of
experiments with the random forest. Table 4 shows the results of identifying products
that are too short in addition to products that are good and too long. Table 5 displays
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the results of identifying products that are too long in addition to products that are good
and too short. It is clear that the accuracy of the model constructed using the seven most
important features ranked by the RBF-DNN was better than that of using less important
features. Next, using all 21 features to construct the add-on model produced slightly better
results than using the seven most important features ranked by the RBF-DNN. However,
this approach increases the construction costs of the add-on model substantially. Finally,
the RBF-DNN outperforms the random forest. This again confirms the rationality of using
the RBF-DNN to select features for modeling.

Table 4. Results of constructing add-on model for basic model constructed using proposed method
for products that are too short.

Inputs of Basic Model Accuracy

All 21 features 92.3%
1st to 7th most important features identified using the random forest 86.3%

8th to 14th most important features identified using the random forest 85.1%
15th to 21st most important features identified using the random forest 85.9%

1st to 7th most important features identified using RBF-DNN 91.7%
8th to 14th most important features identified using RBF-DNN 87.3%
15th to 21st most important features identified using RBF-DNN 84%

Table 5. Results of constructing add-on model for basic model constructed using proposed method
for products that are too long.

Inputs of Basic Model Accuracy

All 21 features 90.1%
1st to 7th most important features identified using the random forest 84.7%

8th to 14th most important features identified using the random forest 83.9%
15th to 21st most important features identified using the random forest 83.5%

1st to 7th most important features identified using RBF-DNN 88.7%
8th to 14th most important features identified using RBF-DNN 84.3%
15th to 21st most important features identified using RBF-DNN 82.7%

The second scenario simulated uses an existing basic model and an add-on model
constructed using the proposed method. We adopt the most intuitive approach to the basic
model and directly input all 21 features into a neural network implemented using the suite
provided by Matlab R2022b. That is, in Tables 2 and 3, all 21 dimensions are used as the
control group of model inputs. The accuracy of the basic models was 100% and 98.5% for
the two experiments, respectively.

First, Figures 16 and 17 show the importance rankings of the 21 features found by the
RBF-DNN for the add-on model in this situation. Figure 16 shows the results of identifying
products that are too short in addition to products that are good and too long. Figure 17
displays the results of identifying products that are too long in addition to products that are
good and too short. Darker gradients indicate higher rankings. Comparing these figures
with Figures 13 and 14, we see that the results are almost the same. This is because the main
goal of the add-on model is to learn the difference between the new category of product
errors and the old category; thus, it is not concerned with information related to the old
category on its own. Thus, as long as the product error categories identified by the basic
models are the same, the add-on models will be similar. In other words, this experiment
confirms that the proposed add-on model can be successfully built on the existing factory
model, enabling the factory to upgrade from Industry 3.0 to Industry 4.0 without building
a new model.
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Figure 16. Importance ranking of 21 features found by RBF-DNN for add-on model (good and too
long → too short) for existing basic model, where darker gradients indicate higher rankings.
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The remaining experiments included selecting the number of features (Figure 18) and
performance verification (Tables 6 and 7). However, as these results are similar to those
depicted in Figure 15 and Tables 4 and 5, we do not discuss these further.
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Figure 18. Results of selecting the number of key features for the add-on model in the second situation.

Table 6. Results of constructing add-on model for existing basic model for products that are too short.

Inputs of Basic Model Accuracy

All 21 features 93.7%
1st to 7th most important features identified using the random forest 91.7%

8th to 14th most important features identified using the random forest 89.2%
15th to 21st most important features identified using the random forest 88.6%

1st to 7th most important features identified using RBF-DNN 92.8%
8th to 14th most important features identified using RBF-DNN 90%
15th to 21st most important features identified using RBF-DNN 88.3%
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Table 7. Results of constructing add-on model for existing model for products that are too long.

Inputs of Basic Model Accuracy

All 21 features 94%
1st to 7th most important features identified using the random forest 91.4%

8th to 14th most important features identified using the random forest 89.1%
15th to 21st most important features identified using the random forest 88.1%

1st to 7th most important features identified using RBF-DNN 91.8%
8th to 14th most important features identified using RBF-DNN 90.2%
15th to 21st most important features identified using RBF-DNN 84.6%

4.4. Verification of Transfer Learning for the Combination of Basic and Add-On Models

The experimental results shown in Table 8 confirm the effectiveness of transfer learning
in the combination of basic and add-on models to upgrade existing fault detection systems.
There are three sets of experiments in total, and the values in each set of experiments in
the table are the best results of 30 experiments. The first group uses all 21 features to
establish three categories of classification models as the control group. These classification
models were implemented using Matlab’s NNstart toolbox and the deep neural network
kit [56]. The network directly uses the toolbox’s default value. Deep neural networks
use six hidden layers and one output layer. Each hidden layer uses the tangent sigmoid
function as the activation function, and the last layer uses SoftMax. As for other parameters,
we use the Adam accelerator for training and early stops to avoid overfitting. This control
group represents the case in which a factory does not use the transfer learning concept
and directly uses the old categories with a new error category (which is the most common
scenario in practice). The second and third groups are the two sets of experiments we
conducted in the above two sections. These two sets of experiments can also be regarded
as the results of using basic and add-on models to realize the concept of transfer learning.
Note that although the basic model considers different types of errors in these two sets
of experiments, they still identify the same three categories of errors with the add-on
model. We thus compared these with the control group. The results in Table 8 show the
superiority of the experimental results of the control group. This is not surprising, because
if all categories of data are given to the model at once, the model will be able to fully
consider the differences in the three categories of data when learning and thus obtain the
highest recognition accuracy. However, we observe the results of these sets of experiments
from the perspective of statistical significance, as shown in Figure 19, where the highest,
middle, and lowest values of each set represent the mean + standard deviation, mean,
and mean−standard deviation results of 30 experiments. As shown, the numerical ranges
between the four groups of experiments overlap, which means that there is no statistically
significant difference between them. Therefore, the results of the proposed method are
similar to those of the control group, but the proposed model enables factories to upgrade
existing models without abandoning the original model or using a low-cost model with
fewer features to build an add-on model. This means that the proposed model approach is
in line with real-world demands. This conclusion verifies the effectiveness of the transfer
learning concept.

Table 8. Best results of combining basic and add-on models.

Control group: one model (good + too long + too short)

Method Accuracy

All 21 features + Matlab’s NNstart toolbox 94.5%

All 21 features + deep neural network kit 93.6%
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Table 8. Cont.

Group 1: Basic model (good + too long)→add-on model (too short)

Method Accuracy

Basic (random forest’s 7 features) + add-on (random forest’s 7 features) 83.1%

Basic (all 21 features) + add-on (random forest’s 7 features) 91.7%

Basic (RBF-DNN’s 7 features) + add-on (RBF-DNN’s 7 features) 89%

Basic (all 21 features) + add-on (7 features selected by RBF-DNN) 92.8%

Group 2: Basic model (good + too short)→add-on model (too long)

Method Accuracy

Basic (random forest’s 7 features) + add-on (random forest’s 7 features) 83.1%

Basic (all 21 features) + add-on (random forest’s 7 features) 89.3%

Basic (RBF-DNN’s 7 features) + add-on (RBF-DNN’s 7 features) 88.3%

Basic (all 21 features) + add-on (RBF-DNN’s 7 features) 91.9%
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4.5. Applicability of Proposed Method in Practice

The approach proposed in this paper can help existing fault detection systems to
achieve upgrades through the transfer learning concept without reducing accuracy. This
section discusses the applicability of the proposed method in practice from the perspectives
of implementation complexity, computational resource requirements, and scalability.

The implementation complexity of the proposed method is described by the algorithm
flow chart presented in Figure 4. In the offline stage, the factory only needs to build
two models each time to implement the algorithm. In the online stage, the factory only
needs to run basic and add-on models once each is finished. This method resembles
the actions required by traditional fault detection systems; that is, there is no increase in
implementation complexity.

Table 9 presents the computational resource requirements of the target method in
the offline and online stages. The average values obtained after conducting the same
experiment 30 times are presented. The execution environment is Windows 10, 64-bit, with
an AMD Ryzen 9 5900X 12-core processor, 3.7 GHz, and 128 GB of memory. In the offline
stage, the execution time of the RBF-DNN is about 30 s, and the Matlab neural kit only takes
5 s to complete. Thus, the computer environment and model running costs are acceptable
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to most factories. In the online stage, the Matlab neural kit can be completed in about 1 s.
This is less than the production time of a single product, so it can be effectively applied for
instant fault detection.

Table 9. Computational resource requirements for proposed method.

Phase Offline Online

Action Construction of an
RBF-DNN

Construction of a
neural network using

Matlab

Running a neural
network in Matlab

Time cost about 30 s <5 s <1 s

As described in Figure 3, the goal of the proposed method is to enable factories
to quickly use existing fault detection models to establish extended models. Thus, the
approach is inherently scalable, thereby meeting the needs of factories in practice.

5. Conclusions and Future Works

Product fault detection systems are important auxiliary systems for factories and
have thus attracted considerable investment. However, as production modes change,
many existing systems are becoming invalid. Upgrading existing product fault detection
systems will enable factories to move into the era of Industry 4.0 at minimal cost. Existing
methods, however, ask factories to completely rebuild their systems. Transfer learning can
help factories retain their original systems, but some challenges must still be overcome.
This paper proposes two approaches to transfer learning for the upgrading of existing
product fault detection systems: (1) using a framework with a basic model and an add-
on model and (2) designing an RBF-DNN to extract key features for model construction.
We verified the effectiveness of the proposed approach using a real-world dataset. The
proposed framework will assist factories in reducing costs associated with upgrading
existing product fault detection systems.

The above paragraph summarizes the research motivation and advantages of the
proposed framework. However, our approach is subject to certain limitations. Since the
framework of this paper is based on the concept of supervised learning, if insufficient error
category data are collected by the factory, the framework will not be able to obtain enough
training data, leading to system failure. In future work, we plan to include generative AI
in this framework to simulate error category data. By using RBF-DNN as a generative AI
recognizer, analyzing the critical features captured by this RBF-DNN would also improve
the target framework. These additions would likely improve the practical applicability of
the proposed framework.
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