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Abstract: Providing accurate information about bus travel times can help passengers plan their
itinerary and reduce waiting time. However, due to various uncertainty factors and the sparsity of
single-route data, traditional travel time predictions cannot accurately describe the credibility of the
prediction results, which is not conducive to passengers waiting based on the predicted results. To
address the above issues, this paper proposes a bus travel time prediction intervals model based
on shared road segments, multiple routes’ driving style similarity, and the bootstrap method. The
model first divides the predicted route into segments, dividing adjacent stations shared by multiple
routes into one section. Then, the hierarchical clustering algorithm is used to group all drivers in
multiple bus routes in this section according to their driving styles. Finally, the bootstrap method is
used to construct a bus travel time prediction interval for different categories of drivers. The travel
time data sets of Shenyang 239, 134, and New Area Line 1 were selected for experimental verification.
The experimental results indicate that the quality of the prediction interval constructed using a data
set fused with multiple routes is better than that constructed using a single-route data set. In the
two cases studied, the MPIW of the three time periods decreased by 101.04 s, 151.72 s, 33.87 s, and
126.58 s, 127.47 s, 17.06 s, respectively.

Keywords: bus travel time prediction; prediction intervals; multiple bus routes; hierarchical cluster-
ing; driving style similarity

1. Introduction

With the continuous acceleration of urbanization and the expansion of the urban
scale, the number of motor vehicles and the road traffic flow have sharply increased.
Especially in some large and medium-sized cities, traffic congestion is very serious, which
brings great inconvenience to citizens’ travel. Improving the share rate of public transport
is an effective way to solve urban traffic problems, establish the dominant position of
urban public transportation, and achieve efficient use of limited road traffic resources [1].
In the process of giving priority to the development of public transport, how to ensure
the normal and efficient operation of the public transport system depends not only on
the conditions of roads, vehicles, and other facilities but also on the progressiveness of
operation management means and technical means. To organize the operation of public
transport vehicles more scientifically and reasonably, and to help travelers better plan their
itinerary and reduce their waiting time, accurate prediction of bus travel time has become
an essential key link [2,3].

The goal of predicting bus travel time is to predict the time it takes for the bus to
pass through two points, such as between two stations [3]. The travel time between two
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adjacent bus stops also includes the time for bus vehicles to queue up at the intersection
and wait to pass through the intersection. Therefore, the factors that affect the accuracy of
predicting bus travel time are multifaceted, for example, traffic conditions [4,5], weather
factors [4,6], traffic incidents [7], differences in driver’s driving behavior [8], changes in
passenger flow [9], etc. These uncertain factors increase the uncertainty of bus travel and
arrival time. This will cause bus bunching [10] and negative impacts such as increased bus
operating costs and longer waiting times for passengers [11,12].

In previous studies, various machine learning-based methods have been proposed for
predicting bus travel time. However, most previous studies mainly focused on improving
the prediction accuracy of the bus travel time point prediction model. The main drawback
of the bus travel time point prediction model is that it cannot provide the confidence
interval information of the prediction results [13]. For example, when we travel by bus
according to the prediction results of the point prediction model, we will encounter the
following two situations: (1) if the predicted results are larger than the actual travel time,
we will miss the bus. (2) If the predicted result is smaller than the actual driving time, we
may need to wait for a long time [8].

Some scholars have proposed that the prediction intervals (PIs) can be used to quantify
the uncertainty of bus travel time point prediction. From the perspective of travelers,
predicting the possible range of bus travel time is more meaningful than providing only
predicted values for a single arrival time point [14]. Usually, the PIs consist of a lower limit
and an upper limit, where the true value falls within these limits. In previous studies, PI
techniques mainly include Bayesian techniques [15], Delta techniques [14,15], the bootstrap
method [16,17], and the upper and lower bound estimation method (LUBE) [18]. According
to previous research results, when the data set is small, the PIs constructed based on the
bootstrap method are usually more accurate [19,20].

In addition, the travel time of buses varies greatly at a specific time of the day, and
there is also a significant difference in traffic volume between different segments of the
road, which significantly affects the accuracy of the travel time prediction. At present, most
previous studies use the same prediction model to predict the travel time of the whole
line. This method can not accurately predict the travel time of different sections in different
periods [21]. At the same time, due to the long interval between bus departures on a single
route in the real world, the sparsity of the bus travel time data set results in suboptimal
quality of the PIs generated solely from a single route data set [8]. Previous studies have
recognized that if several bus routes share a portion of the route, they can benefit from each
other’s predictions, as in [3,22,23]. Based on inspiration from the above research, this paper
integrates driving data from multiple routes and proposes a bus travel time PIs model
based on the similarity of multiple routes’ driving styles and the bootstrap method. The
effectiveness of this method was verified through real-world data.

The main contributions of this paper can be summarized as follows.

• We investigated the impact of multiple routes’ driving style similarity on travel time
PIs and proposed a new method to predict bus travel time PIs;

• We found that segmenting the predicted route is beneficial for improving the quality
of bus travel time PIs;

• Compared to previous studies, the method proposed in this article has been validated
for its effectiveness through real-world data, which can further improve the quality
of PIs.

The rest of this paper is organized as follows. Section 2 summarizes the related work.
The process of the bootstrap method used to construct PIs is introduced in Section 3.
Section 4 introduces the model framework and the construction steps of the bus travel time
PIs model. Section 5 presents a discussion of the results of the experiment. The conclusion
of this paper is summarized in Section 6.
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2. Related Work

Machine learning has been widely applied to predict the travel time of buses. Multiple
machine learning-based prediction methods have been proposed in the previous literature,
including linear regression (LR) [24,25], support vector regression (SVR) [3,7,26,27], artificial
neural network (ANN) [3,24,28], random forest (RF) [6,29], the Kalman filter (KF) [30,31],
and deep learning prediction models [4,21,32–34]. Among them, the LR models are only
used for comparison with other models in most studies [33]. SVR and ANN have become
the most widely used models because of their strong nonlinear fitting ability and ability to
map complex nonlinear relationships. For example, in [7], the authors demonstrated for
the first time the feasibility of applying SVR to predict travel time and demonstrated that
SVR is suitable for traffic data analysis. Reddy et al. [11] used support vector machines
and V-vector regression with linear kernel functions for prediction. In [35], the authors
proposed a bus travel time prediction model with a forgetting factor based on SVM. In [29],
the authors used three different algorithms, namely random forest, projection pursuit
regression, and support vector machine, to carry out extensive experiments on each route in
the study. In [27], the authors proposed a new road segment-based method for predicting
bus travel time, selecting the basic prediction model by comparing the performance of
SVM, ANN, and k–NN. In [6], the authors proposed the neighbor-based random forest
(RFNN) method to predict bus travel time, which has been calibrated and validated with
real-world data. Although the results of RFNN show high accuracy, its long computation
time is currently not suitable for real-time prediction. To improve the prediction accuracy
of travel time and avoid the disadvantage of using a single model, many studies have tried
to use hybrid models to predict the travel time of buses. For example, reference [36–39]
added the KF algorithm to machine learning-based methods. In [23], the authors proposed
a new model combining queuing theory and machine learning to predict bus travel time.
Compared to a single model, the results of mixed models indicate that they can provide
better performance.

The above machine learning-based methods are all based on shallow learning archi-
tectures, but they struggle to handle the correlation between spatiotemporal data factors,
and the relationships between these factors are more complex and nonlinear [21]. In recent
years, researchers have proposed some research based on deep neural networks. In [32],
the authors proposed using recurrent neural networks (RNNs) to predict the arrival time of
buses by utilizing long-range correlations between multiple time steps. Petersen et al. [33]
utilized the nonstationary spatiotemporal correlations present in urban public transporta-
tion networks to propose a multi-output, multi-time-step, deep neural network that utilizes
a combination of convolutional and long short-term memory (LSTM) layers to discover
complex patterns that traditional methods cannot capture. In [4], the authors proposed
a method (TP-SCF) to automatically learn the different traffic conditions of different bus
routes and train a separate prediction model (LSTM) for each different traffic mode to
improve prediction accuracy. In [34], the authors developed a Geo-conv LSTM model that
can extract the subsequent spatial features of the entire bus travel sequence through a
1D convolutional neural network (CNN) while also capturing the temporal dependencies
between sub-sequences through the LSTM network. Khaled et al. [21] proposed using the
NMF algorithm to group route links with similar traffic patterns into different groups and
training separate CNN models for each group to improve the accuracy of model predictions.

Unfortunately, although all of the above studies strive to improve the accuracy of bus
travel time prediction, these studies cannot provide information about travel time such as
confidence level. Even the most advanced models currently cannot accurately predict the
travel time of buses and can only minimize errors as much as possible. Currently, only a few
articles have studied the problem of bus travel time PI prediction. Reference [14] studied the
application of delta technology in constructing travel time prediction intervals for buses and
highways and proposed a neural network model based on a genetic algorithm, which has
the method of automatic selection and adjustment of hyperparameters. Khosravi et al. [15]
constructed travel time prediction intervals for buses and highways using Bayesian and
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Delta methods. The experimental results show that the PIs constructed using Bayesian
techniques have stronger robustness to neural network structures and good coverage
probability, while the delta method is superior to the Bayesian method in terms of PI
narrowness. In [13], the authors demonstrated a bootstrap method based on the maximum
likelihood technique to construct PIs. The authors quantified the contribution of each
source of uncertainty to the overall prediction uncertainty. Finally, the effectiveness of the
proposed method was verified by predicting the travel time of Melbourne’s bus routes in
Australia. In [8], the authors constructed a bus travel time PIs prediction model based on
driving style similarity using hierarchical clustering technology and the bootstrap method
and applied it to the travel time PIs prediction of one bus route in Shenyang. Table 1
provides a comprehensive review of research on bus travel time point prediction and
PI prediction.

Table 1. Overview of bus travel time point prediction and PI prediction.

Paper Data Type Method Spatial Temporal Cluster Target

[24] AVL ANN, LR, HA 2 routes 6 months No Point Prediction
[3] Surveys data SVM, ANN, K-NN, LR 8 routes 3 days No Point Prediction

[26] Unknown SVM, ANN 1 route 1 month No Point Prediction
[27] GPS SVM, ANN, K-NN 3 routes 1 month Yes Point Prediction
[28] GPS HA, ANN, KF 1 route 6 months Yes Point Prediction
[6] GPS RFNN 2 routes 3 days No Point Prediction

[29] Unknown RF, PPR, SVM 6 routes 3 months No Point Prediction
[30] AVL, APC KF 1 route 5 days No Point Prediction
[31] GPS KF 1 route 30 days No Point Prediction
[38] APC ANN + KF 1 route 12 months No Point Prediction
[39] On-board survey SVM + KF 1 route 1 month No Point Prediction
[4] GPS LSTM 30 routes 2 months Yes Point Prediction

[21] GPS CNN 5 routes 6 months Yes Point Prediction
[32] GPS RNN 47 routes 1 month No Point Prediction
[33] GPS ConvLSTM 1 route 5 months No Point Prediction
[34] GPS Geo-convLSTM 2 routes 3 months No Point Prediction
[14] GPS Delta 1 route 6 months No PI Prediction
[15] GPS Delta, Bayesian 1 route 6 months No PI Prediction
[13] GPS Bootstrap + ANN 1 route 6 months No PI Prediction
[8] GPS Bootstrap + ANN 1 route 1 month Yes PI Prediction

Ours GPS Bootstrap + ANN 3 routes 1 month Yes PI Prediction

Note: AVL—automatic vehicle location, APC—automatic passenger counter, HA—Historical Average.

3. Construction of PIs Using the Bootstrap Method
3.1. Mathematical Description of the Problem

Due to the limitation of the bus departure time interval (10–30 min), only one data
record of the travel time can be extracted during each time cycle from departure to arrival.
Therefore, the travel time data of buses have typical characteristics of small samples. It
is reasonable to use the bootstrap method to predict bus travel time PIs. Referring to
reference [16,40], assuming the existence of a set of data D = {(xi, yi), i = 1, 2 . . . N}, there is
a non-linear mapping relationship y(xi) between the target value y and the input variable
x. Taking into account the measurement error, the travel time can be expressed as:

y∗i = y(xi) + ϵ(xi) (1)

where y∗i indicates the measured value, y(xi) represents the true value of the i-th sampling,
and ϵ(xi) represents noise. Assuming that the output of the prediction model is ŷi(xi), the
error of the model can be expressed as:

y∗i − ŷi = [y(xi)− ŷi(xi)] + ϵ(xi) (2)
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where y(xi)− ŷi(xi) represents the error between the predicted value of the model and the
real value, ϵ(xi) represents the noise of the data, the predicted variance can be expressed as:

σ2
y (xi) = σ2

ŷ (xi) + σ2
ϵ (xi) (3)

If σ2
ŷ (xi) and σ2

ϵ (xi) are estimated, then σ2
y (xi) can be calculated, and then the predic-

tion intervals can be estimated based on the variance value. Next, in Section 3.2, we will
introduce the process of using the bootstrap method to estimate σ2

ŷ (xi) and σ2
ϵ (xi).

3.2. Bootstrap Methodology

The bootstrap method is a computer technology-based resampling method proposed
by Professor Efron [41]. The method of constructing confidence intervals and prediction
intervals is commonly used to simulate the population distribution by resampling ob-
served data with replacement and generating regenerated samples. Compared to other
methods, this method can generate more reliable PI without the need to calculate complex
matrices [16].

Suppose that there is a data sample X = {x1, x2, . . . xn} with a sample capacity of N, and
B samples with a capacity of M are extracted from the original sample X.
X∗ =

{
x∗1 , x∗2 , . . . , x∗m

}
, usually M = N, finally producing B bootstrap samples X∗

1 , X∗
2 , . . . , X∗

B.
The value of B is generally within the range of 20~200 and can meet the requirements of
most applications [19]. In this paper, B = 30 is selected.

The mean of point prediction of travel time for B samples using artificial neural
network models is [40]:

ŷ(xi) =
1
B

B

∑
b=1

ŷb(xi) (4)

Among them, ŷb(xi) is the prediction of the i-th sample generated by the b-th bootstrap
model. Then, use the variance of the predicted results from the B models to estimate the
model variance [16,40].

σ2
ŷ (xi) =

1
B − 1

B

∑
b=1

(ŷb(xi)− ŷ(xi))
2 (5)

In order to construct PI, it is also necessary to estimate the variance of the error
σ2

ϵ (xi) [16]:
σ2

ϵ (xi) = E
{
(y∗i − ŷ(xi))

2
}
− σ2

ŷ (xi) (6)

The sum of squared residuals is [40]:

r2(xi) = max
(
(y∗i − ŷ(xi))

2 − σ2
ŷ (xi), 0

)
(7)

where ŷ(xi) and σ2
ŷ (xi) can be calculated from Equations (4) and (5). Combine residuals

with input variable set samples to build a new data set Dr2 =
{(

xi, r2(xi)
} n

i=1. Through
the data set Dr2 , train a new neural network, that is, the L + 1 learning model to estimate
σ2

ϵ (xi). In order to maximize the probability of the observed sample in Dr2 , therefore, the
new model introduces the maximum likelihood estimation method and establishes a new
objective function to train the model. Defined as [40]

CBS =
1
2

n

∑
i=1

(
ln
(

σ2
ϵ (xi)

)
+

r2(xi)

σ2
ϵ (xi)

)
(8)

After estimating σ2
ŷ (xi) and σ2

ϵ (xi), the PIs with a confidence level of (1 − α)% can be
constructed [16]:

U(α)(xi) = ŷ(xi) + t1− α
2

d f

√
σ2

ŷ (xi) + σ2
ϵ (xi) (9)
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L(α)(xi) = ŷ(xi)− t1− α
2

d f

√
σ2

ŷ (xi) + σ2
ϵ (xi) (10)

where U(α)(xi) and L(α)(xi) are the upper and lower boundaries that construct PI, respec-

tively. t1− α
2

d f is the 1 − α/2 quantile of the t distribution function with the degree of freedom
df. Usually, the value of df is set to B.

4. Proposed Method
4.1. Model Architecture

The architecture of the bus travel time PI model based on the similarity of driving
styles across multiple routes and the bootstrap method proposed in this article is shown
in Figure 1. This mainly includes dividing the predicted route into segments, using
hierarchical clustering technology to construct the original sample data set DHC, and
then using the bootstrap method to resample the original sample data set and generate
prediction intervals. Refer to Section 4.2 for detailed steps.
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4.2. Specific Procedures

The specific steps to construct a prediction interval for bus travel time are as follows:
(1) Division of time period and road segment. In order to more accurately classify bus

drivers on multiple routes into different types according to their driving styles, this study
considers both spatial and temporal characteristics. First, divide the time periods. Divide a
day into three time periods: morning peak hour (7:00–9:00), off-peak hour (9:00–16:00), and
evening peak hour (16:00–19:00). The purpose of time division is to ensure that bus drivers
have similar patterns in their travel time within the same time period. Second, divide the
predicted bus route into sub-segments. The segment between two bus stops with multiple
routes having duplicate segments is used as the basic prediction unit.

(2) Construct the original sample data set DHC of bus travel time using the hierarchical
clustering method. Perform hierarchical clustering on all drivers on sub-road segments
according to their driving styles, and use the travel time data sets of different categories
of drivers as the original sample data set DHC, which includes n sub-sample data sets
DHC1. . .DHCn, each representing the historical travel time data set of a category of drivers
over a period of time.

(3) Resampling of the original sample data set. The bootstrap method is used to
resample each subsample set in data set DHC B times (where B = 30) with replacement,
resulting in B bootstrap sample sets.

(4) Prediction of travel time points based on ANN. In this step, select a three-layer
neural network, including the input layer, the hidden layer, and the output layer. The
factors (inputs) considered in this study are the following: X1 day of the week, X2 road
segment number, and X3 departure time. The resampled sample data set is trained to
obtain B trained ANN models, and then the test data set is used to predict the B point
prediction results and their squared residuals r2(xi).

(5) Training the b + 1 neural network model. According to Equation (7), construct a
squared residual data set Dr2 =

{(
xi, r2(xi)

} n
i=1 to train the b+1 neural network model.

Use the test sample data set and the above-trained models to obtain the prediction value,
prediction model variance, and variance of the errors.

(6) Constructing travel time prediction intervals for sub-segments. Construct a travel
time prediction interval for the corresponding road segment based on Equations (9) and (10).

5. Experiments
5.1. Data Collection

The data in this study were provided by Shenyang Municipal Bureau of Big Data. The
software used in this study mainly includes IBM SPSS Statistics 26 and MATLAB R2016a.
Experiments were conducted using three bus routes in Shenyang, namely 239, 134, and
New Area Line 1. Each bus in the above three routes is equipped with a GPS positioning
device, which collects bus position data every 5 s. The onboard serial number of each
bus is unique and corresponds to a fixed bus driver. This study takes the segment of the
239 bus route from the 4th station (Jianshe Road Weigong Street) to the 13th station (Peace
Square) as the main predicted segment. The traffic flow and the number of passengers
in different directions on the same road section are not the same, which will lead to a
difference in travel time. Therefore, this study uses the driving data in the same direction
(from west to east). Some parts of the driving segments of the three bus routes are shared.
According to the shared parts, the predicted segment is divided into three sub-segments, as
shown in Figure 2. Among them, sub-segment 1 spans four bus stations from Jianshe Road
Weigong Street Station to Tiexi Square Station. There are 239 bus routes and the new district
line 1 overlapping with sub-segment 1. Sub-segment 2 spans four bus stations from Tiexi
Square Station to Shengli South Street Station on Nanwu Road. In sub-segment 2, there
are three bus routes with overlapping driving intervals: 239, 134, and New Area Line 1.
Sub-segment 3 runs from Shengli South Street Station on Nanwu Road to Peace Square
Station and also spans four bus stops. There are overlapping driving segments of 239 and
134 in sub-segment 3.
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bus No. 239, (c) route map of new area line 1, (d) route map of bus No. 134.

Among them, the travel time data set of 9 drivers was selected for each route as exper-
imental data, and 27 drivers for a total of 3 routes is shown in Table 2. The experimental
data are from 4 to 22 January 2016 (Monday to Friday). The data set is divided into three
sub-data sets: D1 (4–15 January 2016), D2 (18–20 January 2016) and D3 (21–22 January 2016).
Data sets D1 and D2 are used for the training data set, and data set D3 is the test sample.
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Table 2. List of driver codes for 3 routes.

No. 239 No. 134 New Area Line 1

902334 903687 902708
902335 903688 902709
902340 903689 902710
902347 903692 902711
902349 903696 902713
902351 903698 902718
902353 903708 902722
902355 903712 902724
902359 903690 902730

5.2. PI Assessment Indexes

In related research [14,16], the most important feature of PIs is their coverage probabil-
ity. PI coverage probability (PICP) is measured by calculating the number of covered target
values [16]:

PICP =
1
N

N

∑
i=1

Ci (11)

where:

Ci =

{
1, i f ti ∈ [Li, Ui]
0, i f ti /∈ [Li, Ui]

(12)

where N is the number of samples. Li and Ui represent the upper and lower bounds of the
PI corresponding to the i-th sample.

Another important indicator is the mean prediction interval width (MPIW), which is
used to quantify the width of PI [14]. The definition is as follows:

MPIW =
1
n

n

∑
i=1

(U(Xi)− L(Xi)) (13)

Meanwhile, in some literature [14,42], two additional evaluation indicators are also
used to supplement the evaluation of PI, namely NMPIW and CWC. Assuming that the
target range R is known, normalized MPIW (NMPIW) can be calculated as follows [14]:

NMPIW =
MPIL

R
(14)

NMPIW represents the percentage of the average width of PIs in the underlying target.
Reference [42] developed a coverage width criterion (CWC) consisting of PICP and

NMPIW, which simultaneously evaluates PIs from both coverage probability and width
perspectives:

CWC = NMPIW ∗
(

1 + γ(PICP)e(−η(PICP−µ)) (15)

where γ(PICP) is given by:

γ =

{
0, PICP ≥ µ
1, PICP < µ

(16)

In Equation (15), η and µ are the two hyperparameters that control CWC, as suggested
in reference [18]. The η And µ values are set to 50 and 0.9, respectively. CWC provides
an effective compromise between the information and the precision of the PI. It is worth
noting that the smaller the CWC, the better [16].

5.3. Results and Analysis
5.3.1. Clustering Results of Driving Styles for Multiple Routes Drivers

We use a hierarchical clustering algorithm to classify the driving style of drivers, which
can help us discover the internal relationships and hierarchical structure between data
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objects without the need to pre-set the number of clustering categories. The result is shown
in Figures 3–5. Referring to previous research [8,10], through an experimental comparison
of clustering results at different levels, the hierarchical clustering results divided by blue
lines in the figure are selected as an example. By comparing the subgraphs in Figures 3–5,
it can be found that the driving style of the same driver on the same road segment is not
the same at different periods. For example, the clustering results of driver 902335 on road
segment 1 are as follows: during the morning peak period (7:00–9:00), the driving style
of drivers 902713, 902730, 902349, 902718, 902724, and 902347 is similar. During off-peak
hours (9:00–16:00), the driving style of drivers numbered 902334, 902349, 902340, 902347,
and 902353 is similar. During the evening peak hours (16:00–19:00), the driving style of the
drivers numbered 902349, 902708, 902722, 902351, 902334, and 902347 is similar. This result
indicates that the division of periods is very necessary. At the same time, the results of the
clustering of driving styles on different segments of the road during the same time period
are also different. Taking driver number 902335 as an example in Figure 3, during the
morning peak period (7:00–9:00), the clustering results of 902335 on road segment 1 show
that the driving styles of drivers with numbers 902713, 902730, 902349, 902718, 902724,
and 902347 are similar. On road segment 2, the driving style of driver 902335 is similar
to that of drivers numbered 902351, 902359, 902353, 902722, 902724, and 902713. On road
segment 3, the driving style of driver 902335 is only similar to that of driver 902334. This
result indicates that the division of the predicted route into segments is also very important.
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5.3.2. Travel Time Interval Prediction Results

According to the driving style clustering results in Section 5.3.1, two drivers numbered
902335 and 902359 are selected as the travel time PI prediction objects in this section. The
departure schedule of the two drivers to be predicted from 21 January 2016 to 22 January
2016 is shown in Table 3.

Table 3. The predicted departure schedule of the drivers.

Time Period
21 January 2016 22 January 2016

902335 902359 902335 902359

7–9 7:23:07 7:13:38 8:58:02 7:05:45

9–16
10:06:04 9:57:11 11:55:28 9:37:12

14:19:48 12:57:05
15:14:05 14:38:04 12:45:11

15:58:15

16–19 16:42:22 17:36:00 17:00:06

The experiment used the MATLAB R2016a software package to build PIs running on a
Core I7–4790, 3.6–GHZ CPU with 8–GB RAM. Each experiment was repeated 20 times, and
the average value was calculated as the final result. Meanwhile, to obtain high-confidence
prediction information, we set the confidence level to 90%. The predicated PI results are
shown in Figures 6 and 7, respectively.

To compare the effectiveness of the proposed method, we compared it with the
reference results [8], which used a data set of Route 239 to construct personalized travel
time prediction intervals and prediction intervals after driving style clustering, respectively.
For simplicity, we use P, HC, and MHC subscripts to represent the PI results generated from
a single driver data set, a single bus route hierarchical clustering data set, and a multiple
bus routes hierarchical clustering data set, respectively. For example, taking 902335 as an
example, PIP represents the PI result generated using only the data set of drivers with ID
902335. PIHC represents the PI result generated by the hierarchical clustering of driving
styles using all drivers on a single route (239). PIMHC represents the PI result generated by
hierarchical clustering of all drivers on multiple routes according to their driving styles.

The results of the travel time PIs of driver 902335 are shown in Figure 6. The prediction
results are divided into three subgraphs according to time periods, where subgraphs a,
b, and c, respectively, show the PIs results of driver 902335 during morning peak hours,
off-peak hours, and evening peak hours.
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It is not difficult to see from the results that the prediction results of the three models
PIMHC, PIHC, and PIP can all include most of the true values within the prediction interval.
Meanwhile, the width of PIMHC based on multiple routes sharing prediction results is
significantly narrower than that of PIHC and PIP in the three time periods. And the
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predicted values can track the changes in the measured values well. During the morning
peak time, as shown in Figure 6a, only the predicted interval of PIMHC fully includes the
true values, and the predicted interval width is the narrowest. This indicates that the
prediction interval of PIMHC is significantly better than the other two models. During the
off-peak time, as shown in Figure 6b, as the fluctuation range of the true value decreases,
the predicted interval width of PIMHC is significantly narrower compared to the other two
periods. This indicates that PIMHC prediction performs better during periods of stable
traffic flow. However, when there is a drastic fluctuation in the actual value, as shown in
Figure 6c during the evening peak period, the prediction error is relatively large and the
true value falls outside the range. We believe that the traffic situation at this time has been
affected by an unexpected event.

Figure 7a–c show the interval prediction results of driver 902359 during morning peak
hours, off-peak hours, and evening peak hours, respectively. It can also be seen from the
results that the prediction results of the three models PIMHC, PIHC, and PIP can all include
most of the true values within the prediction interval. At the same time, the width of PIMHC
is significantly narrower than PIHC and PIP in the prediction results based on the sharing
of multiple route segments in three time periods. And the predicted values can track the
changes in the measured values well. However, there was no significant fluctuation in the
actual value and almost all true values were within the range.

Next, we will quantitatively evaluate the generated PI and further analyze the effec-
tiveness of interval prediction. By calculating the PICP, MPIW, NMPIW, and CWC, the
accuracy of prediction results for each interval can be accurately compared.

Table 4 shows the values of PICP, MPIW, NMPIW and CWC for the prediction interval
when the confidence level is 90%. It can be seen that almost all predicted PICP values for
each PI of PIMHC exceed the set confidence level (90%). In all cases, the MPIW value of
PIMHC is smaller than the corresponding MPIW values of PIHC and PIP. For example, in case
902335, the MPIW values in three time periods decreased by 101.04 s, 151.72 s, and 33.87 s
in PIMHC compared to PIHC, respectively. Compared to PIP, it decreased by 67.25 s, 180.29 s,
and 96.79 s, respectively, indicating that the predicted interval width significantly narrowed
without reducing the PICP. The values of the corresponding NMPIW also decreased, with
PIMHC decreasing by 18.44, 17.43, and 11.08 compared to PIHC, respectively. Compared to
PIP, it decreased by 27.5, 38.87, and 28.69, respectively. Meanwhile, the corresponding CWC
values were also smaller (decreased by 102.09, 17.43, and 1210.65, respectively). Similarly,
in Table 4, it can be observed that the predicted results of case 902359 show a similar trend
over three time periods. The value of MPIW was decreased by 126.58 s, 127.47 s, and 17.06 s
in PIMHC compared to PIHC, respectively. Compared to PIP, it decreased by 147.16 s, 158.4 s,
and 51.27 s, respectively. The corresponding NMPIW values also decreased, with PIMHC
decreasing by 25.42, 21.66, and 12.82 compared to PIHC, respectively. Compared to PIP, it
decreased by 31.53, 31.65, and 25.41, respectively. Meanwhile, the corresponding CWC
value is also smaller. Furthermore, it indicates that the interval prediction quality of the
method proposed in this article is better, which can shorten the waiting time of passengers
and provide more reliable waiting time recommendations.

Table 4. PIs characteristics for test samples when the confidence level is 90%.

Case Study Model PICP (%) MPIW NMPIW (%) CWC

902335

7:00–9:00
PIP 88.89 334.46 63.03 160.73

PIHC 88.89 368.25 53.97 137.62
PIMHC 100.00 267.21 35.53 35.53

9:00–16:00
PIP 94.44 334.19 72.05 72.05

PIHC 91.67 305.62 50.61 50.61
PIMHC 91.67 153.9 33.18 33.18

16:00–19:00
PIP 94.44 325.36 71.73 71.73

PIHC 83.33 262.44 54.12 1320.4
PIMHC 88.89 228.57 43.04 109.75



Appl. Sci. 2024, 14, 2935 16 of 18

Table 4. Cont.

Case Study Model PICP (%) MPIW NMPIW (%) CWC

902359

7:00–9:00
PIP 94.44 395.85 64.51 64.51

PIHC 100.00 375.27 58.4 58.4
PIMHC 100.00 248.69 32.98 32.98

9:00–16:00
PIP 100.00 336.43 57.31 57.31

PIHC 100.00 305.5 47.32 47.32
PIMHC 96.3 178.03 25.66 25.66

16:00–19:00
PIP 100.00 281.1 67.91 67.91

PIHC 100.00 246.89 55.32 55.32
PIMHC 100.00 229.83 42.5 42.5

6. Conclusions

Travel time is an important indicator in intelligent transportation systems, and cur-
rently, most research on travel time focuses on deterministic prediction, requiring decision-
makers to evaluate the reliability of results through the error value of the model. This
article conducts in-depth research on the uncertainty of travel time prediction. To further
improve the quality of bus travel time PIs, this paper outlines a multi-faceted approach
comprising segmentation of routes, clustering of drivers based on driving styles, and boot-
strap method application. We propose a bus travel time PIs model based on road sharing
and driving style similarity for multiple routes. The superiority of the proposed method
was demonstrated through experiments on real data from multiple bus routes in Shenyang
city. We found that the width of PIs based on multiple routes’ segment sharing significantly
narrows. In the two cases studied, the MPIW for the three time periods decreased by
101.04 s, 151.72 s, 33.87 s, and 126.58 s, 127.47 s, 17.06 s, respectively. And the predicted
values can better track the changes in the measured values. The findings suggest potential
implications for improving public transportation systems, emphasizing the importance
of incorporating shared data and driving behavior analysis for more accurate predictions.
The results of this study can serve as a reference for public transportation management
agencies to arrange the operation of public transportation vehicles more scientifically and
reasonably and also help travelers better plan their itinerary and reduce their waiting time.

Future research can be conducted from the following two aspects: (1) combining deep
learning models to explore the impact of deep-level spatiotemporal factors on travel time
prediction intervals; (2) developing a component for the prediction of traffic accidents to
enhance the predictive ability of existing models in dealing with unexpected situations.
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