Perspective of Using Apple Processing Waste for the Production of Edible Oil with Health-Promoting Properties
Abstract
:Featured Application
Abstract
1. Introduction
2. Raw Material
3. Main Technological Problem
4. Technological Line for Separating Seeds and Pressing Oil
5. The Production Process
6. Nutritional and Health Properties
7. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Yao, Y.; Xu, B. New insights into chemical compositions and health promoting effects of edible oils from new resources. Food Chem. 2021, 363, 130363. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, M.; de Moura, C.; Kabbas, T.; Pap, N.; Mattila, P.; Mäkinen, S.; Putnik, P.; Bursać Kovačević, D.; Tian, Y.; Yang, B.; et al. Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019, 24, 3854. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; del Mar Bibiloni, M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit Juice Industry Wastes as a Source of Bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- Kapcsándi, V.; Lakatos, E.H.; Sik, B.; Ádám, L.; Székelyhidi, R. Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. Oilseeds Fats Crops Lipids 2021, 28, 30. [Google Scholar] [CrossRef]
- De Cássia de Souza, R.; Souza Machado, B.A.; de Abreu Barreto, G.; Leal, I.L.; Pereira dos Anjos, J.; Umsza-Guez, M.A. Effect of Experimental Parameters on the Extraction of Grape Seed Oil Obtained by Low Pressure and Supercritical Fluid Extraction. Molecules 2020, 25, 1634. [Google Scholar] [CrossRef]
- Jin, Q.; O’Keefe, S.F.; Stewart, A.C.; Neilson, A.P.; Kim, Y.T.; Huang, H. Techno-economic analysis of a grape pomace biorefinery: Production of seed oil, polyphenols, and biochar. Food Bioprod. Process. 2021, 127, 139–151. [Google Scholar] [CrossRef]
- Ahmadi, S.M.; Siahsar, B.A. Analogy of physicochemical attributes of two grape seeds cultivars. Cienc. Investig. Agrar. 2011, 38, 291–301. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, J.J.; Oliveira, A.; Marcadenti, A. Grape seed oil compounds: Biological and chemical actions for health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef]
- Abbas, A.; Anwar, F.; Ahmad, N. Apple (Malus pumila) Seed Oil. In Fruit Oils: Chemistry and Functionality; Ramadan, M., Ed.; Springer: Berlin, Germany, 2020; pp. 495–504. [Google Scholar]
- Akšić, F.M.; Lazarević, K.; Šegan, S.; Natić, M.; Tosti, T.; Ćirić, I.; Meland, M. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods 2021, 10, 1956. [Google Scholar]
- Fromm, M.; Bayha, S.; Carle, R.; Kammerer, D.R. Comparison of fatty acid profiles and contents of seed oils recovered from dessert and cider apples and further Rosaceous plants. Eur. Food Res. Technol. 2012, 234, 1033–1041. [Google Scholar] [CrossRef]
- Montañés, F.; Catchpole, O.J.; Tallon, S.; Mitchell, K.A.; Scott, D.; Webby, S.F. Extraction of apple seed oil by supercritical carbon dioxide at pressures up to 1300 bar. J. Supercrit. Fluids 2018, 141, 128–136. [Google Scholar] [CrossRef]
- Pieszka, M.; Migdał, W.; Gasior, R.; Rudzińska, M.; Bederska-Łojewska, D.; Pieszka, M.; Szczurek, P. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. J. Chem. 2015, 2015, 659541. [Google Scholar] [CrossRef]
- Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors. Materials 2022, 15, 1788. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Apples—Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 8 September 2023).
- Bugała, A. Raport o rynku jabłek. Agro Ind. 2022, 24, 55–59. [Google Scholar]
- Martău, G.A.; Teleky, B.E.; Ranga, F.; Pop, I.D.; Vodnar, D.C. Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front. Microbiol. 2021, 12, 3850. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.L.; Perdomo Azeredo, D.R.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Bernat, P.J. Jakie są prognozy dla rynku jabłek na rok 2023? Sad Nowocz. 2023, 1, 55–59. [Google Scholar]
- Malhi, N.; Carragher, J.; Saarela, M.; Pahl, S. A Review of Opportunities to Recover Value from Apple and Pear Pomace; Fight Food Waste Cooperative Research Centre: Adelaide, Australia, 2021; pp. 4–29. [Google Scholar]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Gullón, B.; Falqué, E.; Alonso, J.L.; Parajó, J.C. Evaluation of apple pomace as a raw material for alternative applications in food industries. Food Technol. Biotechnol. 2007, 45, 426–433. [Google Scholar]
- Putra, N.R.; Rizkiyah, D.N.; Abdul Aziz, A.H.; Che Yunus, M.A.; Veza, I.; Harny, I.; Tirta, A. Waste to Wealth of Apple Pomace Valorization by Past and Current Extraction Processes: A Review. Sustainability 2023, 15, 830. [Google Scholar] [CrossRef]
- Ferrentino, G.; Giampiccolo, S.; Morozova, K.; Haman, N.; Spilimbergo, S.; Scampicchio, M. Supercritical fluid extraction of oils from apple seeds: Process optimization, chemical characterization and comparison with a conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 2020, 64, 102428. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Esatbeyoglu, T.; Zhang, B.; Sheri, V.; Dhumal, S.D.; Rais, N. Apple (Malus domestica Borkh.) seed: A review on health promoting bioactivities and its application as functional food ingredient. Food Biosci. 2022, 50, 102155. [Google Scholar] [CrossRef]
- Ma, Q.; Bi, J.; Yi, J.; Wu, X.; Li, X.; Zhao, Y. Stability of phenolic compounds and drying characteristics of apple peel as affected by three drying treatments. Food Sci. Hum. Wellness 2021, 10, 174–182. [Google Scholar] [CrossRef]
- Cheng, M.H.; Dien, B.S.; Singh, V. Economics of plant oil recovery: A review. Biocatal. Agric. Biotechnol. 2019, 18, 101056. [Google Scholar] [CrossRef]
- Gasparini, A.; Ferrentino, G.; Angeli, L.; Morozova, K.; Zatelli, D.; Scampicchio, M. Ultrasound assisted extraction of oils from apple seeds: A comparative study with supercritical fluid and conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 2023, 86, 103370. [Google Scholar] [CrossRef]
- Scortichini, S.; Appignanesi, D.; Zannotti, M.; D’Amato, C.A.; Lenti, L.; Maggi, F.; Ferraro, S.; Fiorini, D.; Giovannetti, R. Fatty acid composition, squalene and elements in apple by-products: Comparison between ancient cultivars and commercial varieties. Eur. Food Res. Technol. 2022, 248, 1541–1551. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Kolanowski, W.; Zakrzewska, M. Apple processing wastes as potential source of new edible oil. J. Food Nutr. Res. 2019, 58, 92–98. [Google Scholar]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.; Montserrat de la Paz, S. Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef]
- Chen, C.; Razali, U.H.; Saikim, F.H.; Mahyudin, A.; Noor, N.Q. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, P.C. Process protocol for mechanical separation of fruit core and seeds from apple fruits. Int. J. Farm Sci. 2017, 7, 147–153. [Google Scholar]
- Matthäus, B.; Özcan, M.M. Oil content, fatty acid composition and distributions of vitamin-E-active compounds of some fruit seed oils. Antioxidants 2015, 4, 124–133. [Google Scholar] [CrossRef]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of apple seed oil with Denomination of Origin from Asturias, Spain. Grasas Aceites 2014, 65, e027. [Google Scholar]
- Madera, R.R.; Suarez Valles, B. Characterization of apple seeds and their oils from the cider-making industry. Eur. Food Res. Technol. 2018, 244, 1821–1827. [Google Scholar]
- Yukui, R.; Wenya, W.; Rashid, F.; Qing, L. Fatty Acids Composition of Apple and Pear Seed Oils. Int. J. Food Prop. 2009, 12, 774–779. [Google Scholar] [CrossRef]
- Walia, M.; Rawa, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J. Sci. Food Agric. 2014, 94, 929–934. [Google Scholar] [CrossRef]
- Górnaś, P.; Mišina, I.; Ikase, L. Crab Apple (Malus spp.) Seed Tocopherol Profile: Impact of Genotype, Species, Purpose and Rootstock. Agronomy 2022, 12, 2736. [Google Scholar] [CrossRef]
- Willet, W.C. Dietary fats and coronary heart disease. J. Intern. Med. 2012, 272, 13–24. [Google Scholar] [CrossRef]
- Amiri, M.; Raeisi-Dehkordi, H.; Sarrafzadegan, N.; Forbes, S.C.; Salehi-Abargouei, A. The effects of Canola oil on cardiovascular risk factors: A systematic review and meta-analysis with dose-response analysis of controlled clinical trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2133–2145. [Google Scholar] [CrossRef]
- Beyzi, E.; Gunes, A.; Buyukkilic Beyzi, E.; Konca, Y. Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. Oleifera L.) oil with seed sizes. Ind. Crops Prod. 2019, 129, 10–14. [Google Scholar]
- Górnaś, P.; Lacis, G.; Mišina, I.; Ikase, L. Tocopherols in Cultivated Apple Malus sp. Seeds: Composition, Variability and Specificity. Plants 2023, 12, 1169. [Google Scholar] [CrossRef] [PubMed]
- Fromm, M.; Bayha, S.; Kammerer, D.; Carle, R. Identification and Quantitation of Carotenoids and Tocopherols in Seed Oils Recovered from Different Rosaceae Species. Agric. Food Chem. 2012, 60, 10733–10742. [Google Scholar] [CrossRef]
- Górnaś, P.; Seglina, D.; Lacis, G.; Pugajeva, I. Dessert and crab apple seeds as a promising and rich source of all four homologues of tocopherol (a, b, g and d). LWT—Food Sci. Technol. 2014, 47, 211–214. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Segkuna, D. Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Ind. Crops Prod. 2014, 60, 86–91. [Google Scholar] [CrossRef]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Helyon 2020, 6, e04962. [Google Scholar] [CrossRef]
- Fotschki, B.; Jurgoński, A.; Juśkiewicz, J.; Zduńczyk, P. Metabolic effects of dietary apple seed oil in rats. Food Sci. Technol. Qual. 2015, 98, 220–231. [Google Scholar] [CrossRef]
- Górnaś, P.; Soliven, A.; Seglina, D. Seed oils recovered from industrial fruit by-products are a rich source of tocopherols and tocotrienols: Rapid separation of a/b/g/d homologues by RP-HPLC/FLD. Eur. J. Lipid Sci. Technol. 2015, 117, 773–777. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2019/1870 of 7 November 2019 amending and correcting Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid and hydrocyanic acid in certain foodstuffs. Off. J. Eur. Union 2019, 289, 37.
- Russo, M.; Yan, F.; Stier, A.; Klasen, L.; Honermeier, B. Erucic acid concentration of rapeseed (Brassica napus L.) oils on the German food retail market. Food Sci. Nutr. 2021, 9, 3664–3672. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 2015, 170, 437–442. [Google Scholar] [CrossRef]
- Opyd, P.M.; Jurgoński, A.; Juśkiewicz, J.; Milala, J.; Zduńczyk, Z.; Król, B. Nutritional and health-related effects of a diet containing apple seed meal in rats: The case of amygdalin. Nutrients 2019, 9, 1091. [Google Scholar] [CrossRef] [PubMed]
- Jaszczak-Wilke, E.; Polkowska, Ż.; Koprowski, M.; Owsianik, K.; Mitchell, A.E.; Bałczewski, P. Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Molecules 2021, 26, 2253. [Google Scholar] [CrossRef] [PubMed]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Fruit Seeds of the Rosaceae Family: A Waste, New Life, or a Danger to Human Health? J. Agric. Food Chem. 2017, 65, 10621–10629. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.; Vladić, J.; Popović, L.; Moslavac, T.; Jakobović, S.; Jokić, S. Recovery of Tocopherols, Amygdalin, and Fatty Acids from Apricot Kernel Oil: Cold Pressing Versus Supercritical Carbon Dioxide. Eur. J. Lipid Sci. Technol. 2018, 120, 1800043. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanowski, W. Perspective of Using Apple Processing Waste for the Production of Edible Oil with Health-Promoting Properties. Appl. Sci. 2024, 14, 2932. https://doi.org/10.3390/app14072932
Kolanowski W. Perspective of Using Apple Processing Waste for the Production of Edible Oil with Health-Promoting Properties. Applied Sciences. 2024; 14(7):2932. https://doi.org/10.3390/app14072932
Chicago/Turabian StyleKolanowski, Wojciech. 2024. "Perspective of Using Apple Processing Waste for the Production of Edible Oil with Health-Promoting Properties" Applied Sciences 14, no. 7: 2932. https://doi.org/10.3390/app14072932
APA StyleKolanowski, W. (2024). Perspective of Using Apple Processing Waste for the Production of Edible Oil with Health-Promoting Properties. Applied Sciences, 14(7), 2932. https://doi.org/10.3390/app14072932